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Abstract
The quality of machined surface is of vital significance due to its bearing of the in-service functionality of the 

component. In-service functionality of the machined parts like, tribological performance, fatigue life of the component 
etc.; are greatly dependent on the surface profile characteristic and the surface roughness generated after machining. 
However, the   quality of surface is reliant on complexities of the numerous process parameters. The mechanics of 
metal cutting necessarily results into the dynamic instability of the process consequentially ensuing into cutting tool 
vibrations. Previous research indicates an association between the cutting tool vibrations and surface roughness. In 
this study the cutting tool vibrations in tangential and axial direction have been integrated with the input parameters; 
cutting speed, feed rate, depth of cut, work material hardness and tool edge geometry to develop prediction models for 
surface roughness from the experimentally obtained data by using Regression Analysis and artificial Neural Network 
methodologies. The results of the regression models and neural networks model are compared. A good agreement 
between the experimental and predicted values for both the models is seen, however neural networks approach 
outclasses regression analysis by a reasonable margin. Further it is also noted that the quality of surface is markedly 
influenced by the tool edge geometry and feed rate.

Keywords: AIS D2 steel; Cutting tool vibrations; Surface roughness; 
Regression analysis; Artificial Neural Networks

Nomenclature 
Vc: Cutting speed (m/min); f: feed rate (mm/rev); ap: Depth of cut 

(mm); H:Work material hardness (HRc); EG: Tool edge geometry; Vx: 
Axial acceleration of cutting tool vibrations (mm/s2); Vz: Tangential 
acceleration of cutting tool vibrations (mm/s2); Ra: Surface roughness 
(µm); ANOVA: Analysis of Variance; ANN: Artificial Neural Networks; 
MSE: Mean Squared Error; MAPE: Mean Absolute Percent Error; LH: 
Light Honed; W: Wiper

Introduction
In the very recent hard turning has evolved as an efficient 

and cost effective alternative to grinding for turning of ferrous 
components, hardened above 45 HRc. Broadly hard machining finds 
a wide application in manufacturing of bearings, tools, dies etc. The 
process mostly preferred for semi finishing and finishing operations 
requires lesser setup times, offers flexibility and thereby increases the 
productivity. A comprehensive report of the various aspects in hard 
turning has been presented by Gaurav Bartarya [1]. The advances in the 
cutting tool technology has made of hard turning feasible with ceramic 
and CBN tools finding a wide application. However; proper tool 
edge preparation is an important prerequisite for achieving desired 
performance in hard turning [2]. Demand of ever increasing high 
quality standards of the finished product is a pressing challenge the 
manufactures are facing in globalized industrial scenario. Achieving 
good surface finish along with precise control of dimensional & 
geometric tolerances of the finished component is one of the vital 
criterions of product quality. The surface roughness of the finished 
component is closely related to the functional performance of the 
component during its service life. Several functional aspects like 
wear behavior, corrosion resistance and fatigue life greatly depend 
on the surface roughness. Hence the importance of achieving close 
control over surface roughness is of vital importance. However the 
surface roughness of the finished component depends on numerous 

factors. 2
32
fRa

r
≈  is the most commonly and widely accepted model 

for estimation of surface roughness is. This equation depicts the 
relationship between surface roughness, feed rate and nose radius 
of the tool. However the surface roughness is affected by numerable 
other factors as machining tool conditions, cutting tool vibrations, 
properties of the work material and the dynamics of machining 
process [3]. This creates a nonlinear and complex dependence of 
surface roughness on all these factors which the conventional model 

2
32
fRa

r
≈ doesn’t take into account. Therefore prediction of surface 

roughness by accommodating maximum possible factors has been of 
great interest for several researchers. Different approaches ranging 
for experimentations to artificial intelligence based approach have 
been applied by various researchers for accurate prediction of surface 
roughness. Vibrations in metal cutting are unavoidable but necessarily 
have a detrimental effect on the surface quality of the finished part. The 
quality of surface is significantly related to the vibrations [4]. Therefore 
vibration analysis and measures to keep vibrations under control is 
the interest of the researchers and manufacturers. Several researchers 
have attempted to study and analyze the vibrations in a metal cutting 
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operation. Arizmendi [5] has reported the deteriorating influence of 
the cutting tool vibrations on the surface quality. The correlation of the 
dynamic force with the amplitude and natural frequency cutting tool 
vibration has been reported by Thomas [6] the authors have further 
noted the effect of the vibrations on the surface roughness due to tool 
overhang. The effect of the various machining system components on 
the too-work vibrations has been reported by Junyun Chenand [7]. 
Modeling and analysis of surface roughness by including  tangential 
and radial acceleration of vibrations  along with process parameters 
is suggested by Hessainia [8] while Upadhyay [9] incorporated the 
vibration signals in all the three axes for development of regression and 
neural networks models. Measurement and analysis of the influence of 
the tool tip vibration frequency on surface quality has been reported 
by Wang [10]. Investigations of the influence of the tool angles on the 
vibrations have been carried out by Subramanian [11] and the authors 
suggested a converse relation between the vibrations and tool angles. 
Prediction of surface quality by amalgamation of features mined from 
vibration signals along process and tool parameters has been proposed 
by Salgado [12]. Modeling of surface quality by blending the tangential 
vibrations with process parameters by using fuzzy-net approach has 
been carried out by Kirby [13]. Surface roughness prediction system 
based on accelerometers to incorporate the vibrations of the cutting 
tool has been illustrated by Ahang [14]. Thus from the past research 
works the prominence of the cutting tool vibrations on the resultant 
quality of the surface is evident and hence the present study focusses 
on finding a correlation between the surface roughness and cutting tool 
vibrations in consort with the process parameters in turning of AISI D2 
steel hardened to different hardness levels by CBN inserts of different 
edge geometries. An empirical modeling approach based on regression 
analysis is proposed to model the experimental data and arrive at an 
relation between the tool vibrations and the quality of surface. Further 
neural networks based modeling has been proposed and the efficacy of 
the ANN models is compared with the regression models.

Experimentation
Equipment, material, cutting tools and measurement set up

The work material used for experimentation is AISI D2 steel 
which is also known as cold work tool steel richer in carbon and 
chromium content along with molybdenum and vanadium added as 
alloying elements in smaller quantities. This material is widely used for 
manufacturing of dies and punches due to its high resistance to wear, 
excellent toughness and dimensional stability. In the current study 
round bars of 32 mm diameter and 55 mm length were hardened and 
tempered to achieve hardness as 50 ±  2, 55 ±  2 and 60 ±  2HRc. Table 
1 below indicates the chemical composition of  AISI D2 steel work 
material (Figures 1 and 2).

In the hard turning process the cutting tool edge geometry has 
a significant influence on the surface quality, dimension and form 
stability, cutting forces etc. on one hand and tool wear on the other [1]. 
The specimen have been turned on a CNCDX-200 turning centre in dry 
turning condition for a 15 mm length of cut with CBN tools of Tungaloy 
make having tool specifications as below in Figure 3 and Tungaloy tool 
holder DCLNL 25 × 25 M12 left handed tool holder was used to mount 
the CBN inserts with specifications as rake angle of -6 o, clearance angle 
of 6o, inclination angle of - 6o and approach angle of 95o.

The tangential and axial accelerations of the cutting tool vibrations 
are acquired online with the aid of two uniaxial accelerometers (7105A 
and SV80), mounted on the tool holder. The RMS (root mean square) 
value of the acceleration is recorded with a data acquisition system 
consisted of 4-channel sound and vibration analyser SVAN 958A. 
The recorded data has been further downloaded in graphical and 
text- format by using Svan PC++ software. The surface roughness is 
measured offline by using Mitutoyo 178-602 surface roughness tester 
at three locations and an average is taken. Figure 2 vividly portrays the 
experimental methodology.

Experimental plan

The experiments were designed by using Taguchi’s design with L 
27 orthogonal array. The factors and their levels are specified in Table 2 
which are finalized after extensive literature review and by reference to 
manufacturer’s catalogue.

Twenty seven experiments are being conducted along with 
replicates, therefore in total 54 experiments are being conducted.

C Si Mn Cr Mo V P S
1.58% 0.29% 0.37% 11.65% 0.82% 0.94% 0.023% 0.008%

Table 1: Chemical composition of work material.
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Figure 1: Tool edge geometries.
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Figure 2: Schematic of experimental methodology.
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Results and Discussion
The work of Kirby [13] suggests that inclusion of the vibrations 

signals into the prediction model increases the prediction accuracy. 
Therefore an attempt has been made to include the vibration signals 
i.e., tangential and axial accelerations into the prediction models so as 
to enable determination of the surface roughness. Multiple regression 
analysis and artificial neural networks approach have been applied 
for this. Based on the vibrations  and surface roughness data acquired 
summarized in  Table 3 and presented elsewhere  by Sarnobat [15] the 
hierarchical regression model   by stepwise addition of the terms with α 
= 0.1 model has been developed and is shown in Table 4.

Variance analysis

Based on the hierarchical regression model shown in Table 4, F-test 
and p-test are employed to assess the significance of the input factor on 
the response A p-value <0.05 a statistical significance for the input on the 
response. The analysis of variance indicates that the regression model is 
significant at p-value = 0.000. The factors cutting speed, feed rate, depth 
of cut, hardness, edge geometry are significant as the p- value <0.05. 
The interaction of  feed rate and axial acceleration vibration  of cutting 
tool, feed rate and edge geometry, hardness of work material and edge 

geometry  are also found to be significant. A contribution of 47.83% 
from the cutting tool edge geometry, 31.52% from the interaction of 
feed rate and cutting tool edge geometry and 10.35% from the feed rate 
is indicated.   An R-sq of 99.86% shows that the model can be used to 
explain the variability and R-sq-pred of 98.30% indicated the model to 
be fit for prediction.

Regression equations 
The regressions equations based on the regression model are 

formulated and are indicated as below in Table 5. The experimental 
and predicted values of surface roughness are plotted and shown in the 
Figure 3. It is seen that the experimental and predicted values are close 
with an overall mean absolute percent (MAPE) of 4.366

Surface plots
To graphically analyze the simultaneous effect of any two inputs on 

the response surface plots are utilized. 
Figures 4-9 present the surface plots for average surface roughness 

Levels

Experimental factors
Cutting 
speed

(Vc) (m/min)

Feed rate (f) 
(mm/rev)

Depth of cut 
(ap) (mm)

Work material
Hardness H 

(HRc)

Edge 
geometry 

(EG)

1 60 0.05 0.10 50 ± 2
Light 

Honed 
(LH)

2 90 0.105 0.23 55 ± 2
Heavy 
Honed 
(HH)

3 120 0.16 0.35 60 ± 2 Wiper (W)

Table 2: Factors setting and their levels.

Tangential Acceleration Axial Acceleration Surface Roughness
Vz (mm/s2) Vx (mm/s2) Ra (µm)

Max Min Max Min Max Min
9567 375 10673 480 0.92 12

Table 3: Data range of measured output.

Source DF Adj SS Adj MS F-value P-value % 
Contribution

Regression 14 3.54969 0.253549 362.72 0.000 --
Vc 1 0.01428 0.014275 20.42 0.000 --
f 1 0.21718 0.217177 310.69 0.000 10.35

ap 1 0.01694 0.016942 24.24 0.000 --
H 1 0.02951 0.029509 42.22 0.000 --

EG 2 1.00321 0.501605 717.59 0.000 47.83
Vx 1 0.02761 0.027609 39.50 0.000 --
Vz 1 0.00368 0.003677 5.26 0.027 --

Vc*ap 1 0.04481 0.044815 64.11 0.000 --
f*Vx 1 0.03760 0.037598 53.79 0.000 --
f*EG 2 0.66112 0.330560 472.90 0.000 31.52
H*EG 2 0.01412 0.007061 10.10 0.000 --
Error 39 0.02726 -- -- -- --
Total 53 3.57695 -- -- -- --

Model Summary

S R-Sq R-Sq (adj) R-sq 
(pred) -- -- --

0.0264389 99.24% 98.96% 98.59% -- -- --

Table 4: Regression model for surface roughness.

Edge 
geometry Regression Equation

LH -0.269 - 0.008285 * Vc + 8.009 * f - 3.142 *ap + 0.01230 * H + 
0.000189 * Vx - 0.000014 * Vz + 0.03249* Vc * ap - 0.001161 * f* Vx 

HH -0.2468 - 0.008285 * Vc+ 6.979 * f - 3.142 * ap + 0.01354 H + 
0.000189 * Vx - 0.000014 * Vz + 0.03249 * Vc * ap - 0.001161* f * Vx 

W 0.4039 - 0.008285 * Vc + 2.276 * f - 3.142 * ap + 0.00508 H + 
0.000189 Vx - 0.000014 Vz + 0.03249 Vc* ap - 0.001161 * f * Vx 

Table 5: Regression models for different tool edge geometries.
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Figure 5: Surface plot of surface roughness versus depth of cut and feed rate.
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versus the input parameters viz. cutting speed, feed rate, depth of 
cut, work material hardness, edge geometry and the cutting tool 
vibrations (Vx and Vz). It is seen from the surface plots that the 
surface roughness is most affected by feed rate. As seen from Figure 
4 the surface roughness decreases with increase in the cutting speed, 
however increases considerably with increase in the feed rate. Similar 
observations are noted from Figure 5 which shows that higher surface 
roughness is obtained over the entire range of depth of cut when the 
feed rate is high and Figure 6 which depicts that the surface quality 
deteriorates as the feed rate increases over the entire hardness range. 
The increase in the feed rate causes increase in the resistant force acting 
on the tool tip thereby increasing the instability of the cutting process 
thereby damaging the quality of resulting surface [16].

From the surface plot of surface roughness versus cutting speed 
and depth of cut Figure 7 it quality of surface is seen to be better at 
higher cutting speed and higher depth of cut as presented in Figure 7.

Surface plot of quality of surface versus depth of cut and work 
material hardness as shown in Figure 8 depicts that the quality of 
surface deteriorates with increase in hardness up to 55 HRc and further 
improves beyond 55HRc.  As seen from Figure 9 the surface roughness 
is more affected by the axial vibration of the cutting tool than the 
vibrations in the tangential direction.

The surface roughness is considerably influenced by the tool edge 
geometry. The surface quality remarkably improves while machining 
with wiper geometry cutting tool as indicated from Figure 10 [17].

Predictive modeling by neural networks

Predictive modeling techniques are very common and being 
prevalently utilized by researcher’s time and again so as to be able to 
predict the phenomenon for different sets of inputs without conducting 
the experiments again. This approach proves to be very efficient and 
effective in case of urgency and where resources are in dearth. Various 
statistical and soft computing techniques are in vogue and have been 
expansively applied. The accuracy of prediction of the soft computing 
techniques has also been found to be high in comparison to the other 
techniques statistical techniques and numerical modeling etc. [18-20]. 
The neural networks are inspired from the human nervous system, the 
ability of the human brain to learn and reproduce the learnt at similar 
decision making situations. In short, the neural networks mimic the 
human brain capabilities of learning and reproducing hence are also 
termed as Artificial neural networks (ANN). Commonly ANN models 
include equivalent computer models that are adaptive and have 
capabilities of solving complex problems. The neural networks model 
mimics the structure of a biological neuron. The following Figure 11 
shows a comparison of a biological and artificial neuron. In artificial 
neural networks “nodes” resembling the biological “neurons are used 
which are connected to each other by a “link “that bear a resemblance 
to the “synapse, the “weights “assigned to each “link” is the “synaptic 
efficiency “and the output of the node is the “firing frequency. As 
shown in the Figure 12 the xn are the inputs which are multiplied by 
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Figure 6: Surface plot of surface roughness versus work material hardness 
and feed rate.
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Figure 7: Surface plot of surface roughness versus depth of cut and cutting 
speed.

 

Vc (m/min) 90
f (mm/rev) 0.105
Vx (mm/s2) 1899
Vz (mm/s2) 1897
EG HH

Hold Values

0.45

05.0

1.0
0 2.

3.0 503.

55

60

0 55.

)mµ( aR

)cRH( H

)mm( pa

urface PlotS of Ra (µm) vs H (HRc), ap (mm) 

Figure 8: Surface plot of surface roughness versus work material hardness 
and depth of cut.
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a connection weight which are further summed up as; sum = w1 x1 + 
…+ wnxn and fed over the transfer function f to generate a result and 
then output. The connection weights are updated while the network 
learns in such so as to minimize the mean square error amongst the real 
output and the preferred output in minimized. A layered feed forward 
neural network based on back propagation algorithm is utilized for 
this purpose. The artificial neurons are organized in layers viz. the 
input layer, the output layer and the hidden layer. A neural network 
can have more than one hidden layer. The signals from the neurons 
are forwarded through theses layers via the synapses and the output is 
calculated which is compared with the intended or targeted output to 
calculate the error. These errors are then back transmitted to revise the 
weights, this continues till the mean square error is minimised as stated 
earlier. The procedure of altering the weights is termed as learning or 
training of the network, begins with random assignment of the weights 
random weights, which are adjusted in due course till the error is 
minimized.

The equation suggests the net activation input for ith neurons by.

1

n

i ij j
j

net w x
=

= ∑ 				                                       (1)

Where, wij = Weight of link connecting i to j,

1
1 ii nnet

i

o
e

=
+

 = output of the ith neuron for sigmoid transfer 

function				                                                              (2)

Where, n is the scaling factor, the revising of the weights is as state 
in equation 7.3

( 1) ( ) ( )j n ij n pi pi j niw w o wiαδ β+ = + + ∆ 	                   (3) 

Where, 

n = learning step, α= the leaning rate, β = the momentum constant. 

= error and given by:

•	 For output layer:

( )( ). . 1 . ; 1, ..pk k p k p k pd o o k Kδ = − − = … 		                 (4)

•	 For hidden layer:

( )1 ; 1, ..pi pj pj pk  kjo o w j Jδ δ= − = …∑ 	                                                              (5)

The mean square error (MSE) due to all output and NP number of 
pattern is computed as:

( )2

1 1

1 . .
N K

k p k p
P k

MSE d o
N = =

= −∑∑ 	                                                                            (6)

The training of the network is terminated if the MSE is less than 
specified or the number of epoch crosses the maximum specified limit. 

The neural network model is developed to predict the measured 
outputs surface roughness using MATLAB R13a. The model is capable 
of predicting these outputs for the given inputs viz, cutting speed, 
feed rate, depth of cut, hardness and tool edge geometry, amplitude of 
tangential acceleration and amplitude of axial acceleration. The ANN 
model for prediction of the surface roughness is shown in Figure 12 
below. 

The experimental data acquired in measurement of surface 
roughness is used to develop the model. A total 54 number of data 
sets are therefore used. Out of these 80% data (44) are selected and 
has been used for testing and the 10% (5 data sets) for training and 
10% (5 data sets) has been utilized. The widespread range of the 
inputs and the outputs along with the uncertainties of the process 

settings and the measurement technique greatly affect the prediction 
accuracy of the ANN model. The widespread range of the inputs and 
the outputs along with the uncertainties of the process settings and the 
measurement technique greatly affect the prediction accuracy of the 
ANN model. To mitigate this data is either normalized or transformed 
using logarithmic function. The data normalization and/or logarithmic 
transformation the range of the data sets significantly reduces thereby 
increasing the prediction accuracy of the model. Further data devoid of 
logarithmic transformation necessitates the ANN model to be trained 
many times or the complexity of the network increases in terms of the 
number of neurons in the hidden layer. The MSE reaches a minimum 
with less number of epochs when logarithmic transformation is 
used [20]. Hence the data sets are preprocessed to log10 scale before 
developing the network and the outputs are post processed by taking 
the antilog.  The ANN architecture (Figure 13), developed is finalized 
after utilizing different training functions and by changing the number 
of neurons in the hidden layer as shown in Tables 6 and 7 respectively. 
The best network was obtained with 19 neurons in the hidden layer 
and Bayesian regularization training function;”trainlm” converging 
faster with minimum number of epochs of 4 than any other  training 
function (Table 7) with a MSE of 0.000724 and is shown in Figure 
14. An overall R (coefficient of correlation) of 0.99876 (Figure 15) is 
obtained representing good model adequacy. A decent conformity 
between the experimental and predicted values for training and testing 
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Ra 

Figure 12: Schematic of ANN model.

Figure 13: ANN architecture.

Sr. No Number of neurons in the hidden layer MSE
1 10 0.00126
2 15 0.000835
3 19 0.000724
4 25 0.000951
5 32 0.00987

Table 6: Number of neurons in hidden layer and MSE.
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data is obtained for surface roughness and is indicated in the Figures 
16 and 17 respectively.

The testing errors for the surface roughness prediction model are 
tabulated below in Table 8 and the average MAPE of 0.82 is achieved. 
The ANN predictions are noted to be in close agreement with the 
experimental results as specified in Table 8 and Figure 17.

The comparison of the regression models developed, and the neural 
networks models is compared by means of mean absolute percentage 
error for both the models as shown in Table 9 and Figures 18 and 19. It 
can be noted that the ANN model developed out performs regression 
modeling 

Conclusions
1. Regression analysis and neural networks methodologies are 

Sr No Training function MSE Epochs
1 Train br 0.0009752 9
2 Train lm 0.000724 4
3 Traing dx 0.0010957 12
4 Train rp 0.0007958 7

Table 7: Different training functions and MSE.

Figure 14: Performance for ANN model.

Figure 15: Regression for output versus target for surface roughness.
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Figure 16: Experimental versus ANN predicted values of surface roughness 
for training data.
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Figure 17:  Experimental versus ANN predicted surface roughness for testing 
data.

Average % error
Expt No Ra-Expt Ra-ANN (tst) Ra-Reg (tst) Ra (Reg) Ra ANN

8 0.75 0.7465 0.76 1.33 0.46
15 0.16 0.1624 0.15 6.25 1.50
22 0.48 0.4792 0.49 2.08 0.16
34 0.8 0.796 0.82 2.5 0.50
44 0.16 0.1624 0.15 6.25 1.50
-- -- -- MAPE 3.68 0.82

Table 8: Experimental and predicted values of surface roughness for testing data.

MAPE for Training data
Regression Analysis ANN

4.622 0.6401

Table 9: Mean absolute percent error for regression and ANN.
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Figure 18: MAPE of regression versus ANN model for training and testing data.



Page 7 of 7

Citation: Sarnobat SS, Raval HK (2018) Prediction of Surface Roughness from Cutting Tool Vibrations in Hard Turning of AISI D2 Steel of Different 
Hardness with Conventional and Wiper Geometry CBN Inserts. J Appl Mech Eng 7: 300. doi:10.4172/2168-9873.1000300

Volume 7 • Issue 1 • 1000300
J Appl Mech Eng
ISSN:2168-9873 JAME, an open access journal 

 

Expt No 443422158

Ra
 (A

NN)

Ra (
Reg)

Ra (
ANN)

Ra (
Reg

)

Ra (A
NN)

Ra (
Reg

)

Ra (
ANN)

Ra (R
eg)

Ra (
ANN)

Ra (
Reg

)

7

6

5

4

3

2

1

0

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
 e

rr
or

6.25

2.49
2.08

6.25

1.33 1.49

0.5
0.16

1.49

0.46

Mean absolute percent error regression versus ANN for testing data

Figure 19: Absolute percent error regression versus ANN for testing data.

useful for prediction on surface roughness by integrating the cutting 
tool vibrations with other input parameters.

2. The results of variance analysis exhibits that the cutting tool edge 
geometry, interaction of feed rate and tool edge geometry and feed 
rate have the utmost effect on the surface roughness. The tool edge 
geometry (EG) with a contribution of 47.83%, interaction of feed rate- 
tool edge (f × EG) with a contribution of 31.52% and feed rate (f) with 
a contribution of 10.35%, influence the surface roughness.

3. Regression equations based on the hierarchical regression model 
have been deduced to correlate the surface roughness with the input 
parameters. A R-sq of 99.24 and R-sq.(pred) of 98.59 designate a good 
correlation of the response with the predictors.

4. Graphical analysis using surface plots for the regression model 
indicates that the surface roughness is significantly affected by feed rate 
after the tool edge. The wiper edge tool edge geometry resulted in the 
best surface quality in comparison to the conventionally honed tool 
edge geometries.

5. Both the regression and ANN models were found to be suitable 
for prediction of the surface roughness. Based on the mean absolute 
percent error the neural networks modelling provided an equitably 
exact prediction in comparison to regression analysis approach.

6. The methodology suggested in this study based on 
experimentation, statistical and neural network modeling can be 
effectively and efficiently utilized for surface roughness prediction in 
hard turning process.
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