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Abstract
In general a management does not like the arriving customer wait for service in a system. It is not possible for all 

the times because the situation. In this case parameter estimation is helpful to rectify this difficulty and to analyze the 
modeling of system performance. Practically the queue parameters are not deterministic. So in this paper we estimate 
the queue parameter. Initially we construct the inverse membership function of the k-phase fuzzy queueing system 
and proposed an algorithm of performing the system. Finally, obtained the level of uncertainty range in the system and 
analyze the interval optimality level of k-phase fuzzy queueing system. The idea is extended to the work. A numerical 
example is included.
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Introduction
In general, any management system did not like that the arriving 

customer waiting in the service stage on long time. Sometime it is not 
possible because of the situation due natural calamities, the server 
providing the worst service, service time factor, etc., In this case 
our system fully block to the service. So, management likes to avoid 
this kind of manners, in this connection we estimated the queues 
parameters. In this situation bulk arriving queueing model is useful for 
recovery the problem in this case service may talented in many phases. 
The Researcher [1-3] has investigated the performance level. The basic 
queue characters are involved the certain probability distribution. 
The attractiveness is analyzing the observed data through statistical 
interference. The observable data’s unquestionable on the queueing 
system actually are. It is important to utilize the data of extend possible. 
Many algebraic problems are connected with the simulation modeling 
in queueing analysis. A statistical formula can support the best use of 
remaining data should be taken its important of the queueing studies. 
The initial works on the measurements of queue was totally observed a 
period of time and complete information was available in the form of 
the arrival moments and service of each customer. In general, model of 
queue liable on the markov process. Clarke and Benes are assumed the 
processing time consider as a special distribution. They are investigated 
the queues parameters through statistical interfering the different 
models (M/M/1) and (M/M/∞). In general depends on the situation 
queueing parameters are uncertainty. For this case fuzzy set theory is 
most helpful to analyze the optimality level of the system performance. 
In [4] classical queueing models are extended in fuzzy model with 
more applications. The fuzzy queuing models are more truthful for the 
classical ones [5-11] have analyzed and proved important results on 
fuzzy applications using α-level membership function, [12-14] analyze 
the nonlinear programming for single phase fuzzy queues in general 
discipline [15] Provided the overview on the conceptual aspects for the 
phase service in different queueing model. Clearly, many researchers are 
analyzing the queueing system modeling. In this paper, we analyze the 
interval optimality level of k-phase fuzzy queueing system; the above 

work extended in [14,16] and derived the uncertainty range k-phase 
fuzzy queueing system with the help of inverse membership function. 

Generalized Erlang k-phase service distribution
In this model service time consider as an Erlang distribution. More 

specially, the overall rate of each service phase is kµ. Even though the 
service may not actually contain in k phases, Let )(, tp in be the steady 
state probability, here “n, i” denotes customers in the system and service 
in k-phase. Here, we considered the number of phases in backward, so 
k is the first phase of service and one is the last phase. We can derive the 
steady state balance equation is: 

Inter arrival time: 0,)( ≥= − tetA tλλ

Service time: 
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The k-phase queueing system shown in Figure 1. 
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At steady state for n>0, ki ≤≤1
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( 1) 0

, 0 1
1 1

(1 )( )
1 (1 )

k
k n i

n i k
n i

p zG z p z p
z r rz

∞
− +

+
= =

−
= + =

− + +∑∑

, 1
1 1

( 1) 1 ( )

1 1E( ) E( )

k

q n i z
n i

q

k n iW p G z
k k

N I
k

µ µ

µ µ

∞

=
= =

− +  ′= =  

= +

∑∑
                (6)

If we let kiniknj ≤≤≥+−= 1,0,)1(  be the total number of 
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The Erlangian type k service model is equivalent to Bulk input 
model where kxcc xk ≠== ,0,1 .

0
E( )1 1 1 1X kp
k k

λ λ λ ρ
µ µ µ

= − = − = − = −                  (8)

Using partial fraction expansion may yield 

1 1

1( ) (1 ) where
(1 ) (1 )

kk
i

i
ii n

n i
i n

AG z Az z
z z

ρ
= =

≠

= − =
− −

∑ ∏  and

( ) ( )

1 ( 1) 1
(1 ) ( ) ;

k n k
P j P

j i i n j
i j n k

p A z p Pρ
−

−

= = − +

= − =∑ ∑

The performance measures as follows:

, 0
1 1

z=1

1 1E( ) E( ) E( )

( 1) 0

1= G (z)

q q q

k

n i
n i

W T N I
k

k n i p p
k

k

µ µ

µ

µ

∞

= =

= = +

− + = + ⋅  

′

∑∑

1

( 1)( )
2(1- )z

kG z ρ
ρ=

+′ = , ( 1) 1
2 (1- ) 2 ( - )q

k kW
k k

ρ λ
µ ρ µ µ λ
+ +

= = ⋅                (9)

 
21

2 ( - )q q
kL W

k
λλ

µ µ λ
+

= = ⋅ ,                  (10)

1 1 1
2 ( - )q

kW W
k

λ
µ µ µ λ µ

+
= + = ⋅ +                 (11)

21
2 ( - )

kL W
k

λ λλ
µ µ λ µ

+
= = ⋅ +                (12)

)(2
)1()('
λµ
λ

−
+

=
kzG  - Denotes the average total phase in the system.

Fuzzy queues with k-phase infinite capacity

Consider the arrival and service rates of k-phase queueing 
systems in triangular fuzzy number and defined as { }Xxxx ∈= /))(,(

λ
µλ

, { }Yyyx ∈= /))(,(
µ

µµ  here )(xλµ  and )(y
µ

µ  being the membership 

function of the arrival and service rate. Let P denote measuring the 
queueing system performance and defined the fuzzy system is 
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Equation [9,10] formulated the fuzzy membership function as 
follows:
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Now, the idea is establish the mathematical programming technique 
a pair of nonlinear programs is developed and the different possibility 
levels are calculated. So, we estimated the system performance through 
the statistical interference.

Solution Procedure

To derive the inverse membership function of ),( µλP  on the basis 
of α-cuts. The fuzzy arrival and service are defined as follows: 
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In [16], represented the queue parameter in different possibility 
levels of intervals, therefore; FM/FEk/1 can be summarized the family 
of crisp M/Ek/1 queues in the α-level sets. The Appearance of above 
two sets is relation between ordinary and fuzzy sets [16]. The bounds 
of α cut fuzzy interval obtained as ))((min 1 αµλα
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Figure 1: K-Phase queueing system.
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Many researchers are proposed that the different methods for 
solving these problems. If )(zLq  and )(zWq  are invertible with respect 
to α, then the shape of the function is

[L(z),R(z)]=
αqL 1−  and [L(z),R(z)]= αqW 1−  obtained from 

membership function )(z
qWµ  and )(z

qLµ  constructed:
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Otherwise, the values of
αqL and 

αqW cannot obtained analytically, 

the numerical solutions for [ ]u
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different possibility level of α can be collected to approximate the shapes 
of L(z) and R(z). The fuzziness values are converted to crisp value using 
Robust Ranking Technique and we estimated the queues parameters 
used in statistical interference. 

Numerical Example

Consider the centralize three parallel processing system in which 
the arrival at different level of phases. The arrival and service rate are 
triangular fuzzy number and the service distribution follows an Erlang 
distribution. The rates of arrival and service λ=[1,5,7] & µ=[9,11] 
per minute respectively, the system manager wants to evaluate the 
performance measures of the system such as the expected number 
of customers in the queue and waiting in the queue and to analyze 
optimality level of the system. It is clear the system consisting three 
phases and the steady state condition is 13

<=
y
xρ , our proposed 

methodology qL can be formulated as follows:
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We analyze system performance optimality (XL-Stat 2016) relation 
between the average number of customer waiting in the queue and 
customer has to spend the time in queue shown in Figure 2 and Table 3. 
The classification system performance in tree structure

Conclusion
In this study, we considered an optimal K-Policy in the FM/FE(k)/1 

queue with general server setup time. Especially, the entire queueing 
system performances are based in the server providing the service 
status. The Interval Optimization status if α=0 then qL  & qW  is [0.0061 
1.8148] and [0.0061, 0.2593] respectively as shown in Table 1. If, the 
degree of certainty α=1 then qL  & qW  is 0.3333 & 0.0667 respectively. 
The fuzziness values are converted to crisp value using robust ranking 
function the value are qW  & qL is 0.1327 & 0.91945 shown in Table 2. So, 
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Figure 2: Performance classification of tree structure.
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α )( α
qLR )( α

qWR α )( α
qLR )( α

qWR

0 0.1327 0.91945 0.6 0.06855 0.3603
0.1 0.11285 0.7427 0.7 0.06585 0.3346
0.2 0.0981 0.6181 0.8 0.06465 0.3215
0.3 0.0871 0.524 0.9 0.06485 0.32065
0.4 0.0789 0.45255 1 0.0667 0.3333
0.5 0.07285 0.399

Table 2: Uncertainty performance measures.

Node Object Percentage Split Variable Values Purity%
1 11 100 Lq  9.09
2 1 9.09 Wq 0.3 100
3 10 90.01 Wq 0.1,0.2 & 0.4 to 10 10

Table 3: Purity level of interval [Lq & Wq].

0.064 0.064 0.065 0.06 0.068 0.072 0.078 0.087 0.098 0.112 0.13 % Correct
0.064 1 0 0 0 0 0 0 0 0 0 0 100
0.064 1 0 0 0 0 0 0 0 0 0 0 0
0.065 1 0 0 0 0 0 0 0 0 0 0 0
0.066 1 0 0 0 0 0 0 0 0 0 0 0
0.068 1 0 0 0 0 0 0 0 0 0 0 0
0.072 1 0 0 0 0 0 0 0 0 0 0 0
0.078 1 0 0 0 0 0 0 0 0 0 0 0
0.087 0 0 0 0 0 0 0 1 0 0 0 100
0.098 1 0 0 0 0 0 0 0 0 0 0 0
0.112 1 0 0 0 0 0 0 0 0 0 0 0
0.132 1 0 0 0 0 0 0 0 0 0 0 0
Total 10 0 0 0 0 0 0 1 0 0 0 18.18

Table 4: Interval optimal value.

α )(α
xl

)(α
xu )(α

yl )(α
yu )(αq

LL ( )αq
U L )(αq

L w )(αq
U w

0 1 7 9 11 0.0061 1.8148 0.0061 0.2593
0.1 1.4 6.8 9.1 10.9 0.0126 1.4728 0.0091 0.2166
0.2 1.8 6.6 9.2 10.8 0.0222 1.2140 0.0123 0.1839
0.3 2.2 6.4 9.3 10.7 0.0355 1.0125 0.0161 0.1582
0.4 2.6 6.2 9.4 10.6 0.0531 0.8520 0.0204 0.1374
0.5 3 6 9.5 10.5 0.0762 0.7218 0.0254 0.1203
0.6 3.4 5.8 9.6 10.4 0.1059 0.6148 0.0311 0.1060
0.7 3.8 5.6 9.7 10.3 0.1438 0.5254 0.0378 0.0939
0.8 4.2 5.4 9.8 10.2 0.1922 0.4508 0.0458 0.0835
0.9 4.6 5.2 9.9 10.1 0.2539 0.3874 0.0552 0.0745
1 5 5 10 10 0.3333 0.3333 0.0667 0.0667

Table 1: The α cuts of the performance measures 
α
qL &

α
qW .

performance of the system is not optimized, because the frequency of 
the system is 0.954 and the estimation of the sample percentage level qW is 
not good because level is reached only 18.18% (based on the estimation 
Table 4 degree of certainty not good). Our proposed methodology is 
most helpful for the system operation (simulation) studies and then we 
quickly identified blocking to the system.
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