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Introduction
Recently, titanium dioxide (TiO2) has attracted great interest for the 

degradation of pollutants [1-3], such as most organic compounds and 
inorganic ions [4,5]. However, the photocatalytic performance of TiO2 
is greatly restricted by its wide band gap (3.2 eV) and high electron-
hole recombination rate. Proposed solutions to these problems include 
doping with metallic or nonmetallic ions [6,7], dye photosensitization 
on the TiO2 surface [8], deposition of noble metals [9,10], and 
semiconductor modification [11].

Modifying TiO2 with semiconductors such as SnO2 has proven 
to be an effective way to improve the photocatalytic activity, by using 
the transport and separation of photo produced carriers between two 
semiconductors with different energy gaps. Separately, Ag or other noble 
metals deposited on the surface of  TiO2 form a short-circuit battery 
with TiO2, which leads to effective separation of the photogenerated 
electrons/holes and a lower potential in the reduction reaction, thus 
greatly improving the photocatalytic activity.

In this paper, Ag-modified SnO2@TiO2 core-shell composites were 
fabricated in two steps: first the synthesis of SnO2@TiO2 composite 
using a hydrothermal method, and then surface modification of the 
composite with Ag. The Ag-modified SnO2@TiO2 core-shell composites 
demonstrated excellent photocatalytic activity and cycle stability under 
visible light.

Materials and Methods 
Preparation of Ag-modified SnO2@TiO2 core-shell composites

Preparation of SnO2: SnCl4·5H2O and polyethylene glycol (PEG) 
were added into deionized water and magnetically stirred. When 
SnCl4·5H2O was completely dissolved, excessive ammonia was added 
dropwise into the solution and stirred well. After filtration, the precipitate 
was washed  with  absolute alcohol, and  calcined  at  400℃  for  2 h to 
obtain the SnO2 powder.

Preparation of SnO2@TiO2 core-shell composites: Tetrabutyl 
titanate, acetic acid, and anhydrous alcohol were mixed together, and 
then alcohol-water solution was slowly added to the mixture and 
stirred for 30 min. SnO2 was then added, followed by another 30 min 
of stirring. The obtained solution was transferred to a 100-mL Teflon-
lined autoclave and kept in an oven at 150℃ for 4 h. After cooling to 
room temperature, the precipitate was collected by centrifugation (6000 
rpm, 20 min), washed with anhydrous alcohol, and then dried at 60℃ 
overnight. The obtained SnO2@TiO2 sample is designated as ST.

Preparation of Ag-modified SnO2@TiO2 core-shell composites: 
The ST composite was added to AgNO3 solutions of given concentrations 
and irradiated under a 500 W mercury lamp. The solids were collected 
by centrifugation and dried at 60℃ overnight to obtain Ag-modified 
SnO2@TiO2 core-shell composites. These samples are designated as 
AgST-M, where M is the molar concentration of AgNO3 solution used. 
For comparison, pure TiO2 and Ag-modified TiO2 were synthesized 
separately, and designated as PT and AgT, respectively.

Characterization of the photocatalysts

The chemical composition of the photocatalyst samples was 
analyzed by energy dispersive X-ray spectroscopy (EDX, INCA). 
Transmission electron microscopy (TEM, JEM-2100, JEOL) was 
used for morphology characterization. The crystalline structures of 
the samples were determined by X-ray diffraction (XRD, XRD-6000, 
Japan Shimadzu) using Cu Ka radiation (λ=0.154 nm) at 40 kV, 250 
mA at room temperature. An X-ray photoelectron spectrometer (XPS, 
Thermo ESCALAB 250, Waltham, MA, USA) was used to analyze the 
elemental composition and valence states. UV-vis diffuse reflectance 
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spectra (DRS) of the samples were recorded in the range of 200–800 nm 
using a Shimadzu UV240 spectrophotometer (Kyoto, Japan) equipped 
with an integrating sphere, and BaSO4 was used as the reference. 
Thermogravimetry and differential thermal analysis (TG-DTA) were 
performed by a Pyris Diamond 851e analyzer (PerkinElmer) at a 
heating rate of 200℃ min-1 under N2 environment, with a flow rate of 
50 mL min-1.

Photocatalytic activity 

The photocatalytic activities of the samples were evaluated by the 
degradation of Rhodamine B in a 500-mL jacketed beaker, a 500  W 
mercury lamp was selected as the visible light source. In a typical 
experiment, 0.05 g of the photocatalyst sample was dispersed in 
the Rhodamine B solution (40 mL, 5 mg L-1). The solution was then 
maintained in the dark for 30 min prior to irradiation, in order to reach 
the adsorption-desorption equilibrium. During irradiation, 4 mL of 
the sample solution was taken out every 10 min and the Rhodamine B 
concentration was measured by UV-vis spectroscopy. The degradation 
rate of Rhodamine B can be calculated via the formula:

01 / 1 0) %( 0iA Aη = − ×

where A0 is the initial absorbance of the solution, and Ai is the 
absorbance after different reaction times.

Results and Discussion
Phase structure and morphology characterization

The XRD spectra of Ag-modified SnO2@TiO2 and other samples 
were shown in Figure 1. The diffraction patterns of ST and AgST 
displayed the anatase peak of TiO2 at 2θ = 25.3°. However, we could not 
confirm the anatase phase since only one peak was detected, probably 
due to the low amount of TiO2 in the particles. Similarly, no Ag peaks 
were detected in the patterns of AgT and AgST, likely due to the low 
amount of Ag [12-14].

Figure 2 showed three typical TEM images of AgST-0.15. The as-
prepared sample consisted of many decentralized nanoparticles of 
uniform size (30–50 nm in diameter). The core-shell nanostructures 
could be observed in Figure 2(c), as the surface of the SnO2 nanoparticles 
was coated with a layer of TiO2.

Thermogravimetric analysis

TG-DTA curves of the AgST-0.15 nanoparticles were exhibited 
in Figure 3. The results showed that the nanoparticles underwent a 
multistep decomposition process in the temperature range of 25–
800℃. The endothermic peak in the range of 25–90℃ was related to 
the desorption of physically adsorbed free water and residual ethanol, 
which together accounted for 8% of the weight loss. The sharp 
exothermic peak in the temperature range of 200–300℃ (about 5% 
weight loss) was due to the combustion of organics on the surface of 
the sample. In the temperature range of 300–400℃, there was another 
exothermic peak owing to further carbonization of organics and the 
removal of constitution water. These results indicated that the as-
prepared Ag-modified SnO2@TiO2 core-shell composite exhibited high 
thermal stability.

Elemental analysis

XPS analysis: AgST-0.15 was further analyzed by XPS to determine 
the main elements on the TiO2 surface and their chemical states. The 
survey spectrum was shown in Figure 4(a). The binding energies 
obtained in the analysis were corrected for specimen charging by C ls 

Figure 1: XRD patterns of different samples.

Figure 2: TEM images of AgST-0.15 composite at different levels of 
magnification.

Figure 3: TG-DTA curves of the AgST-0.15 composite.

(284.8 eV) [15]. The results indicated the presence of five elements: C, 
Ti, O, Sn, and Ag. In Figure 4(b), the two Sn 3d peaks centered at 495.2 
and 486.9 eV were assigned as Sn 3d3/2 and Sn 3d5/2, respectively. The 
binding energy of Sn 3d5/2 (486.9 eV) matched the typical values for 
SnO2 [16,17], indicating that the Sn4+ dopant was incorporated into 
TiO2 to form SnO2. In the spectrum of Ag 3d (Figure 4(c)), the binding 
energies of 368.2 and 374.2 eV were respectively attributed to Ag 3d5/2 
and Ag 3d3/2. The 6.0 eV splitting within the Ag 3d doublet indicated the 
formation of metallic Ag on the surface of TiO2 [18,19]. The Ag content 
of AgST-0.15 estimated from XPS was 3.76%. The atomic ratio of O/Ti 
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Figure 4: XPS spectra of AgST-0.15: (a) survey spectra, (b) Sn 3d, (c) Ti 2p, and (d) Ag 3d.

determined from XPS was 2.82:1, suggesting the existence of oxygen 
vacancies on the surface of TiO2.

EDX analysis: The AgST-0.15 sample was analyzed by EDX in order 
to determine its composition (Figure 5). Elemental analysis results 
(Table 1) showed only Ti, O, Ag and Sn with no detectable impurities, 
which are in agreement with the XPS results.

Photoelectrochemical performance

UV-Vis DRS analysis: The activity of a photocatalyst mainly 
depends on the width of its band gap, and the recombination rate 
of electron-hole pairs. From the UV-vis DRS results in Figure 6, the 
band gaps for PT, AgT, ST, and AgST-0.15 were estimated to be 3.17, 
3.06, 3.02, and 2.85 eV, respectively. Compared to PT, both AT and ST 
exhibited enhanced absorption extending towards the visible region. 
AgST-0.15 exhibited significant absorption in both UV and visible 
regions, revealing the synergistic effects of SnO2 addition and Ag 
modification in narrowing the band gap of TiO2. This obtained result 
could be ascribed to the following mechanisms: (1) electron transfer 
from TiO2 surface to SnO2, which reduced the electron density on the 
TiO2 surface, as well as the rate of recombination of photogenerated 
holes and electrons [20,21], (2) Ag with its high electrical conductivity 
can transfer electrons during the photocatalytic reaction, thereby 
dispersing the electrons and photogenerated holes [22].

Photocatalytic activity in Rhodamine B degradation: The 
photocatalytic activities of the samples were evaluated by the 
degradation of Rhodamine B under visible light irradiation, with the 
results shown in Figure 7. The degradation rates were relative to the 

 

Figure 5: EDX patterns of AgST-0.15

Rhodamine B concentration at adsorption equilibrium (after 30 min 
in the dark). Compared with PT, all modified TiO2 samples showed 
improved photocatalytic performance, especially the Ag-modified 
SnO2@TiO2 core-shell composites, which remarkably accelerated the 
photodegradation. Importantly, the photocatalytic efficiency initially 
increased with the concentration of AgNO3 used for treatment, from 
0 to 0.1 and then 0.15 M. Afterwards, the efficiency decreased with 
AgNO3 concentration up to 0.3 M. The AgST-0.15 sample exhibited the 
best catalytic efficiency, degrading 99.14% of Rhodamine B in 60 min 
while PT only degraded 45.7% during the same time period.

Photochemical stability of the catalysts

Figure 8 compared the cycle stability of AgST-0.15, the most 
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Element Weight percent (%) Atomic percent (%)
O K 50.32 82.85
Ti K 18.10 9.95
Ag L 8.71 2.13
Sn L 22.87 5.08
Total 100.00 100.01

Table 1: The elemental composition of AgST-0.15.

 

Figure 6: UV-vis diffuse reflectance spectra of different photocatalyst 
samples.

Figure 7: The degradation curves of Rhodamine B under visible light 
irradiation with different photocatalysts.

 

Figure 8: Photochemical stability of AgST-0.15 and PT. The degradation 
rate is based on 60 min of reaction time.

addition. The photocatalytic activity of Ag-modified SnO2@TiO2 core-
shell composites was better than the published results for TiO2-SnO2 
[23]. Since Ag has good electrical conductivity, it can facilitate the 
electron transfer during the photocatalytic reaction, and disperse the 
electrons and photogenerated holes. However, excess Ag may cover 
the surface of TiO2, thereby reducing the photocatalytic rate. Hence, 
there was an optimal Ag content for photocatalysis, beyond which the 
efficiency would decrease. The sample modified with 0.15 M AgNO3 
possessed the best photocatalytic performance, as well as cycle stability.
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