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Abstract
The clinical success of cisplatin has stimulated the quest for novel anticancer metallodrugs during the last 

two decades. A major emphasis has been put on copper due to its selective cytotoxicity toward malignant cells. 
This selectivity stems from the hypoxic environment of cancer cells that promotes the reduction of Cu(II) to Cu(I), 
leading a pro-apoptotic oxidative stress. At the current time, two copper complexes have reached clinical assay, 
which paves the road to the first copper-based anticancer therapeutics.
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Introduction
The advent of targeted therapies, i.e., small molecules or antibodies 

that interfere with signaling proteins involved in the etiology of cancer, 
revolutionized the treatment of tumors with an addiction to specific 
oncogenes (e.g., ALK in lung cancer, Bcr-Abl in chronic myeloid 
leukemia, KIT in GIST, EGFR in lung cancer, HER2 in breast cancer 
or MET in liver tumors). However, for many cancers, the progression-
free survival of patients treated with targeted therapy is less than 
one year, which justify for a regain of interest in cytotoxic agents 
including metallodrugs [1]. Indeed, the prevalent success of cisplatin 
in the treatment of various types of cancers has placed organometallic 
compounds on the forefront in the development of anticancer drugs. 
In this quest, copper derivatives hold promising opportunities due to 
opportunities provided by the hypoxic environment that is a hallmark of 
cancer cells coupled with the ability of copper complexes to catalyze the 
formation of Reactive Oxygen and Nitrogen species (ROS and RNS) [2].

Role of Copper in Physiology and in Cancer Physiology
Tumors display a lack of blood vessels that results in a low oxygen 

level, which promotes invasion, metastasis and a metabolic shift to an 
anaerobic process known as the 'Warburg effect' [3]. Gratefully, tumor 
hypoxia can be exploited to develop prodrugs that become activated 
in the reducing environment of cancer cells. In this regard, copper is 
very appealing because it can exist under two different oxidation states 
in cells. The anoxic character of cancer cells promotes the reduction of 
Cu(II) to Cu(I), which is not possible in normal cells and thus provides 
a therapeutic opportunity to target tumors [2]. Cu(I) can catalyze 
the formation of ROS and RNS, to induce a pro-apoptotic oxidative 
stress. In addition, the redox state of copper modulates its affinity to 
ligands: copper(I) is a softer Lewis acid than copper(II) and displays 
a high affinity toward sulfur ligands, whereas copper(II) preferentially 
coordinates to nitrogen and oxygen donors in proteins and DNA [4].

Not only copper salts are much less toxic than platinum derivatives, 
but they are necessary to the organism. Indeed, the physiological 
concentration of copper in the body is highly regulated by several 
mechanisms that involve ceruloplasmin and albumin in the liver to 
regulate blood levels and also copper transporter proteins (CTR1 and 
Cu ATP7A/B) at the cellular level [4]. Due to its ability to oscillates 
between oxidized and reduced states in biological medium, copper 
acts as a co-factor for enzymes involved in energy metabolism 
(cyt. C oxidase), destruction of ROS (superoxide dismutase 1), 

melanin synthesis (tyrosinase), dopamine synthesis (dopamine-β-
hydroxylase), cross-linking of collagen and elastin (lysyl oxidase). 
However, an excess of copper may be toxic also to non-cancer cells 
due to the generation of ROS and NOS, which explains why copper 
homeostasis is highly regulated (Table 1) [5-31]. Importantly, many 
types of tumors accumulate abnormally high concentrations of 
copper, and the concentration of copper in serum is almost doubled 
in breast cancer patients [32-36]. These observations may be explained 
by the involvement of copper in tumor growth and survival through 
several mechanisms. First, copper is essential to angiogenesis, which 
is necessary for tumor growth and metastasis. More precisely, copper 
sulfate induces the expression of HIF-1α, the G-protein estrogen 
receptor (GPER) and VEGF in breast and hepatic cancer cells through 
the activation of the EGFR/ERK/c-fos pathway [37]. Second, copper 
inhibits the apoptosis of cancer cells by binding to the XIAP protein 
to promote its anti-apoptotic activity [38,39]. Third, copper interacts 
with MEK1 to promote the phosphorylation of ERK and oncogenesis 
[40,41]. Fourth, coper activates the pro-survival phosphoinositide 
3'-kinase (PI3K)/Akt pathway [42,43].

Anticancer Copper Complexes
Except for the complexes that are based on the anticancer natural 

product Paullone (Figure 1) [44], a majority of the cytotoxic Cu 
complexes were originally designed for their chemical and physical 
properties [1]. As a consequence, many of them do not exhibit drug-
like properties and significant anticancer effects in vivo.

The synthesis, design, and development of copper complexes as 
anticancer agents have been presented in several reviews over the last 
decade [45-52]. We focus therein on the in vivo anticancer activity of 
this type of drugs and include recent advances, which were not covered 
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Compound Type of rodents/type of tumor/anticancer effect (dose) Reference
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Adult Swiss female albino mice/ EAC cells/ increase in life span of 86% (100 mg.kg-1.d-1 p.o. for 9 days). [5]
Nude mice/ HCT116 cells/ inhibition of tumor growth: of 95 % (5 mg.kg-1. d-1 i.p. for 7 days). [6]
Male transgenic adenocarcinoma of the mouse prostate (TRAMP) model/ significant reduction (∼70%) in the weight of their 
genitourinary tracts (2.5 mg.kg-1.d-1). [7]

Female nude mice / HeLa cells/ reduction in tumor volume of 3.8-fold (7.5 mg.kg-1.d-1 i.p 7 days). [8]
Albinos swiss mice/ EAC cells/ increase in life span of 61% (50 mg.kg-1.d-1 i.p. for 5 days). [9]
Albinos swiss mice/ EAC cells/ increase in life span of 42% (50 mg.kg-1.d-1 i.p. for 5 days). [9]
Male BALB/c nude mice/ Human acute monocytic sarcoma/ 69% inhibition of tumor growth (6 mg.kg-1.d-1 every other day for 6 
weeks; benchmarking: 37 % for 0.5 mg.kg-1.d-1 of cisplatin). [10]

Male C57BL-6 mice/ B16-F10 melanoma/ 87 % inhibition of tumor growth (45 mg.kg-1.d-1 every other day for 3 weeks; 
benchmarking: 80 % for 0.5 mg.kg-1.d-1 of cisplatin). [11]

Female athymic nude mice/ HL-60/ optimal (% T/C)d: 42%/ (3 mg.kg-1.d-1. i.p. for 5 days) (MTD=15 mg.kg-1 i.v and 10 mg.kg-1 i.p.). [12]

Female BALB/c mice/ A549 cells/ reduction of tumour growth > 50% (0.78 μmol Cu kg-1 every 2 days for 26 days). [13]

Female nude mice/ COLO 357 cells/ significant reduction of tumour growth and NF-ĸB activity (25 mg.kg-1 i.v. once every 2 days 
for 10 days).
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BALB/c mice/ DL (106) cells/ increase of lifespan of 267% (10 mg.kg-1 i.p.) (benchmarking: 150 % for cisplatin). [14]
C3H/J female mice/ breast-tumor/ increase of lifespan of 125 % ( mg.kg-1 i.p., 1 injection). [15]
Adult Swiss female albino mice/ EAC cells/ increase in life span of 120% (100 mg.kg-1.d-1 p.o. for 9 days). [16]
Swiss albino mice/ Ehrlich ascites carcinoma/ increase in life span of 52% (50 mg.kg-1 i.p., 6 injections). [17]
BDFl mice/ P388S/ increase in life span of 56 % (200 mg.kg-1 i.p., 3 injections). [18]
Dba mice/ Dalton’s Lymphoma/ increase in tumor-free survivors: 65 % (25 mg.kg-1 i.p., 1 injection). [19]
Wistar rats/ C6 glioblastoma/ significant antiproliferative activity, minimal toxicity (4 mg.kg-1.d-1 i.p. for 2 weeks). [20]
BDF1mice/ P388 leukemia/ increase in lifetime of 64% (10 mg.kg-1.i.p, 1 injection; LD50 = 40 mg.kg-1, LD10=10 mg.kg-1). [21]

Female C57BL/6 mice / breast adenocarcinoma 755/ inhibition of tumor growth: 73 % (24 mg.kg-1.d-1 i.p. for 5 days). [22]
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by previous review. By focusing on in vivo data, we aim at providing a 
critical overview of the most promising anticancer copper complexes.

On the opposite of classical anticancer drugs that display a high 
selectivity for their molecular target, copper complexes affect DNA and 
a myriad of proteins to induce a general toxicity that is lethal to cancer 
cells. Due to its ability to participate in redox reactions, copper is able 
to produce large amounts of ROS through a Fenton-like reaction to 
damage DNA and proteins [50].

Over the last two decades, copper complexes have consolidated 
their place in medicinal chemistry, which is manifested by an increased 
number of compounds that showed their efficacy in animal models of 
cancers (Table 1). Two of these drugs have been examined in clinical trial 
(Figure 2). The first one, elesclomol, synthesized as complex with Cu(II), 
has entered a phase I clinical trial to treat acute myeloid leukemia where 
it displayed a very favorable safety profile, but unfortunately no clinical 
results at the maximal evaluated dose of 400 mg/m2 [53]. This drug has 
also been examined in a phase II trial against ovarian, fallopian, and 
peritoneal cancers [54]. Importantly, it was demonstrated to exert its 
anticancer activity as a complex with Cu(I), indicating that elesclomol 
is in fact a prodrug [55,56]. Regarding its mechanism of action, it seems 
to be similar to other cytotoxic copper chelating compounds based 
on a NCI COMPARE analysis [56]. Elesclomol binds to Cu(II) in the 
serum, which get reduced to Cu(I) once inside cancer cells, where it 

induces DNA double strand breaks and catalyzes the formation of ROS 
in a larger amount that in non-cancer cells, explaining why this drug is 
more cytotoxic to malignant cells than to normal ones [57,58].

Another drug, Casiopeína IIIia has also entered a phase I clinical 
trial against acute myeloid leukemia [59]. This agent induces DNA 
fragmentation and base oxidation, indicating that its mode of action 
involves reactive oxygen species (ROS) generation after copper 
reduction. Recently, Hernández-Lemus and coll. used transcriptomic 
approaches and pathway analysis tools to demonstrate that a novel 
analogue that is ready to start clinical phase I, Casiopeína II-Gly, 
enhances the metabolism of metal ions and block the migration and 
proliferation of HeLa cells [45]. A similar approach was recently 
used to identify metabolic signaling pathways deregulated by a novel 
ruthenium organometallic compound with interesting anticancer 
properties [60]. These works illustrate well how advanced techniques 
in metalloproteomics and system biology are expected to enlighten the 
mechanism of action of metallodrugs in a close future [61].

Conclusion
Preclinical and clinical studies have gathered encouraging evidences to 

endorse the therapeutic potential of copper complexes. The main benefit 
of copper complexes lies on their ability to be selectively reduced as Cu(I) 
complexes in malignant cells to induce cell death. The goal is now to 
move from compounds that were originally designed for their catalytic or 
physical properties to more drug-like compounds that display improved in 
vivo pharmacological properties. One of the challenges to develop this class 
of drugs is to deal with the complexity of their mechanism of action that 
does not involved a single molecular target. Thanks to the development 
of new technologies to explore the effects on every signaling pathway, 
this limitation is under implementation and we expect that more drug 
candidates will be soon examined in clinical trials.
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