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Background
Primary open angle glaucoma (POAG) is a chronic progressive and 

potentially blinding optic neuropathy. Visual loss is often monitored 
using visual field (VF) test. Depending on different algorithms used, 
the VF test divides retina into 74 or 52 locations and the sensitivity of 
vision at each location is assessed. Glaucomatous damage is irreversible 
because nothing yet can restore the optic nerve cells once they are 
dead. However, the risk of blindness due to progressive VF loss varies 
substantially from patient to patient. A natural history study on a 
cohort of patients newly diagnosed with glaucoma found out that the 
mean deviation (MD) index, a global summary measure for visual field 
test, in some patients can deteriorate at an alarming rate of 10 decibels 
(dB) per year, while in others the MD virtually did not change in 6 
years without any treatment [1]. Early identification of those patients 
destined to rapid progressive visual loss is crucial to prevent further 
irreversible visual field loss. Conversely, for patients whose visual fields 
remain stable, the cost and morbidity associated with over-treatment 
could be avoided. Unfortunately, differentiating progressive and stable 
visual function is challenging, partially due to the high intra-individual 
variability in visual field data [2]. As in many other chronic diseases, 
multiple longitudinal biomarkers are often collected. The usefulness of 
longitudinal biomarkers for early detection of disease or to monitor 
disease progression has been long recognized in many chronic diseases 
such as cancer or cognitive aging. It is therefore worth while to pursue 
whether the prediction of VF progression in patients with POAG could 
be enhanced using periodically recorded biomarkers. 

 In the last decade, many methods have been proposed to 
incorporate longitudinal biomarkers for the prediction of clinical 
outcomes in biomedical research. Henderson et al. [3] proposed a 
flexible joint model that connects longitudinal and survival models 
with two correlated latent Gaussian processes. They assumed that the 

longitudinal and survival data are conditionally independent given the 
linking latent process and covariates. Guo and Carlin [4] developed 
the above joint model using a fully Bayesian approach through MCMC 
methods. Rizopoulos et al. [5] developed a joint model via so called 
shared-parameter model. They assumed that all associations between 
longitudinal and survival processes are induced by random effects 
and that the two processes are conditionally independent given the 
random effects. Similar shared parameter models have also been used 
for the joint analysis of longitudinal data and binary outcomes [6] or 
multivariate longitudinal biomarkers and time-to-event data [7]. In 
all the above methods, univariate or multivariate linear mixed models 
are often used to describe the change of longitudinal biomarkers over 
time. These models usually assume that all individuals are drawn 
from a single homogenous population and that all the trajectories are 
smoothly distributed around the population average.

 An alternative approach for the joint modeling of longitudinal data 
and clinical outcome is a joint latent class model which uses a latent 
class growth model (LCGM) to describe trajectories of longitudinal 
biomarkers. It assumes that the population of subjects consists of 
heterogeneous but unobserved sub-populations (latent classes). A joint 
latent class model assumes that the dependence between longitudinal 
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Abstract
Primary open angle glaucoma (POAG) is a chronic, progressive, irreversible, and potentially blinding optic 

neuropathy. The risk of blindness due to progressive visual field (VF) loss varies substantially from patient to patient. 
Early identification of those patients destined to rapid progressive visual loss is crucial to prevent further damage. In 
this article, a latent class growth model (LCGM) was developed to predict the binary outcome of VF progression using 
longitudinal mean deviation (MD) and pattern standard deviation (PSD). Specifically, the trajectories of MD and PSD 
were summarized by a functional principal component (FPC) analysis, and the estimated FPC scores were used to 
identify subgroups (latent classes) of individuals with distinct patterns of MD and PSD trajectories. Probability of VF 
progression for an individual was then estimated as weighted average across latent classes, weighted by posterior 
probability of class membership given baseline covariates and longitudinal MD/PSD series. The model was applied to 
the participants with newly diagnosed POAG from the Ocular Hypertension Treatment Study (OHTS), and the OHTS 
data was best fit by a model with 4 latent classes. Using the resultant optimal LCGM, the OHTS participants with and 
without VF progression could be accurately differentiated by incorporating longitudinal MD and PSD. 
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field (VF) tests. This dataset constitutes the largest cohort of POAG 
with known date of diagnosis and provides a unique opportunity to 
evaluate disease progression over time. Detailed information on OHTS 
is described in Gordon et al. [13].

Our analysis cohort consisted data from the first eye of 277 
participants who developed POAG and had at least 7 follow-up visits. 
This study has been approved by Washington University Institutional 
Review Board. The overall median follow-up was 13 years, with a 
median pre-diagnosis follow-up of 8 years and median post-diagnosis 
follow-up of 4.8 years. We used mean deviation (MD) and pattern 
standard deviation (PSD) as the longitudinal predictors. MD reflects 
the deviation of a subject’s vision from the age-matched reference 
population, while PSD reflects the perturbation of vision across 
different testing locations and is more sensitive for early visual damage. 
The primary endpoint was the status of VF progression at the end of 
follow-up, as determined by post-diagnosis VF using the 2-omitting 
algorithm [14], and 57 eyes (20%) were labeled as “progressive”. 

Table 1 showed the demographic and clinical characteristics at 
diagnosis for progressive and stable cohorts separately. The categorical 
data were summarized as counts and frequencies, while the continuous 
variables were summarized in means and standard deviations or 
median and inter-quartile range as appropriate. As an illustration, in 
the proposed prediction model we only included following 5 variables 
at diagnosis as the baseline covariates: age (Age, decade), intraocular 
pressure (IOP, mmHg), central corneal thickness (CCT, μm), pattern 
standard deviation at randomization (PSD0, dB), and horizontal cup/
disc ratio (HCD). These 5 covariates were chosen because they have 
been identified and validated as independent predictors for the risk of 
POAG development [13]. The baseline covariates were standardized to 
have mean 0 and variance 1 throughout the remainder of this paper. 
As such, for these variables the odds ratios (OR) from the regression 
models actually represented the effect per 1-SD change. 

data and clinical outcomes is fully captured by the latent class structure. 
Due to its flexibility in modeling even complex dependence and its 
ability to incorporate covariates, many methods have been proposed 
in recent years to incorporate longitudinal biomarkers under the 
framework of latent class models [8]. Garre et al. [9] fitted a joint latent 
class model for the prediction of time to graft failure using longitudinal 
serum creatinine concentration. They used two latent classes to 
capture the heterogeneity of serum creatinine trajectory. The serum 
creatinine in the first class was described by an intercept-only random 
effect model, while the trajectories in the second class was modeled 
using a segmented random-effect model with a random change-point 
indicating the initiation of rapid deterioration in patient’s renal function. 
Proust-Lima and Taylor [10] developed a dynamic prognostic tool that 
incorporates the evolution of prostate-specific antigen (PSA) to predict 
the risk of prostate cancer recurrence for patients who completed 
radiation therapy. The within-class PSA trajectory was described by 
a linear mixed model including two known parametric functions for 
short- and long-term PSA trajectories respectively. Their research 
also found that the predictive accuracy was not markedly influenced 
by the choice of different number of latent classes. In a recent report, 
Maruyama et al. [11] also applied a joint latent class analysis approach 
to identify distinct patterns of longitudinal craving scores and to 
predict the binary clinical outcome of smoking cessation. LCGM-based 
predictions are also computationally attractive. Once a joint model 
has been fitted, there is no need to integrate out the random effects 
and all the individualized prediction can be calculated analytically. 
This feature makes it especially appealing for individualized real-time 
dynamic prediction [8].

 In this article, we developed a latent class growth model (LCGM) 
using multiple longitudinal biomarkers to predict visual field (VF) 
progression in patients with newly diagnosed POAG. We used the 
data from ocular hypertension treatment study (OHTS), a phase 
III randomized trial of the safety and efficacy of topical hypotensive 
medication in preventing the development of POAG. The proposed 
LCGM was developed taking a stage-wise approach and based on 
longitudinal mean deviation (MD) and pattern standard deviation 
(PSD). Specifically, a functional principal component (FPC) analysis 
[12] was first performed to the longitudinal MD and PSD separately, 
and FPC scores were estimated to approximate the trajectories of 
MD and PSD. Subgroups (latent classes) of participants with distinct 
patterns of MD and PSD trajectories were then identified based on the 
resultant FPC scores. The remainder of this paper was structured as 
follows. Section 2 described the OHTS data in more detail. Section 3 
specified the latent class model for monitoring VF progression using 
longitudinal MD and PSD. Section 4 applied the method to data from 
OHTS and we concluded with a discussion in Section 5. 

Study Cohort: Ocular Hypertension Treatment Study 
(OHTS)

OHTS is the largest randomized trial to date to test safety 
and efficacy of topical hypotensive medication in preventing the 
development of POAG. In OHTS, 1636 subjects were randomized to 
either observation or treatment with ocular hypotensive medication 
and followed for a median of 13 years. Outcome ascertainment was 
performed by specialized resource centers where readers were masked 
as to randomization assignment and information about the participant’s 
clinical status, and the attribution of abnormality due to POAG was 
performed by a masked Endpoint Committee. In OHTS, 362 eyes from 
279 participants developed POAG during study. Disease progression 
was monitored regularly every 6 months using Humphrey 30-2 visual 

Variables Stable Eyes 
(N=220)

Progressive 
Eyes

(N=57)

p-values

race
    African America 
     Others   

68 (30.9)
152 (69.1)

23 (40.3)
34 (59.7)

0.176

gender
     M
     F

125 (56.8)
95 (43.2)

30 (52.6)
27 (47.4)

0.570

age (decades) 6.57 ± 0.95 6.64 ± 0.97 0.641
mean deviation (MD, dB) -1.28 ± 2.06 -2.90 ± 2.53 <0.001
pattern standard deviation (PSD, dB) 2.89 ± 1.26 3.68 ± 1.57 <0.001
intraocular pressure (IOP, mmHg) 21.6 ± 5.61 24.4 ± 7.77 0.003
central corneal thickness (CCT, μm) 561 ± 38.22 552 ± 39.0 0.123
horizontal cup/disc ratio (HCD) 0.53 ± 0.19 0.51 ± 0.20 0.373
median  number of total follow-up 
visits (IQR)

25 (22-27) 23 (19-26) 0.127

median  number of pre-diagnosis 
visits (IQR)

13 (8-19) 12 (7-17) 0.322

median  number of post-diagnosis 
visits (IQR)

10 (6-15) 9 (5-13) 0.349

Table 1: Summary statistics of predictors at POAG diagnosis, where categorical 
variables are summarized as counts and frequencies, while continuous variables 
are summarized as means ± standard deviations (STD) or medians and inter-
quartile range (IQR) as appropriate.  
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Latent Class Growth Model (LCGW) for Monitoring VF 
Progression

Figure 1 shows the diagram of the proposed LCGM for monitoring 
VF progression. The longitudinal series of MD and PSD are centered at 
the time of diagnosis, with black and red lines representing stable and 
progressive eyes respectively. Subgroups (latent classes) of participants 
are determined based on distinct patterns of MD and PSD trajectories. 
Rather than directly modeling the longitudinal change of MD and PSD 
in the LCGM, we first perform a functional principal component (FPC) 
analysis in MD and PSD separately to approximate its evolution over 
time. FPC analysis is chosen here because the trajectories in both MD 
and PSD, especially in these progressive eyes, tend to be non-linear and 
a conventional linear mixed model may be inadequate to fully capture 
the changes of MD and PSD over time. 

Functional principal component (FPC) analysis of 
longitudinal MD and PSD

Functional principal component (FPC) analysis for sparse 
longitudinal data is performed following methods developed by Yao 
et al. [12] and is briefly summarized in this sub-section. FPC analysis 
provides a powerful tool of dimension-reduction for functional data 
(i.e., curves) [15]. It examines the sample covariance structure and finds 
the set of orthogonal principal component functions that maximize 
the variance along each component. Taking MD as an example, let 
mij denote the observation of MD for ith participant at the jth timepoint 
and Xi(t) be the corresponding smoothed trajectory, then FPC analysis 
specifies that 

( )ij i ij ijm X t ε= +  and 
1

( ) ( ) ( )i ik k
k

X t t tµ ξ
∞

=
= + Φ∑ , where

ijε is the error term with 2~ (0, )ij Nε σ ;

( )tµ represents the overall mean trajectory of MD;

{ }ikξ is a vector of FPC scores for ith participant and acts as random 
effects in statistical models with FPCs. It is a set of uncorrelated random 
coefficients having mean 0 and variance λk (i.e., eigenvalues);

( )k tΦ  is the corresponding kth eigenfunction and describes the 
direction of deviation from the overall mean trajectory ( )tµ , while an 
individual’s FPC score ξik quantifies the extent to which their trajectory 
correlates with ( )k tΦ ; 

Since the eigenvalues often decrease rapidly, the infinite-
dimensional curves can be well approximated by a very small number 
of FPCs.

In our FPC analysis, both MD and PSD series are smoothed using 
cubic B-splines with equally spaced knots, and the number of basis 
are selected based on an approximate leave-one-curve-out cross-
validation [12]. The first eigenfunction 1( )tΦ is estimated such that 
the eigenvalue 1λ  (i.e., variance of 1iξ ) is maximized subject to the 
condition 2

1 ( ) 1t dtΦ =∫ . The second principal component function 
can be obtained by first subtracting 1

ˆ ( )tΦ from the original smoother 
function, *

1 1
ˆ ˆ( ) ( ) ( )i i iX t X t tξ= − Φ , and then treating *{ ( )}iX t as the new 

collection of smoothed functions to find 2( )tΦ . This process can be 
performed iteratively for k=1, 2, …, K principle components.

Once the estimates of eigenfunction ( )k tΦ and eigenvalue kλ  are 
obtained, the FPC scores ikξ of individual participants can be calculated 
via numerical integration { ( ) ( )} ( )ik i kX t t t dtξ µ= − Φ∫  by plugging in the 
estimated mean and eigenfunction. However, the conventional FPC 
procedure assumes that the density of measurements is sufficiently 
large. For sparse and irregularly measured longitudinal data like those 
in OHTS, the conditional expectation method [12] can be applied to 
obtain individual FPC scores, which are estimated as the best linear 
unbiased prediction (BLUP) given the observed trajectories and 
parameters, 

1ˆ ˆ ˆ[ | ] ( )T
ik i k ik i iYiE Y Yξ λ µ−= Φ −∑  and 1ˆ ˆvar( ) T

ik iH Hξ −= ∑ , where

1 2ˆ ˆ( )( )
ii i i i NYi Y Y Iµ µ σ− = − − +∑ , 1ˆ { ( ),..., ( )}

ii i iNt tµ µ µ= , and

1 1 2 2
ˆ ˆ ˆˆ ˆ ˆ ˆ{ , ,..., }i i i i iK iKH λ λ λ= Φ Φ Φ . In this paper, we only extract the first 

FPC to approximate the longitudinal MD and PSD.

Developing LCGM based on the 1st-FPC scores of longitudinal 
MD and PSD

Let Yi={Yi1, Yi2} denote the resultant 1st-FPC scores of MD and 
PSD for ith participant, Zi={1, AGEi, PSD0i, IOPi, CCTi, HCDi} be the 
vector of baseline covariates, Ci represent the latent class membership 
of ith individual, and θg be the vector of class-specific parameters that 
differentiate the G latent classes, with i =1, 2, …, N, and g =1, 2, …, 
G, respectively. Then the distribution of Yi is a mixture distribution 
defined as, 

1
( ) {Pr( ) ( | ; )} ,           where

G

i i i i g
g

f Y C g f Y C g θ
=

= = • =∑

The probability Pr( )iC g=  represents the size (mixing proportion) 
of latent class g in the mixture distribution and is modeled as a 

multinomial logistic regression, 

1

exp( )
Pr( ; )

exp( )

g i
i g G

h i
h

X
C g

X

α
α

α
=

= =

∑
, where

 

Figure 1: Diagrams for latent class growth model (LCGM) to monitor VF progression. The latent classes are determined by the trajectories of MD and 
PSD. Both MD and PSD series are centered at the time of diagnosis, with black and red lines indicating stable and progressive eyes respectively. 
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gα represents the log odds of membership in the class g relative to a 
reference class (class 1, say), with the parameter in the reference being 
0 for identification. 

( | ; )i i gf Y C g θ=  describes the class-specific distribution of Yi 
and is assumed to follow a bivariate normal distribution. A common 
variance-covariance structure across all classes is often assumed in a 
typical latent class model. Due to high variability in both MD and PSD 
trajectories, we assume a class-specific variance in this model, but we 
also assume that the correlation between MD and PSD is fully captured 
by the latent classes, i.e., 

2 2
1 2 1 2{ , , , }g g g g gθ µ µ σ σ=  , and 

2
1 1

2
2 2

0
| ~ ( , )

0
g g

i
g g

Y g N
µ σ

µ σ

   
   
   
   

 .

Given the estimated parameters gθ


and Yi, each individual can 
be assigned to the most likely class based on the probability of class 
membership (often termed as posterior class-membership probability), 

1

Pr( ) ( | ; )
 .

{Pr( ) ( | ; )}

i i i g
ig G

i i i h
h

C g f Y C g
p

C h f Y C h

θ

θ
=

= • =
=

= • =∑







The best LCGM is selected by enumerating and comparing a set of 
competing models differing only in the number of classes. The model 
comparison is based primarily on the log likelihood values, including 
the Bayesian Information Criteria (BIC, with a smaller BIC indicating 
a better fit) and the Lo-Mendell-Rubin adjusted likelihood ratio test 
(LMR-LRT). A significant test of LMR-LRT indicates that the model 
with G-1 classes should be rejected in favor of the G-class GMM. In 
addition, we also specify that each class should include at least 5% of 
patients to ensure reliable within-class estimation.

Probability of VF progression and its 95% confidence interval

Once an optimal LCMG has been developed, the class-specific risk 
of VF progression can be readily obtained, then the probability of VF 
progression for a new patient with given MD and PSD series can be 
calculated in the following 3 steps:

Estimating the 1st-FPC score 1iξ and its variance 1var( )iξ  for the 
given MD and PSD series as outlined in Section 3.1; 

•	 Calculating the probability of class membership (posterior 
class-membership probability) given the baseline covariates and 
estimated 1st-FPC scores; 

•	 Estimating the probability of VF progression as weighted 
average of class-specific risk, weighted by posterior class-membership 
probability. 

Due to the complexity of modeling, we have to rely on numerical 
bootstrap resampling method to construct the 95% confidence interval 
of VF progression. Specifically, 1000 samples of the 1st-FPC scores for 
MD and PSD are generated from a normal distribution, 1îξ ~N(

1iξ , 1var( )iξ ). The probability of posterior class membership and the 
probability of VF progression are calculated independently in each 
bootstrap resample. The 95% confidence interval of VF progression 
is then obtained by taking the 2.5th and 97.5th percentiles of 1000 
corresponding estimates. 

In this article, FPC analysis is performed using the library “fpca” 
in the statistical package R [12], while the parameter estimation for 
LCGM is implemented using statistical package Mplus which is called 
via the library “MplusAutomation” in R [16]. 

Results: Application to Ocular Hypertension Treatment 
Study (OHTS)
FPC analysis of longitudinal MD and PSD

Based on a leave-one-curve-out cross-validation [12], the 
trajectories in both MD and PSD could be best smoothed using 7 basis 
functions. The 1st-FPC accounted for 89.7% and 90.8% of total variance 
in MD and PSD trajectories, respectively, and Figure 2 visualized 
the estimated trajectories based on FPC analysis. Figure 2A showed 
the mean trajectory of MD (solid line) and mean trajectory ± 1st-
eigenfunction of FPC (broken lines). In general, MD decreased over 
time, especially after POAG diagnosis. Figure 2A also indicated that 
the 1st-FPC primarily captured the post-diagnosis variability [15]. To 
illustrate the performance of 1st-FPC in approximating MD trajectories, 
we randomly selected 4 individuals who had different magnitude of 
estimated 1st-FPC MD scores. All the observed trajectories (solid 
lines) were well approximated by the estimated curves (broken lines) 
based on the 1st-FPC MD scores (Figure 2B). A positive FPC score 
corresponded to a higher than average MD trajectory while a negative 
score corresponded to a lower than average MD trajectory. 

Similarly, the 1st-FPC of PSD captured the post-diagnosis variability 
and PSD increased over time in general (Figure 2C). A positive FPC 
score corresponded to a lower than average PSD trajectory while a 
negative score corresponded to a higher than average PSD trajectory. 
Among these randomly selected 4 individuals, all the observed PSD 
trajectories (solid lines) were well approximated by the estimated 
curves (broken lines) using the 1st-FPC PSD scores (Figure 2D). 

Developing LCGM using 1st-FPC scores of longitudinal MD 
and PSD

Table 2 showed the fitting statistics of 7 competing LCGMs based 
on the resultant 1st-FPC scores. The first 5 models differed only in the 
number of latent classes and they all assume class-specific variance 
with no correlation. Model 2 (3 classes) and Model 3 (4 classes) had 
similar performance based on Bayesian Information Criteria (BIC) and 
Lo-Mendell-Rubin adjusted likelihood ratio test (LMR-LRT). Since 
McLachlan and Peel [17] show that BIC tends to underestimate the 
number of classes, we chose Model 3 as the best fit to the OHTS data. 
Two additional models (both with 4 classes) were further considered, 
one (Model 6) assuming class-specific correlation and the other (Model 
7) assuming a common variance-covariance structure across all classes, 
but none of them showed improved fitting statistics. 

Table 3 presented estimated parameters for the best model. The 
first class contained 84 eyes (30%), had the highest mean FPC score in 
MD and the lowest mean FPC score in PSD, and only 2 out of 84 eyes 
(2.4%) were progressed at the end of study. In contrast, the last class 
(16 eyes, 6%) had the lowest mean MD and the highest mean PSD, and 
all 16 eyes (100%) were progressed at the end of study. The 2nd- and 3rd-
class were somewhere in between and accounted for 44% and 19% of 
the participants, with 10.6% (13 out of 123 eyes) and 48.1% (26 out of 
54 eyes) being progressive, respectively. We therefore labeled Classes 1 
to 4 as “Stable, low risk”, “Stable, high risk”, “Progressive, moderate”, 
and “Progressive, rapid”, respectively. 

Table 3 also showed the effects of baseline covariates on the 
classification of MD and PSD trajectories. Only age and PSD at 
diagnosis were predictive of MD and PSD trajectories. Treating Class 
1 as the reference, for example, participants with old age were more 
likely to fall into the Classes 2, 3, or 4 (with OR=1.99, 2.27, and 5.93, 
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respectively). Similarly, participants with high PSD at diagnosis were 
also more likely to be in the high risk groups (with OR=13.74, 35.87, 
and 78.26 for Classes 2, 3, and 4, respectively). Figure 3 presented the 

individual trajectories of MD and PSD within each class. Both MD and 
PSD series are centered at the time of diagnosis, with red and black 
lines representing progressive and stable eyes, respectively. 

 

Figure 2: Estimated trajectories of MD and PSD using functional principal component (FPC) analysis. 2A): mean trajectory of MD (solid line) and mean 
± 1st-eigenfunction (broken lines); 2B): observed (solid lines) and estimated (broken lines) of MD trajectories in 4 randomly selected participants who 
had different levels of 1st-FPC scores; 2C): mean trajectory of PSD (solid line) and mean ± 1st-eigenfunction (broken lines); 2D): observed (solid lines) 
and estimated (broken lines) of PSD trajectories in 4 randomly selected participants who had different levels of 1st-FPC scores.

Models # latent class (G) #parameters BIC LMR-LRT Minimal
class size

1 (class-specific variance) 2 14 4026.6 <0.001 27.7%
2 (class-specific variance) 3 24 3988.1 0.005 22.6%
3 (class-specific variance) 4 34 3988.6 0.024 6.0%
4 (class-specific variance) 5 44 4006.2 0.092 6.0%
5 (class-specific variance) 6 54 4032.1 <0.001 3.2%
6 (class-specific correlation) 4 38 4006.3 0.576 6.0%
7 (common variance) 4 28 4107.4 <0.001 1.1%

Table 2: Fitting statistics of 7 competing latent class growth models, where Lo-Mendell-Rubin likelihood ratio test (LMR-LRT) compares the improvement in fit between 
neighboring class models, with a smaller p-value favoring the G-class  model over the model with G-1 classes (null hypothesis). 

Variables Class 1 (ref.):
Stable, low risk

Class 2:
Stable, high risk

Class 3:
Progressive, moderate

Class 4:
Progressive, rapid

#Eyes
#Progressive Eyes (%)

84
2 (2.4%)

123
13(10.6%)

54
26 (48.1%)

16
16 (100%)

FPC parameters
Mean of MD scores

Mean of PSD scores
Variance of MD scores

Variance of PSD scores

  
12.63 ± 0.83  
  -5.73 ± 0.28  
  19.27 ± 4.29  
   4.09 ± 0.76  

  
2.44 ± 1.16  

 -3.67 ± 0.59
54.21 ± 12.42  
 22.93 ± 4.43  

-11.03 ± 1.97 
   9.86 ± 1.58 

 107.03 ± 22.40 
  68.70 ± 10.16

 
 -53.75 ± 5.63 
   20.90 ± 3.84 

  370.12± 118.65 
  165.54 ± 45.92

Covariates
Intercept 

age 
pattern standard deviation 

intraocular pressure 
central corneal thickness 
horizontal  cup/disc ratio           

-
-
-
-
-
-

  1.63 ± 0.75*

  0.69 ± 0.35*

  2.62 ± 0.80#

 -0.24 ± 0.36 
  0.53 ± 0.43 
  0.08 ± 0.25

  0.47 ± 0.73 
  0.82 ± 0.38*

  3.58 ± 0.85#

  0.44 ± 0.33 
 -0.39 ± 0.44 
  0.01 ± 0.26

-2.26 ± 1.15*  
  1.78 ± 0.50#  
  4.36 ± 0.89#  
  0.98 ± 0.55   
 -0.33 ± 0.72   
  0.43 ± 0.38   

*p<0.05, #p<0.001: indicating the significance comparing to the reference group (Class 1).  
Table 3:  Estimated parameters and their standard errors of the latent class model based on FPC scores.
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Individualized prediction of VF progression

Once the eigenfunction and eigenvalue of the 1st-FPC were 
estimated and the optimal LCMG were developed, the probability of 
VF progression for an individual with given series of MD and PSD 
could be calculated analytically. 

Figure 4 illustrated the predicted probability of VF progression 
at the end of study for two randomly selected individuals, one with 
a progressive eye and one with a stable eye. The upper panel showed 
the observed (solid lines) and estimated (broken lines) MD series 
measured 5 years prior to diagnosis (Figure 4A), the observed and 
estimated PSD series (Figure 4B), as well as the predicted probabilities 
and corresponding 95% confidence intervals of VF progression at 
the end of study (Figures 4C-4H). The two individuals could not 
be differentiated given MD and PSD series measured 5 years prior 
to diagnosis. Given a series of MD and PSD measured 2 years prior 
to diagnosis, the progressive participant had a relatively higher 
probability of VF progression, but there was substantial overlap in the 
95% confidence intervals (Figure 4, Middle panel). However, the two 
participants were well separated given MD and PSD series up to 1 year 
post diagnosis (Figure 4, Lower panel). 

To investigate the overall discriminating ability of the prediction 
model, the method was then applied to all individuals given different 
length of MD and PSD series, and the ROC curves and area under ROC 
(AUC) from the estimated probabilities were compared. A logistic 
regression including the 5 baseline variables plus MD at diagnosis was 
also fitted as a comparison. Figure 5 showed that the ROC using pre-
diagnosis trajectories had a slightly greater area (AUC=0.721) than the 

ROC using covariates at diagnosis only (AUC=0.705). It also showed 
that the predictive accuracy was improved in ROCs including more 
post-diagnosis VFs (with AUC=0.777, 0.845 and 0.879 for up to 1-, 2-, 
3-year post-diagnosis MD/PSD series respectively). We admit that the 
predictive accuracy in Figures 4 and 5 may be optimistic because these 
individuals were also used in the model development. However, an 
external validation is in progression using the fellow eye of the OHTS 
participants as well as data from the Collaborative Initial Glaucoma 
Treatment Study (CIGTS), another randomized phase III trial to assess 
the treatment efficacy on patients with newly diagnosed glaucoma [18].

Discussion and Conclusion
In this paper, we developed a model to predict a binary outcome 

using multivariate longitudinal data. We used a latent class growth 
model (LCGM) to capture the dependence between longitudinal 
data and binary outcome as well as the association among multiple 
biomarkers themselves. LCGM is a semi-parametric statistical technique 
that describes individual trajectories over time after accounting for 
unobserved heterogeneity within the population. This model allows 
us to predict the probability of clinical outcome for a subject with 
particular covariates and series of biomarkers. We apply the method 
to dynamically predict visual field (VF) progression in patients with 
newly diagnosed POAG. The results showed that these participants 
with progressive visual loss could be accurately differentiated from 
those with stable vision by incorporating longitudinal biomarkers. 

Many methods have been proposed in recent years to incorporate 
longitudinal biomarkers under latent class model framework [8-
11] and most of them take a full parametric approach to describe 

 

Figure 3: Class-specific trajectories of MD and PSD. Both MD and PSD series are aligned at the time of POAG diagnosis (Time 0), with black and red 
lines indicating stable and progressive eyes respectively. 
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the change of longitudinal biomarkers over time. In contrast, we 
performed a dimension reduction to convert repeated measurements 
into a scalar by a functional principal component (FPC) analysis, one 
of basic tools in functional data analysis (FDA). FDA is a collection 
technique about the analysis of information on curves or functions 
[15]. Unlike conventional methods such as ANOVA that only focus 
on a limited time points, FDA analyzes data about curves, surfaces, or 
anything else varying over a continuum. Measured data in a traditional 
FDA are often recorded over a densely sampled grid, i.e., in the format 
of infinite-dimension functions or curves such as those generated 
from automated sensing equipment. In a typical longitudinal study 
like OHTS, however, the data are often measured sparsely at discrete 
time points. The emerging techniques such as conditional expectation 
(PACE) [12] have provided a valuable bridge between functional data 
and classical longitudinal data. As illustrated in the OHTS data, PACE-
based estimates of 1st-FPC scores well approximated the trajectories 

of MD and PSD, and provided a flexible and yet powerful tool to 
incorporate multivariate longitudinal data. 

There were several limitations in this study. One limitation was 
that it took a multi-stage approach to calculate the probability of VF 
progression and failed to account for the uncertainty associated with 
the estimated FPC scores. One particular feature of the OHTS is that 
both longitudinal predictors and clinical outcome are based on VF tests. 
That is, the status of VF progression is determined using VF tests by 
a point-wise linear regression, while the longitudinal predictors (MD 
and PSD) are two global indices derived from the same VF tests. A 
regression approach results in circular use of information and may be 
inappropriate for OHTS data. We therefore took a stage-wise approach 
to develop prediction model and the LCGM was only based on baseline 
covariates and longitudinal MD/PSD. 

Another limitation of this study was that, due to relatively short 

 

Figure 4: Predicted probabilities of VF progression for 2 randomly selected participants. Upper panel: observed (solid lines) and estimated (broken 
lines) MD and PSD series measured 5 years prior to POAG diagnosis, and the estimated probabilities of VF progression and corresponding 95% CIs; 
Middle panel: observed (solid lines) and estimated (broken lines) MD and PSD series measured 2 years prior to POAG diagnosis, and the estimated 
probabilities of VF progression and corresponding 95% CIs; Lower panel: observed (solid lines) and estimated (broken lines) MD and PSD series 
measured up to 1 year post POAG diagnosis, and the estimated probabilities of VF progression and corresponding 95% CIs.



Citation: Gao F, Miller JP, Beiser JA, Xiong C, Gordon MO (2015) Predicting Clinical Binary Outcome Using Multivariate Longitudinal Data: Application 
to Patients with Newly Diagnosed Primary Open-Angle Glaucoma. J Biom Biostat 6: 254. doi:10.4172/2155-6180.1000254

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 8 of 8

Volume 6 • Issue 4 • 1000254

Figure 5: ROC curves and area under ROC (AUC) for differentiating stable 
and progressive eyes given various length of MD and PSD series.

post-diagnosis follow-up, VF progression was only determined as a 
single snapshot at the end of study and failed to take the onset time 
of progression into consideration. To deal with this issue, an external 
validation is in progression using data from the Collaborative Initial 
Glaucoma Treatment Study (CIGTS). In the validation study (with 
a median follow-up of 9 years), the status of VF progression will be 
determined not only at the end of study but also by a moving window 
over time. 

In summary, despite its limitations, the proposed method provided 
a flexible and yet powerful tool to incorporate even complex multivariate 
trajectories for predicting distal clinical outcomes. Although the model 
in this paper is developed for the prediction of VF progression in 
patients with newly diagnosed POAG, the methodology is applicable to 
any chronic diseases with multiple longitudinal predictors. When the 
clinical outcome are defined independent of longitudinal predictors, 
however, we expect that a joint modelling approach that classifies 
participants based on the patterns of clinical outcome and longitudinal 
biomarkers simultaneously could better account for the association 
between two random processes and improve the predictive accuracy. 
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