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Abstract

A lack of effective immune response against cancer is one of the major risk factors for developing local
recurrence and distant metastases after curative resectional surgery. Prior studies revealed that systemic antitumor
immunity is elicited by radiofrequency ablation (RFA) of tumor lesions, which is mainly considered a palliative
procedure for unresectable tumors or for inoperable patients. Recently, we discovered an oncological benefit that
depends on the adaptive arm of the antitumor immune response when RFA is performed in a neoadjuvant setting
prior to surgical resection in preclinical murine models.

Short Communication
Radiofrequency ablation (RFA) is increasingly being applied to a

broad spectrum of solid malignancies. The principal application of this
procedure has been for local tumor control as an alternative to surgical
resection for unresectable tumors or for inoperable patients. Unlike
surgical resection, however, the ablated tumor remains in situ and
causes a robust inflammatory response.

Recently, accumulating data in preclinical and clinical studies have
further identified an immunomodulatory benefit of RFA [1,2]. A high-
frequency alternating current induces frictional heating, causing
hyperthermic injury to ablated cells followed by coagulation necrosis.
Dying tumor cells provide a source of tumor antigens that are taken up
and presented to cognate T cells by dendritic cells (DC) [1].
Mechanical cell damage also induces strong upregulation of mRNA
and/or protein levels of heat shock proteins and glycoprotein 96 as well
as translocation of nuclear high-mobility group protein B1 (HMGB1)
[3-5] into the cytoplasm of tumor cells. Release of these danger-
associated molecular pattern (DAMP) proteins into the extracellular
space promotes DC maturation, thereby stimulating adaptive
immunity culminating in the priming of tumor-specific T cells [6].
RFA also causes systemic inflammation associated with increased
circulating levels of interleukin-1β (IL-1β), IL-6, IL-8, and tumor
necrosis factor-α (TNF-α) [1,7,8]. In the peripheral or transitional zone
adjacent to the central area of coagulative necrosis, infiltration by
multiple immune effectors including neutrophils, macrophages, DC,
NK cells, and CD3+ T cells has been reported [9-11]. Importantly,
spontaneous regression of distant untreated tumors (abscopal effects)
after the application of local ablative therapy has been reported in
preclinical murine models and cancer patients although the
mechanisms have been unclear [12-17].

Evidence for the immunostimulatory activities of RFA inspired us to
evaluate the potential oncological benefits of RFA as a neoadjuvant
procedure [18]. For these studies we reasoned that the
immunomodulatory activity of RFA could be exploited for therapeutic
benefit by performing RFA prior to surgical resection (pre-resectional

RFA). We tested this hypothesis in preclinical solid tumor models that
represent highly immunogenic tumors (i.e., CT26 murine colon
adenocarcinoma) versus poorly immunogenic tumors (B16.F10
melanoma) [19]. Of note, both these tumor systems are characterized
by minimal infiltration by activated CD8+ T cell populations under
baseline conditions [18-20]. In our proof-of-principle study [18], CT26
and B16.F10 tumor-bearing mice were treated by neoadjuvant RFA 7
days prior to resection to allow sufficient time for an adaptive immune
response to be generated (Figure 1). Experimental procedures were
performed so that there was a high incidence (≥ 75%) of local
recurrence with either monotherapy [18]. In contrast, pre-resectional
RFA significantly delayed tumor growth and improved overall survival
in 60-80% of tumor-bearing mice [18]. Findings that cure rates did not
reach 100% suggest that pre-resectional RFA treatment tips a delicate
balance between tumor escape and tumor elimination in established
cancer nodules.

Several lines of evidence in our published study [18] supported a
model in which the local and systemic benefit of pre-resectional RFA
with respect to improved tumor control and survival is attributed to
inducible immune protection rather than to the cytoreductive activity
of RFA which could theoretically make tumors more amenable to
complete surgical excision (Figure 1) [18]. In this regard, therapeutic
efficacy was shown to be completely abrogated in immunodeficient
mice that are genetically incapable of mounting an adaptive immune
response, formally demonstrating the requirement for an intact
immune system for the antitumor activity of RFA in a neoadjuvant
setting. Infiltration of CD8+ T cells was significantly augmented not
only in the transitional zone of ablated tumor, but also in distant
tumors outside the treatment area and was associated with a significant
increase in the ratio of CD8+ effector T cells-to-CD4+CD25+FoxP3+

regulatory T cells (Treg) within the intratumoral microenvironment
[18]. Notably, this increased CD8+ T cell effector:Treg ratio reflected
overall improvement in intratumoral infiltration by CD8+ effector T
cells whereas Treg localization at the treatment site was unchanged
after RFA [18]. RFA treatment also did not alter infiltration by
myeloid-derived suppressor cells (MDSCs) or M1 and M2
macrophages in ablated tumors or in peripheral lymphoid organs [18].
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Figure 1: Experimental design for the use of RFA in a neoadjuvant
setting in preclinical mouse tumor models [18]. Mice with
established colorectal or melanoma tumors were treated with RFA
for 1 minute. Seven days later mice underwent resection of ablated
tumors. Pre-resectional RFA is proposed to promote activation and
expansion of the pool of tumor-reactive cytotoxic CD8+ T cells in
tumor-draining nodes. While the immunostimulatory effects of
RFA alone do not protect against recurrence, when performed prior
to excisional surgery RFA mobilizes cytotoxic CD8+ T cells to the
local treatment site and remote metastatic sites, allowing them to
execute their cytotoxic functions leading to improved tumor control
and enhanced survival.

We further detected a significant increase in circulating interferon-γ
within 7 days after RFA treatment which is consistent with enhanced
systemic immunity [18]. While we did not observe a change in total
CD4+ T cell infiltration at treatment sites, an important outstanding
question is whether the IFN-γ-producing CD4+ T cell subset
contributes to the efficacy of pre-resectional RFA. A significant
increase in antigen-driven accumulation of CD8+ T cells was further
observed at the treatment site as well as in tumor-draining lymph
nodes [18]. Notably, depletion of a single type of immune cell, the
CD8+ T cell subset, abrogated the antitumor activity of pre-resectional
RFA in distant tumors [18], thus demonstrating for the first time the
requirement for T cell-based adaptive immunity in the abscopal effects
of RFA.

Our findings indicate that RFA performed in a neoadjuvant setting
could offer clinical benefits that might be superior to conventional
neoadjuvant treatments. Several therapeutic modalities such as
radiotherapy, chemotherapy, and/or targeted therapy have been used
for the treatment of locally advanced and/or metastatic solid
malignancies such as colorectal cancer liver metastases. These
treatments, if performed in a neoadjuvant setting, can decrease the size
of the tumor and thereby increase the possibility of obtaining negative
margins at the time of surgery. However, these benefits have come at
the cost of significant treatment-related toxicity. For example,
chemotherapy prior to liver resection for colorectal cancer liver
metastases can cause chemotherapy-associated steatohepatitis,
vascular injury, and idiopathic noncirrhotic portal hypertension
[21-23], which might increase morbidity or mortality after surgical
resection. The duration of treatment varies depending on the regimen,
but neoadjuvant chemotherapy with or without targeted therapy for
colorectal liver metastases often takes weeks-to-months to complete,
and not all the patients can tolerate the regimen. Thus, delaying
surgery and allowing metastatic development in non-responsive
tumors are potential shortcomings. Radiation therapy can also be used
for neoadjuvant, adjuvant, or palliative purposes for several types of

cancers. However, its efficacy is limited by the oxygenation status of
tumors or sensitivity of tumor cells to radiation.

RFA can be performed as a minimally invasive procedure under
radiological guidance without general anesthesia for a wide variety of
tumors and, in contrast to conventional treatment modalities, it is not
limited by intrinsic resistance of tumor targets to therapeutic
intervention. Our data suggest that since it only takes a week for pre-
resectional RFA to induce tumor-specific systemic immunity in solid
murine tumor systems [18], it is not likely to delay definitive surgical
resection in patients, with the caveat that humans mount a robust
immune response in the same time-frame which remains to be
documented. Moreover, a radiofrequency hepatic parenchymal
transection device has been frequently used to control intraoperative
hemorrhage during hepatic resection [24], suggesting pre-resectional
RFA might decrease perioperative bleeding complications. Although
systemic antitumor immunity induced by RFA alone is reportedly
relatively weak, a number of recent studies suggest that there may be
further promise of augmenting the T cell-mediated immune response
by co-administration of immunological modifiers such as cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) blockade [1,25]; depletion
of regulatory T cells [25] or IL-2 [26,27]; or by administration of IL-7
and IL-15 [2], macrophage inflammatory protein-1α [28], heat-
shocked tumor cell lysate-pulsed dendritic cells [4], poxviral vaccines
[17], or CpG-oligodeoxynucleotides [29,30].

Tumor immunogenicity is the dominant feature predicting response
to immunotherapy, and primary and distant metastatic tumor sites
may display different levels of immunogenicity [19]. Our preclinical
studies showing that pre-resectional RFA is effective both in the highly
immunogenic CT26 tumor as well as in the poorly immunogenic
B16.F10 tumor suggest that this regimen could be broadly effective in
tumor types with vastly different immune signatures. Given that RFA
has already been approved for the treatment of multiple cancer types
with minimal morbidity and mortality, our studies support the
translational potential of pre-resectional RFA for patients who have
high risk of local recurrence or distant metastases.
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