alexa
Reach Us +60146296367
Pregnancy after the Calcium Ionophore Activation and Aneuploid Screening Using A-CGH in Globozoospermia Patient | OMICS International
ISSN: 2161-0436
Human Genetics & Embryology

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Pregnancy after the Calcium Ionophore Activation and Aneuploid Screening Using A-CGH in Globozoospermia Patient

VY Phan*, Eva Littman, Dee Harris, Antoine La

Red Rock Fertility Center, 6420 Medical Center ST, STE 100, Las Vegas, Nevada, USA.

*Corresponding Author:
VY Phan
Red Rock Fertility Center
6420 Medical Center ST, STE 100
Las Vegas, Nevada, USA
Tel: 1-702-262-0079
Fax: 1-702-685-6910
E-mail: [email protected]

Received March 12, 2014, Accepted July 28, 2014, Published August 04, 2014

Citation: Phan VY, Littman E, Harris D, La A (2015) Pregnancy after the Calcium Ionophore Activation and Aneuploid Screening Using A-CGH in Globozoospermia Patient. Human Genet Embryol 5:123. doi: 10.4172/2161-0436.1000123

Copyright: © 2015 Phan VY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Human Genetics & Embryology

Abstract

Objective: To report a successful pregnancy after transfer of embryos derived from oocytes activated by calcium ionophore after intracytoplasmic sperm injection (ICSI) with round-headed sperms and aneuploid screening using a- CGH. Design: Case report Setting: Private IVF clinic. Patient: A 28-year-old patients and her 31-year-old husband, diagnosed with 100% globozoospermia, underwent ICSI, oocyte activation and chromosome screening using a-CGH. Intervention: Ten metaphase II oocytes were injected with round-headed sperms. After ICSI, the oocytes were treated with 10 μM calcium ionophore solution for 20 minutes at 37◦C in 6% CO2. The fertilization was checked 18 hours later. On morning of day 3, one blastomere was biopsied from embryos which had at least 6 cells and sent to the genetic lab for aneuploid screening using a-CGH. Two euploid embryos were transfer on the fifth day after oocyte retrieval. Supernumerary normal embryos were vitrified for future use. Main Outcome Measure: Ongoing pregnancy after transfer of embryos after calcium ionophore activation and a- CGH screening. Results: This couple experienced only 12% fertilization after ICSI in their first cycle. On the second cycle, 8 out of 10 metaphase II oocytes were fertilized after ICSI and calcium ionophore activation immediately after ICSI. 6 out of 8 embryos were diagnosed as euploid. Two normal blastocysts were chosen for transfer. Clinical pregnancy was confirmed at 7 weeks of gestation with two heartbeats. Two healthy babies were born. Conclusion: Artificial oocyte activation using calcium ionophore is beneficial in patients with globozoospermia. This study showed that the method of oocyte activation does not affect chromosome constitution and the normal growth of preimplantation embryos. Further studies are needed to confirm the safety of oocyte activation in born babies.

Keywords

Globozoospermia; Round-headed sperm; Calcium ionophore; Oocyte activation.

Introduction

Globozoospermia is a rare type of teratozoospermia, first described in 1971. Biochemically, the spermatozoa are characterized by the absence, or reduced activity of acrosin (acrosome protease) and of calicin (a cytoskeletal protein) resulted in fertilization impaired due to absence of oocyte activation. The mode of inheritance for this condition has not yet been established. Dominant inheritance, homozygous autosomal gene defect, and a possible environmental effect have been suggested [2].

Affected men suffer from reduced fertility or even infertility; no other physical characteristics can be associated with this condition. An increased aneuploidy rate has been observed in some cases, on cytogenetic analysis, mostly in the acrocentric (13, 14, 15, 18 and 21) and sex chromosomes but the findings are similar to other types of male infertility [3]. Increased DNA fragmentation and DNA damage has also been noted [4,5] The pathogenesis of globozoospermia most probably originates in spermiogenesis, especially in acrosome formation and sperm head elongation [2,6].

ICSI is the most powerful tool in ART. With the advent of ICSI, globozoospermia became one of the many severe male factor conditions that could be effectively treated. Although the fertilization rate with ICSI is considered to be the highest among all available assisted reproduction techniques, complete fertilization failure has been reported [7]. Ultra structural analysis of fertilization failure after ICSI has revealed that a deficiency in the mechanism of oocyte activation is the most common cause [1]. Activation of the oocyte results in a cascade of events including extrusion of the second polar body, decondensation of a haploid set of chromosomes, formation of a nuclear membrane around the chromosomes, and initiation of embryonic development. Oocyte activation is also characterized by two main molecular events including an increase in intracellular Ca2+ concentrations followed by meiotic promoting factor inactivation for M–G1 transition. There are numerous approaches to overcome the problem of activation/fertilization failure after ICSI. Among others, application of calcium ionophores has proved particularly advantageous because of their ease of implementation. As exposure of human gametes to calcium ionophores has not yet been found to be associated with evidence of toxicity or detrimental outcome, its widespread use in cases of previous fertilization failure has become a routine technique. To date, no data on A23187 and gene expression are available. Although ionophores are not always successful [8], deliveries even in the presence of nonviable testicular spermatozoa are conceivable after treatment with A23187 [9]. Here we report the successful case of pregnancy and delivery in couples with globozoospermia after ICSI using calcium ionophore for oocyte activation, and pre implantation genetic screening for 23 pair chromosomes using array CGH.

Case Report

Infertility History

A couple with an infertility history of 2 years had gone through one IVF-ICSI cycle without oocyte activation with low fertilization rate (12%). The patient was 28 years old and was diagnosed with dysmenorrhea, dyspareunia and pelvic pain. The husband was 31 years old and his sperm revealed abounds of 20 Million/ml, 20% motility with all round-headed and acrosome less sperm.

Controlled ovarian stimulation

Patient was stimulated using Gonal F and Luveris and Antagonist. After 10 days of stimulation, 10 000 IU hCG was provided. 10 oocytes were retrieved by transvaginal follicle aspiration under ultrasound, 36 hours after hCG injection. The luteal phase was supported by crinone and estrace.

Intracytoplasmic sperm injection and assisted oocyte activation

Because all sperm were globozoospermic, those having the best motility were selected for injection. Right after ICSI, 10 oocytes were activated with calcium ionophore. For this activation oocytes were treated with 10 µM calcium ionophore solution for 20 minutes at 37?C in 6% CO2. After that the oocytes were washed three times with fresh culture medium until they were free of calcium ionophore and then incubated again in the same medium. The fertilization was evaluated after 18 hours after ICSI. 8/10 oocytes were fertilized.

Embryo biopsy and a-CGH

Fertilized oocytes were cultured until day 3. On the morning of day 3, six eight cells grade 1embryos and two six cells grade 1 embryo were biopsied. One blastomere was removed from each embryo and put in the PCR tubes and sent to Genetics Genesis lab for a-CGH evaluation. 6/8 embryos were euploid. 1 embryo was 45XX duplication of the short arm of chromosome 1 and monosomy 21; 1 embryo was aneuploidy monosomy 2;

Blastocyst culture and embryo transfer

On morning day 5, two normal hatching blastocyst with high quality were transferred to the uterus.

Outcomes

Clinical pregnancy was confirmed at 7 weeks of gestation with two heartbeats. Two healthy babies were born.

Discussion

Globozoospermia is an infrequent pathology in which spermatozoa lack acrosomes. Patients are considered sterile without IVF with ICSI treatment as spermatozoa with a characteristic round-head appearance and functionally with limited capacity to fertilize [10]. Before 1994, patients with complete globozoospermia have no options for bearing a child other than using donor sperm or adoption. In 1994, Lundin et al. reported the first pregnancy in globozoospermia patient using ICSI method [11]. Since then, numerous reports have described successful attempts to achieve either fertilization or pregnancy following ICSI with global sperm [12-24]. In general, ICSI with round-headed sperm is less successful compared with ICSI in general. In some cases ICSI is not always overcome the infertility associated with globozoospermia [25-27]. Some reports indicated that induction of oocyte activation using calcium ionophore was necessary after ICSI in some patients with globozoo spermia [28-31], strongly pointing to an absence of putative oocyte-activation factor. In this case, using ICSI combine with calcium ionophore activation, we got fertilization rate of 80% comparable with general ICSI cases.

There are some reports that show a possible correlation between globozoospermia and chromosomal aneuploidies. Ditzel et al. observed that aneuploidy rates in spermatozoa from a patient with globozoospermia were significantly higher than in a normospermic man [32]. In that study they demonstrated a positive correlation between globozoospermia and higher chromosomal aneuploidies of chromosomes 13, 16, and 21. In our patient, the rate of aneuploidy was 2/8, and the chromosomes involved were 2, 16 and 21. The aneuploidy rate was lower than the common reported rate for women less than 35 year old of age undergoing IVF/ICSI cycle.

Our results support that artificial oocyte activation using calcium ionophore is beneficial in patients with globozoospermia. This study showed that the method of oocyte activation does not affect chromosome constitution and the normal growth of preimplantation embryos. Further studies are needed to confirm the safety of oocyte activation in born babies.

References

  1. KilaniZ, Ismail R, Ghunaim S, Mohamed H, Hughes D, et al. (2004) Evaluation and treatment of familial globozoospermia in five brothers. See comment in PubMed Commons below FertilSteril 82: 1436-1439.
  2. Holstein AF, Schirren CG, Schirren C, Mauss J (1973) [Round headed spermatozoa: a cause of male infertility]. See comment in PubMed Commons below Dtsch Med Wochenschr 98: 61-62.
  3. Machev N, Gosset P, Viville S (2005) Chromosome abnormalities in sperm from infertile men with normal somatic karyotypes: teratozoospermia. See comment in PubMed Commons below Cytogenet Genome Res 111: 352-357.
  4. Vicari E, Perdichizzi A, De Palma A, Burrello N, D'Agata R, et al. (2002) Globozoospermia is associated with chromatin structure abnormalities: case report. See comment in PubMed Commons below Hum Reprod 17: 2128-2133.
  5. Sutovsky P, Terada Y, Schatten G (2001) Ubiquitin-based sperm assay for the diagnosis of male factor infertility. See comment in PubMed Commons below Hum Reprod 16: 250-258.
  6. Lalonde L, Langlais J, Antaki P, Chapdelaine A, Roberts KD, et al. (1988) Male infertility associated with round-headed acrosomeless spermatozoa. See comment in PubMed Commons below FertilSteril 49: 316-321.
  7. Moomjy M, Sills ES, Rosenwaks Z, Palermo GD (1998) Implications of complete fertilization failure after intracytoplasmic sperm injection for subsequent fertilization and reproductive outcome. Hum Reprod 13: 2212-2216.
  8. Check JH, Levito MC, Summers-Chase D, Marmar J, Barci H (2007) A comparison of the efficacy of intracytoplasmic sperm injection (ICSI) using ejaculated sperm selected by high magnification versus ICSI with testicular sperm both followed by oocyte activation with calcium ionophore. ClinExpObstetGynecol 34: 111-112.
  9. Ahmady A, Michael E (2007) Successful pregnancy and delivery following intracytoplasmic injection of frozen-thawed nonviable testicular sperm and oocyte activation with calcium ionophore. J Androl 28: 13-14.
  10. Dam AH, Feenstra I, Westphal JR, Ramos L, van Golde RJ, et al. (2007) Globozoospermia revisited. See comment in PubMed Commons below Hum Reprod Update 13: 63-75.
  11. Lundin K, Sjögren A, Nilsson L, Hamberger L (1994) Fertilization and pregnancy after intracytoplasmic microinjection of acrosomeless spermatozoa. See comment in PubMed Commons below FertilSteril 62: 1266-1267.
  12. Bourne H, Liu DY, Clarke GN, Baker HW (1995) Normal fertilization and embryo development by intracytoplasmic sperm injection of round-headed acrosomeless sperm. See comment in PubMed Commons below FertilSteril 63: 1329-1332.
  13. Trokoudes KM, Danos N, Kalogirou L, Vlachou R, Lysiotis T, et al. (1995) Pregnancy with spermatozoa from a globozoospermic man after intracytoplasmic sperm injection treatment. See comment in PubMed Commons below Hum Reprod 10: 880-882.
  14. Kilani ZM, Shaban MA, Ghunaim SD, Keilani SS, Dakkak AI (1998) Triplet pregnancy and delivery after intracytoplasmic injection of round-headed spermatozoa. See comment in PubMed Commons below Hum Reprod 13: 2177-2179.
  15. Stone S, O'Mahony F, Khalaf Y, Taylor A, Braude P (2000) A normal livebirth after intracytoplasmic sperm injection for globozoospermia without assisted oocyte activation: case report. Hum Reprod 15: 139-141.
  16. Coetzee K, Windt ML, Menkveld R, Kruger TF, Kitshoff M (2001) An intracytoplasmic sperm injection pregnancy with a globozoospermic male. See comment in PubMed Commons below J Assist Reprod Genet 18: 311-313.
  17. Kim ST, Cha YB, Park JM, Gye MC (2001) Successful pregnancy and delivery from frozen-thawed embryos after intracytoplasmic sperm injection using round-headed spermatozoa and assisted oocyte activation in a globozoospermic patient with mosaic Down syndrome. FertilSteril 75: 445-447.
  18. Nardo LG, Sinatra F, Bartoloni G, Zafarana S, Nardo F (2002) Ultrastructural features and ICSI treatment of severe teratozoospermia: report of two human cases of globozoospermia. See comment in PubMed Commons below Eur J ObstetGynecolReprodBiol 104: 40-42.
  19. Tesarik J, Rienzi L, Ubaldi F, Mendoza C, Greco E (2002) Use of a modified intracytoplasmic sperm injection technique to overcome sperm-borne and oocyte-borne oocyte activation failures. See comment in PubMed Commons below FertilSteril 78: 619-624.
  20. Zeyneloglu HB, Baltaci V, Duran HE, Erdemli E, Batioglu S (2002) Achievement of pregnancy in globozoospermia with Y chromosome microdeletion after ICSI. See comment in PubMed Commons below Hum Reprod 17: 1833-1836.
  21. Heindryckx B, Van der Elst J, De Sutter P, Dhont M (2005) Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI. See comment in PubMed Commons below Hum Reprod 20: 2237-2241.
  22. Dirican EK, Isik A, Vicdan K, Sozen E, Suludere Z (2008) Clinical pregnancies and livebirths achieved by intracytoplasmic injection of round headed acrosomeless spermatozoa with and without oocyte activation in familial globozoospermia: case report. See comment in PubMed Commons below Asian J Androl 10: 332-336.
  23. Yoon SY, Jellerette T, Salicioni AM, Lee HC, Yoo MS, et al. (2008) Human sperm devoid of PLC, zeta 1 fail to induce Ca(2+) release and are unable to initiate the first step of embryo development. See comment in PubMed Commons below J Clin Invest 118: 3671-3681.
  24. Banker MR, Patel PM, Joshi BV, Shah PB, Goyal R (2009) Successful pregnancies and a live birth after intracytoplasmic sperm injection in globozoospermia. See comment in PubMed Commons below J Hum ReprodSci 2: 81-82.
  25. Liu J, Nagy Z, Joris H, Tournaye H, Devroey P, et al. (1995) Successful fertilization and establishment of pregnancies after intracytoplasmic sperm injection in patients with globozoospermia. See comment in PubMed Commons below Hum Reprod 10: 626-629.
  26. Battaglia DE, Koehler JK, Klein NA, Tucker MJ (1997) Failure of oocyte activation after intracytoplasmic sperm injection using round-headed sperm. FertilSteril 68: 118-122.
  27. Rybouchkin AV, Van der Straeten F, Quatacker J, De Sutter P, Dhont M (1997) Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. FertilSteril 68: 1144-1147.
  28. Rybouchkin A, Dozortsev D, Pelinck MJ, De Sutter P, Dhont M (1996) Analysis of the oocyte activating capacity and chromosomal complement of round-headed human spermatozoa by their injection into mouse oocytes. Hum Reprod 11: 2170-2175.
  29. Gómez E, Pérez-Cano I, Amorocho B, Landeras J, Ballesteros A, et al. (2000) Effect of injected spermatozoa morphology on the outcome of intracytoplasmic sperm injection in humans. See comment in PubMed Commons below FertilSteril 74: 842-843.
  30. Schmiady H, Schulze W, Scheiber I, Pfuller B (2005) High rate of premature chromosome condensation in human oocytes following microinjection with round-headed sperm: case report. See comment in PubMed Commons below Hum Reprod 20: 1319-1323.
  31. Tejera A, Molla M, Muriel L, Remohi J, Pellicer A, et al. (2008) Successful pregnancy and childbirth after intracytoplasmic sperm injection with calcium ionophore oocyte activation in a globozoospermic patient. Fertility and Sterility 90:1202.
  32. Ditzel N, El-Danasouri I, Just W, Sterzik K (2005) Higher aneuploidy rates of chromosomes 13, 16, and 21 in a patient with globozoospermia. See comment in PubMed Commons below FertilSteril 84: 217-218.
Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Article Usage

  • Total views: 17360
  • [From(publication date):
    February-2015 - Oct 24, 2019]
  • Breakdown by view type
  • HTML page views : 13473
  • PDF downloads : 3887

Review summary

  1. icsi treatment cost
    Posted on Feb 16 2017 at 2:42 pm
    Thanks for sharing the best posts they very nice and very useful to us. I am very impressed by your site and your posts they very nice and very help us. You made a good site and giving us such a good information on this topic it's very interesting one. Thank you all http://www.ivfadvanced.com/advanced-services/

Post your comment

captcha   Reload  Can't read the image? click here to refresh
Peer Reviewed Journals

Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals

Top