Preparation of a Modified Micro-arc Oxidation Coating Using Al$_2$O$_3$ Particles on Ti6Al4V

Hong Li1* and Jin Zhang2

1Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Lab of Guangdong for Modern Surface Engineering Technology, Guangzhou 510650, PR China
2Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, University of Science and Technology Beijing, Beijing 100083, PR China

Abstract

A micro-arc oxidation coating on Ti6Al4V alloy was modified by addition of micro-Al$_2$O$_3$ particles to a sodium phosphate solution. The coating structure and phase were characterized by scanning electron microscopy and X-ray diffraction, and the oxidation resistance and thermal shock properties of the coating were investigated. Results showed that a coating denser than the original coating was produced. This new coating was composed of Al$_2$TiO$_5$ and TiO$_2$. The oxidation resistance and thermal shock property of the coating improved with addition of Al$_2$O$_3$ particles to the electrolyte relative to the sample prepared without the particles in the electrolyte. Moving Al$_2$O$_3$ particles were adsorbed on the coating surface and penetrated through it. As a result, the phase structure and properties of the original coating were modified.

Keywords: Ti6Al4V; Micro-arc oxidation; Al$_2$O$_3$ particle; Oxidation resistance; Thermal shock property

Introduction

Titanium alloys are widely used in the aerospace and biomedical industries for their low density, high relative strength, and good corrosion resistance. However, these alloys exhibit poor tribological behavior and anti-oxidation resistance at high temperatures. Micro-arc oxidation (MAO) is a new surface modification technique widely investigated in recent years and employed to produce different kinds of coatings on Ti alloys with improved properties [1-8]. Basically, the composition of the MAO coating depends on the substrate (Mg, Al, or Ti alloy) and the electrolyte. For example, TiO$_2$, Al$_2$O$_3$, and SiO$_2$ coatings are generally prepared in phosphate [9], aluminate [10], and silicate [9] solutions, respectively. Other composite coatings in mixing solutions [11] are used on titanium alloys. The porous structure of the MAO coating is generated from the micro-arc property of the approach [12]. The in situ growth behavior of the MAO coating underlies its good adhesion to the substrate [13]. Favorable thermal resistance of the MAO coating has also been reported [14,15]. The MAO coating prepared in Na$_2$SiO$_3$-Na$_2$CO$_3$-NaOH on Ti6Al4V exhibited good anti-oxidation properties at 500°C for 200 h [14]. The coating prepared in sodium phosphate with Co(CH$_3$COO)$_2$ addition on Ti6Al4V exhibited thermal shock resistance at 500°C for 40 cycles [15]. Also, the functional coatings prepared on Ti alloys using MAO technology attracted recent attention. The black coating, first produced in the 1980s by the original anode oxidation technique or the cathode plasma oxidation method [16,17], is obtained in mixed electrolyte [18]. Overall, the coating properties are mostly dependent on the electrolyte employed. In this paper, a MAO coating much denser than usual was prepared on Ti6Al4V alloy by addition of Al$_2$O$_3$ particles to sodium phosphate solution. The coating’s effects on anti-oxidation at 700°C and thermal shock at 850°C were studied.

Experiment Methods

Coating preparation

The substrate material used in this investigation was Ti6Al4V titanium alloy, with a chemical composition (wt.%) of 6.3 Al, 4.2 V, 0.15 O, 0.11 Fe, 0.03 C, 0.02 N, 0.001 H, and Ti balance. Specimens measuring 20 mm × 15 mm × 2 mm were ground using 60#, 120#, 240#, 400#, 600#, 1000#, and 1500# grit silicon carbide papers. The specimens or Ti alloy) and the electrolyte. For example, TiO$_2$ particles were used in mixed electrolyte [18]. Overall, the coating properties are mostly dependent on the electrolyte employed. In this paper, a MAO coating much denser than usual was prepared on Ti6Al4V alloy by addition of Al$_2$O$_3$ particles to sodium phosphate solution. The coating’s effects on anti-oxidation at 700°C and thermal shock at 850°C were studied.

Voltage/V Pulse frequency/Hz Duty ratio/% Time/min

<table>
<thead>
<tr>
<th>Voltage/V</th>
<th>Pulse frequency/Hz</th>
<th>Duty ratio/%</th>
<th>Time/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>2000</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Parameters for MAO coating preparation.
3.6 µm. The added Al₂O₃ particles were dispersed by a magnetic stirring device and then stabilized. By comparing the two curves, we noted that the high temperature (4000 K) caused by micro-arc formation [20] led to the characteristic of the coating and the bond strength between the coating and substrate. The coated sample was placed inside a furnace at 700°C in air for 100 h. A ceramic crucible was used to hold the sample and pre-heated to a constant weight. The Ti6Al4V substrate and the coating sample, both previously weighed, were oxidized at 700°C for 10 h. All of the specimens were then brought out, cooled naturally in air to room temperature, and then weighed again. Afterward, the samples were returned to the furnace for the next cycle. The test was performed for 10 thermal cycles, and the kinetic curves of each weight variant per unit area versus time was plotted.

A thermal shock test was conducted to evaluate the thermal shock property of the coating and the bond strength between the coating and substrate. The coated sample was placed inside a furnace at 850°C for 10 min. The specimen was then immediately removed, immersed in cool water, and returned to the furnace for the subsequent cycle. The thermal shock test was repeated for 30 cycles. The surface morphology and thermal-control property of the coatings were observed.

Result and Discussion

The particle size distribution of Al₂O₃

Figure 1 shows the particle size distribution of Al₂O₃ particles. The Al₂O₃ particles measure about 1 µm and range in size between 0.3 and 3.6 µm. The added Al₂O₃ particles were dispersed by a magnetic stirring apparatus located at the bottom of the container.

Current-time response

The current-time response of the TMP and TMPAl coatings are shown in Figure 2; three main regions [19] can be identified in both curves. The current-time curves initially declined linearly, gradually decreasing in volume. Many micro-arc pores were filled, and a denser coating was formed. A much lower current was also observed.

Weight gain, thickness, roughness, and hardness of the coatings

Figure 3a shows the weight gains and thickness of the coatings prepared in different electrolytes. The weight of TMPAl increased by about three times that of TMP because of addition of Al₂O₃ particles to the electrolyte. The absorbed Al₂O₃ particles are responsible for the weight gain. However, not much difference in thickness was observed between the coatings. The Al₂O₃ particles absorbed in the coating improved its compactness, thereby leaving the coating thickness unaffected. The weight gain and thickness data indicate that TMPAl is more compact than TMP.

Figure 3b displays the hardness and roughness of the coatings. The hardness only slightly changes. As the hardness of a ceramic is usually affected by crystal texture, grain orientation, and grain size, no serious difference was noted between TMP and TMPAl, and both of the coatings exhibited similar crystal textures and grain sizes. However, the roughness of the TMPAl coating decreases from 4.5 µm to 3.5 µm with respect to that of TMP. Thus, coating roughness can be decreased by Al₂O₃ particle addition to the electrolyte. Lower current of TMP at the stable period causes the sparse and small micro-arc reaction that leads to the gentle structure of the corresponding coating. Hence, the roughness of TMP slightly decreased.

Macroscopic surface morphologies of the coatings

Figure 4 displays the digital images of the coatings prepared with and without Al₂O₃ particles in the phosphate solution. Both coatings exhibited uniform macroscopic surface morphology. However, the colors of TMP and TMPAl are light gray and iron gray, respectively.

Microscopic surface morphologies of the coatings

The microscopic surface morphologies of the coatings are depicted in Figure 5. Many micron-sized pores [21,22] generated by the micro-arc reaction are observed on the surface of TMP, whereas a few pores exist on the TMPAl surface. The micro-arc occurs at applied voltages above the breakdown voltage of the gas layer enshrouding the substrate.
in Figure 6 for energy dispersive spectroscopy (EDS) ANSYS. Many microparticles appeared attached and covering the coating surface. Table 2 shows the EDS results of point A and B. A dense area was noted at around point A, mainly composing of O, Al, Ti, and a small amount of P. P originates from the electrolyte after firing at high temperatures caused by micro-arc [23]. Al mostly comes from the added Al₂O₃ particles in the electrolyte. O is contributed by the Al₂O₃ particles and the oxidation of Ti. The determined levels of O, Al, and Ti conform to the composition of Al₂O₃ and TiO₂. Hence, the composition of point A resembles those of Al₂O₃, TiO₂, and the combination of Al₂O₃ and TiO₂.

Point B, which appears to correspond to an added Al₂O₃ particle, appears to be composed of O, Al, Ti, and some P. Compared with that in point A, the content of Ti in point B is apparently low. By contrast, the relative amounts of O, Al and Ti also resembles the composition of Al₂O₃ and TiO₂. And, the main composition is Al₂O₃, so the point B can be concluded to the Al₂O₃ particle.

Section morphologies of the coatings

Figure 7 reveals the section morphologies of the coatings. The existence of both porous and dense layers considered to be typical of...
the MAO coating structure [24] was noted in TMP, whereas a uniform layer was observed in TMPAl.

In MAO processes, temperatures generated by the micro-arc reaction can reach 4000 K [20]. When this event occurs, the surrounding material (mainly a TiO2 ceramic) is melted and sputtered. As the micro-arc disappears and the electrolyte cools, the melted material begins to solidify to form volcano-like pores. The micro-arc reaction is also produced inside the coating because of the high voltage, thereby producing internal pores. With the increase in reaction time, the quantity and intensity of the micro-arc on the surface decreases. The oxygen penetrates the coating through a discharge channel to reach the surface of the Ti substrate and form titanium dioxide, which constitutes the dense layer.

The moving Al2O3 particle is adsorbed on the sample surface and penetrates into the melting material [25]. The melting points of titanium dioxide and aluminum oxide both approach 2100 K; thus, penetrating Al2O3 fuses and solidifies with the melting TiO2. Two theories may explain the dense-layer formation with Al2O3 addition. The first conjecture proposes that the volume increases with the particle addition and aids help in filling the pores. The other hypothesis suggests that the decrease in current with Al2O3 addition to electrolyte under the same parameters reduces the quantity and intensity of the micro-arc. As free pores form in the entire process, less pores form inside the coating, and less micro-arc discharge is generated internally.

The elemental distribution across the TMPAl coating cross section is depicted in Figure 8. Similar to the EDS results in Table 2, a small amount of P was found in the cross section. The elemental composition of the TMPAl coating on the surface to a thickness of 10 μm constitutes Ti, O, and Al in stable values. From 10 μm to nearly 20 μm deeper into the coating, Ti content gradually increases to the Ti content in the Ti6Al4V substrate. By contrast, the Al and O contents gradually decrease to the contents of Al and O in Ti6Al4V, respectively.

Coating phases

Figure 9 shows the XRD patterns of TMP, TMPAl, and their oxidized counterparts. The main phase of the coating prepared in sodium phosphate solution without Al2O3 particles correspond to metastable anatase TiO2, at low temperature, thermodynamically stable rutile TiO2, at almost all temperatures, and Ti (Figure 9c). These results are similar to that previously reported [26]. During the MAO process, the anode Ti6Al4V is oxidized to form anatase TiO2, part of which transforms to rutile TiO2 under the high temperatures produced by the micro-arc discharge. Furthermore, the discharge channel promotes the migration of Ti in the substrate to the coating. With increasing coating thickness, the previously formed coating becomes calcined and sputtered, allowing the transfer of some of the Ti in the substrate to the coating. After oxidation at 700°C for 100 h, Ti oxidizes to titanium dioxide (Figure 9c). As the transformation temperature of anatase TiO2 to rutile TiO2 is reached at 600°C, much more rutile TiO2 is found.

The main phase of the coating prepared in sodium phosphate solution with Al2O3 particles constitute Al2TiO5, Ti, and some anatase TiO2 (Figure 9b). The reported temperature of the following reaction [27] was 1553 K. During the MAO process, the anode Ti6Al4V is partially decomposed to TiO2 and Al2O3 as shown in the equation below:

\[\text{TiO}_2 + \text{Al}_2\text{O}_3 \rightarrow \text{Al}_2\text{TiO}_5 \]

(1)

High-temperature oxidation of samples

Figure 10 shows the curves of weight gain after oxidation for the coating samples and substrate versus time under isothermal cyclic
oxidation at 700°C for 100 h. After oxidation, the color of Ti6Al4V drastically changes; the brown oxide coating is generated and obtains massive spalling with time. The TMP transforms from light grey to light yellow, whereas the TMPAl changed only slightly. No spalling pieces were found on both TMP and TMPAl after oxidation. Notably, the oxidation kinetics curve of Ti6Al4V follows parabolic kinetics before 30 h because the oxide coating does not spill from the substrate. Then, the curve assumes linear kinetics, as the oxide coating begins to spall gradually. TMP and TMPAl showed good surface morphologies; no piece spilled from the substrate. The weight gains of TMP and TMPAl are 0.78 mg/cm² and 0.60 mg/cm², respectively, illustrating that the coating samples of TMP and TMPAl can both provide good oxidation resistance for Ti6Al4V at 700°C for 100 h. The weight gains of TMP and TMPAl mainly caused by the oxidation of Ti were observed in the coatings. The content of Ti in TMP is substantially greater than that in TMPAl as shown by the contrast in XRD patterns (Figure 7b and 7d). Hence, the weight gain of TMP is much higher than that of TMPAl. The good oxidation resistance properties of TMP and TMPAl are attributed to the phase and coating structure. The main phases of TMP and TMPAl comprise TiO₂, Al₂O₃, and Al₂TiO₅, having low oxygen diffusion coefficients. The structure of TMP contains both porous and dense layers. Although many pores exist in the porous layer, these pores are insufficient, and thus, no channels are available for oxygen to reach the substrate. By contrast, TMPAl possess fewer pores, and consequently, oxygen is much more difficult to pass through the TMPAl coating.

According to the Wagner’s theory of oxidation, oxidation weight gain and oxidation time can be expressed by the following relationship:

\[\Delta W = k_p t \]

where \(n \) is the reaction index, \(k_p \) is the reaction constant (function of temperature), \(\Delta W \) is the weight gain, and \(t \) is the oxidation time. The method of linear regression was adopted to fit the curve and calculate the reaction index and reaction constant. The fitting equation is shown in Table 3.

From the value of \(n \) in Table 3, continuous oxidation is used to describe the oxidation of the Ti6Al4V substrate as the oxidation film spalls off with time. Linear oxidation occurs on the TMP coating, whereas parabolic oxidation takes place on the TMPAl coating. Hence, the TMPAl coating can provide better anti-oxidation protection for Ti6Al4V than TMP in the long term.

Thermal shock of coatings

The surface macro-photograph of the coating samples is exhibited in Figure 11 after 30 times of thermal shock testing at 850°C. A large area of TMP peeled off, whereas some scattered oxidation points are displayed on the surface of TMPAl. These points indicate that the thermal shock resistance of the MAO coating prepared in sodium phosphate solution can be improved by the addition of appropriate Al₂O₃ particles in the electrolyte. The thermal shock property is used to describe the anti-thermal shock property of some coatings and the adhesion between the coating and substrate. The coating with high thermal expansion coefficient easily cracks with strong thermal stress. The thermal expansion coefficient disparity between the coating and substrate can cause the peeling from the substrate. The thermal expansion coefficient of TiO₂ and Ti₆Al₄V are 9 × 10⁻⁴ and 8.6 × 10⁻⁶ m/K, respectively, whereas that of Al₂TiO₅ is about 1.5 × 10⁻⁶ m/K [28]. The thermal shock test showed that the coating of TMP spills more severely than TMPAl, which is attributed to the higher thermal expansion coefficient of TiO₂ than that of Al₂TiO₅. Although a large gap in thermal expansion coefficient exists between Al₂TiO₅ and Ti₆Al₄V, the metallurgical bond between the coating and substrate can be protected from spalling. Moreover, during the coating preparation process, the current of TMP is higher than that of TMPAl. Stronger and more numerous micro-arc discharges are also created in the former than in the latter. Greater stress is generated in the process of repeated calcination, which magnifies the thermal stress and causes the cracking and spalling off of the coating.

Conclusion

Addition of Al₂O₃ particles to a sodium phosphate solution led to the preparation of a slightly porous coating by MAO on Ti₆Al₄V. The Al₂O₃ particles added to solution not only decreased the roughness but also improve the compactness of the coating. Al₂O₃ and Al₂TiO₅ phases combined in the slightly porous structure to provide good anti-oxidation effects at 700°C for 100 h. The low coefficient of thermal expansion of Al₂TiO₅ plays a crucial role in the anti-thermal-shock property of the coating at 850°C for 30 cycles.

Table 3: Fitting oxidation kinetic equations of the Ti₆Al₄V substrate and TMP and TMPAl coating samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(n)</th>
<th>(k_p)</th>
<th>(D)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti₆Al₄V</td>
<td>1.4875</td>
<td>0.2161</td>
<td>1.5562 × 10⁻⁴</td>
<td>(\Delta W = 0.2161t)</td>
</tr>
<tr>
<td>TMP</td>
<td>1.0162</td>
<td>0.008253</td>
<td>5.7177 × 10⁻⁴</td>
<td>(\Delta W = 0.0082t)</td>
</tr>
<tr>
<td>TMPAl</td>
<td>1.9525</td>
<td>0.00752</td>
<td>0.0048</td>
<td>(\Delta W = 0.0075t)</td>
</tr>
</tbody>
</table>

Figure 10: The oxidation kinetics curves of the samples at 700°C for 100 h. (TMP: without particle in solution, TMPAl: Al₂O₃ particle within solution).

Figure 11: Digital images of the coating samples after thermal shock testing at 850°C for 30 cycles. (a) TMP and (b) TMPAl.
Acknowledgments

This work was financially supported by the projects of science and technology foundation of Guangdong province (2016GDASPT-0206), key laboratory of Guangdong modern surface engineering technology (2017GDASCX-0111) and national engineering laboratory for modern materials surface engineering technology (2017GDASCX-0202).

References