
Open AccessResearch Article

Kondo and Miyazaki J Data Mining Genomics Proteomics 2015, 6:2
DOI: 10.4172/2153-0602.1000175

Volume 6 • Issue 2 • 1000175J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

Keywords: Evolutionary trace; Three-dimensional structure; Elon-
gation factor

Introduction
When a protein works, a specific site to bind an ion or a molecu-

le may exist. Identification of binding sites is important to investigate 
how the protein works and binds ions or molecules. In order to identify 
such an important site, it is necessary to prepare a mutant type of the 
protein, whose amino acid residue is mutated into another one, and 
then a difference of binding affinity between the mutant type and the 
wild type is investigated. However, mutating amino acid residues one 
by one takes an amount of time and costs. Therefore, it is effective for 
developing a method to narrow down the amino acid residues.

For electing the candidate sites, there are many computational 
methods, which are based on (i) sequence, (ii) structure and (iii) 
sequence and structure [1-6]. Sequence-based methods usually 
assume that such an important site is conservative against mutation 
and therefore important sites and others should have been mutated in 
different patterns. In order to detect such patterns, various methods 
have been developed [7]. One of the sequence-based methods is a 
method based on Shannon entropy (SE) [8,9]. However, the SE-
based method may have three problems. The first one is that the SE-
based method, in which twenty standard amino acids are regarded as 
characters, does not consider properties of amino acids. Therefore, a 
method based on SE of residue properties [10] or a sum of pairs [11] 
was proposed. The second one is that the SE-based method does not 
consider a background distribution of amino acids. Therefore, other 
information-theoretical method such as relative entropy [12] or Jensen 
Shannon divergence [13] was proposed. The third one is that the SE-
based method, in which a rate of an amino acid is calculated, cannot 
take into account which amino acid is included in a sequence. Therefore, 
some methods based on windowing [13], weighting [14] or phylogenetic 
analysis was proposed. One of the methods based on a phylogenetic tree 
is an evolutionary trace (ET) method [15], which has been extended as 
weighted ET (WET) [16], integer-valued ET (iv-ET) and real-valued ET 
(rv-ET) methods [17]. Additionally, other methods based on phylogenetic 
trees are ConSurf [18] and Rate4Site [19,20] algorithms.

Although a variety of sequence-based methods have been already 
compared each other [13,21], what difference makes a difference is 

difficult to understand because such methods do not be explained 
by an idea. Therefore, we consider a map, a mathematical formula, 
on a multiple sequence alignment (MSA) and aim at constructing 
an exhaustive method. As part of this effort, we propose a method 
currently including some existing methods such as the method based 
on SE or SE of residue properties, the method based on a sum of pairs 
with/without weighting and the iv-ET or the rv-ET method.

Even if a variety of methods are executable, how are the methods 
evaluable? There may exist two approaches: confirmation by site-
directed mutagenesis and visualization onto a three-dimensional 
structure. The former is more consistent with identification of binding 
sites because the latter is verifiable that a site is proximate from ions 
or molecules. In spite of that, the latter has been still used because of 
indefinability of protein functional sites. Therefore, on the basis of 
benchmark sets such as catalytic sites, ligand-binding sites or protein-
protein interfaces [13], the predictive ability has been evaluated. 
However, the latter is immature because of usually conducting 
only a structure [15,22]. This mainly causes two problems. The first 
one is that the latter neglects a protein which binds various ions or 
molecules because an entry in the Protein Data Bank (PDB) [23] does 
not always include all states of the protein structure. The second one 
is that the latter cannot take account of proteins which are derived 
from an ancestor. Therefore, protein structures derived from different 
organisms are incomparable with each other. To solve these problems, 
we consider another map, which measures proximity of amino acid 
residues and ions or molecules, and then two maps are integrated.
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Abstract
So far, in order to predict important sites of a protein, many computational methods have been developed. In the era 

of big-data, it is required for improvements and sophistication of existing methods by integrating sequence data in the 
structural data. In this paper, we aim at two things: improving sequence-based methods and developing a new method 
using both sequence and structural data. Therefore, we developed an originally modified evolutionary trace method, 
in which we defined conservative grades calculated from a given multiple sequence alignment and a proximate grade 
in order to evaluate predicted active sites from a viewpoint of protein-ion, protein-ligand, protein-nucleic acid, protein-
protein interaction by use of three-dimensional structures. In other words, the proximate grade also can evaluate an 
amino acid residue. When we applied our method to translation elongation factor Tu/1A proteins, it showed that the 
conservative grades are evaluated accurately by the proximate grade. Consequently, our idea indicated two advantages. 
One is that we can take into account various cocrystal structures for evaluation. Another one is that, by calculating the 
fitness between the given conservative grade and the proximate grade, we can select the best conservative grade.
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Mathematical Formulation of Mappings of an MSA

Notation of fundamental elements
Let M=(mij ) denote a given MSA and here mij denote an amino acid 

symbol of site j on sequence i in the MSA. Let [ ]1 2, ,....,= t
k k k nkM m m m

be column k on the MSA and we consider a mapping

[ ]: 0,→ ∞xf M .

Mapping by a character type
In this section, we define mathematical formulation of a mapping 

by similarity of the amino acid symbols on i M . Let ∈t
i iM M  denote 

i M at time point t = 1, 2. . . N + 1, where N is a number of internal 
nodes on a phylogenetic tree reconstructed from the given MSA 
(Figure 1A), and be represented by a field of sets. For example, 4

tM ;
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Let there be [ ]: 0,1→x ig M , which here maps to 1 if there 
exists ∈t t

i u iM M which comprises two or more types of characters 
and, in other cases, maps to 0. By ( )t

x ig M  only, 1 5−M M  are 

indistinguishable. If ( )1
x ig M  and ( )2

x ig M  are summed, 1Mand the 
others are distinguishable. If ( )1

x ig M , ( )2
x ig M and ( )3

x ig M are 
summed, 1M and 2M and the others are distinguishable. Therefore, let

( ) ( )
1

:
=

= ∑
T

t
x i x i

t
f M g M                  (1)

Where T=1,2,…N.

As shown in Figure 1B, let [ ]: 0,1→t
x ih M be included in xg  and 

( )t
x ig M  be represented as following three definitions:

( )
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Where τ  is a threshold of ( )t
x ih M ,

( ) ( )2
1:

∈

= ∑
t t
i u i

t t
i x i ut

M Mi

g M h M
M

                   (3)

Where t
i M  is a number of multisets in t

i M  and

( ) ( )3 *:=t t
i x i ug M h M                    (4)

Where  is a multiset which is separated at time point . For 

example, ;

{ }1
4 * , , , , ,=uM R R L R R R
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4 * ,=uM R R

Let A denote a field of sets of amino acid symbols and ⊂i iG M  
denote a field of sets of gaps in 1M . For example, A is definable as

20 {{ },{ },{ },{ },{ },{ },{ },
{ },{ },{ },{ },{ },{ },{ },{ },
{ },{ },{ },{ }}

=A A C D E F G H
I K L M N P Q R
S T V W

Or 
9 {{ , , , },{ , , },{ , },{ , },
{ , },{ , },{ , , },{ },{ }}

=A M L V I H R K S T A G
D E Q N F W Y P C

and t G  is definable as 1 1 2{{ , ,..., }}γ γ γ= G
i i i iG  or 1 2{{ ,},{ ,},...,{ }}γ γ γ=G G

i i i iG  

where G is a number of gaps.

Let ( )X

t
i uh M  be represented as following four definitions:

( )1
: {0( , ; )

1( )

= ∀ ∈ ∃ ∈ ∪ ∈t t
i u i u th M l M X A G l X

otherwise
                                         (5)

where ∪ iA G  is a number of sets in ∪ iA G  and

( ) 0( )1,
1( )∈

∉Χ
=  ∈Χ

∑
t
i u

t
i u t

l Mi u

l
p M X

lM
                                            (7)

Figure 1: A Concept of a mapping by a character type. (A) A concept of f1 
1 5M M−  are comprised of 5 R and 1 L and each character attaches a leaf 
node of a rooted phylogenetic tree under a hypothesis that the evolutionary 
rate is constant. Numbers in ascending order are assigned from the root to leaf 
nodes as time point t. In  f1, after a value in a circle is assigned to i M , values 
in circles are summed. (B) Concepts of xg  and xh  . In xg  after xh  maps 
characters in a square to a value in a triangle, values in triangles are mapped 
to a value in a circle.



Citation: Kondo Y, Miyazaki S (2015) Protein Functional Site Prediction Using a Conservative Grade and a Proximate Grade. J Data Mining Genomics 
Proteomics 6: 175. doi:10.4172/2153-0602.1000175

Page 3 of 10

Volume 6 • Issue 2 • 1000175J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

where t
i uM  is a number of characters in t

i uM  and if ( ), 0=t
i up M X , 

( ) ( ), log ,∪ i

t t
i u i uA Gp M X p M X  is regarded as 0,
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Where max , minS , ( ),S l l and ( ),S l m are the maximum, the 
minimum, a diagonal element and an off-diagonal element in an amino 
acid substitution matrix, respectively, and

( )4 2
1: ( , ) ( )

∈ ∈

= ∑ ∑
t t
i u i u

t
i u t

l M m Mi u

h M s l m w l
M

                                     (10)

where l is a weight of sequence l .

Mapping by a coordinate type

Let 


 denote a set of real numbers and there be 3 3: [0, )× → ∞ e . 
Let 3R ⊂  , 3⊂ Q  and        

( )
( )2,

( , ) : min
∈ ×

= −
r q R Q

e R Q r q                                                  (11)

where 
2

. is an Euclidean norm.

Let us consider structure k, which contains a protein and ions or 
molecules. Let 3⊂ k

i R  denote atomic coordinates of amino acid 
residue i in structure k and 3⊂ kQ  denote atomic coordinates of ions 
or molecules in structure k. Let K denote a number of structures and the 
sequences are aligned. Let { }1 2, ,..., − ⊆K G

i i i iR R R M  denote a set of residues 
in i M  denote a set of residues in i M  and 1 2{ , ,..., }γ γ γ = ⊂G

i i i i iG M  
denote a set of gaps in i M .Let

( ) ( )2
\

: min ,
∈

 =  k
i i i

k k
i i

R M G
f M e R Q                                               (12)

Materials and Methods
Data collection

In UniProtKB/Swiss-Prot release 2015_01 [24], entries which are 
annotated as ‘Classic translation factor GTPase family. EF-Tu/EF-1A 
subfamily’, do not include ‘X’ in the sequence and are not a fragment 
were 984 entries. In the PDB, entries which are referenced from above 
984 entries and are determined by X-ray crystallography were 68 
entries. 14 entries were excluded because of binding an immunoprotein 
[25] and forming a chimeric protein [26-29]. Consequently, as shown 
in Table 1, 54 entries including 103 chains were retained.

Computations of f1 and f2

As N=984 and K=103 in Figure 2, the sequences were aligned by the 

MAFFT 7 program [30]. 477 i M  were extracted because of including 
residues which have coordinate data.

A difference between two sequences was computed by the 
maximum likelihood method [31] using the Jones-Taylor-Thornton 
model [32] as a substitution matrix and the Dayhoff method [33] for 
computing equilibrium frequencies. From all combinations of the 
differences, a phylogenetic tree was written by the unweighted pair 
group method with arithmetic mean [34]. ( )1 if M was computed by 
changing, T, xg , xh , τ , A and i G  For 3h  or 4 ,h the Gonnet matrix 

[35] was used. For 4h , a weight was computed by the Sibbald and Algos 
algorithm [36] and the iteration number was 100,000.

By separating each asymmetric unit, ( )1 if M was computed and, 
in each entry, representative ions or molecules were shown in Table 1. 
However, because of uncertain functions, we excluded the following 
ions or molecules; sodium ion, acetate ion, sulfate ion, ammonium ion, 
sugar (sucrose), di(hydroxyethyl)ether, glyoxylic acid, 5-bromofuran-
2-carboxylic acid, β-mercaptoethanol and water [37-43].

Correlations between f1 and f2

Let ( )1[0, )∞ ⊃ ∋ iF f M  denote a subset of non-negative real 
numbers and a set of ( )1 if M  and be represented as 1 2 ...∋ < < < JF v v v
. Let jt  denote a threshold and satisfy

( )

1

1

( 0)

1,2,...., 1
2

( )

+

< =
 += = −

> =

j j
j

J

v j
v v

t j J

v j J

                                          (13)

Let  denote a cutoff of ( )2 if M  and, in this study, c2=3 Å. Let 
If denote a number of i M  which satisfies ( )

22 >if M c  and It denote 
a number of i M  which satisfies ( )

22 ≤if M c . Let ( )fp jI t  denote a 
number of i M  which satisfies ( )

22 >if M c  and ( )1 ≤i jf M t  and 
( )tp jI t  denote a number of i M  which satisfies ( )

22 ≤if M c  and 
( )1 ≤i jf M t . Let a false positive rate

( )
( ) = fp j

j
f

I t
p t

I
                                                              (14)

a true positive rate

( )
( ) = tp j

j
t

I t
q t

I
                                               (15)

and an area under the curve

( ) ( )
1

1 1
0

1 ( ) ( )
2

−

+ +
=

   = − ⋅ +   ∑
j

j j j j
j

AUC p t p t q t q t                      (16)

Let ( )∋x x iF f M denote a multiset of ( )x if M  and represented as 
1 2 ...∋ ≤ ≤ ≤ I

x i x i x i xF V V V , where I is a number of i M . Let r denote a rank 

function and

( )1 11
2

+ − +
= − +j k n

i x
tr V j                                                  (17)

where 1,2,..., , 1, 2,..., ,= =j I m I 1,2,...,= nk t  and nt is a size of the tied 
rank. Here, a Spearman’s ρ [44] is defined as

( ) ( ){ }2

1 1 11
1 2

1
2

ρ
=
 = + − − ∑ I l m

i ii
T T r V r V

TT
                                  (18)

Where l=1, 2... I, m=1, 2... I, 
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Subfamily Organism PDB ID Resolution Ions or molecules

EF-Tu

Bos taurus, mitochondrial 1D2E
1XB2

1.94
2.20

GDP, Mg2+
Elongation factor Ts mitochondrial

Escherichia coli

1EFC
2HCJ
3U6B
2BVN
4G5G
1D8T
3U6K
1DG1
1EFU
1EFM
3U2Q
2HDN
1ETU
4Q7J
1OB2
2FX3

2.05
2.12
2.12
2.30
2.30
2.35
2.45
2.50
2.50
2.70
2.70
2.80
2.90
2.90
3.35
3.40

GDP, Mg2+
GDP, TAC, Mg2+
GDP, Mg2+
ENX, GNP, Mg2+
Thiomuracin A derivative, GDP, Mg2+
Thiocillin GE2270, GDP, Mg2+
Thiocillin GE2270 analogue NVP-LDK733, GDP, Mg2+
GDP, Mg2+
Elongation factor Ts
GD P
Thicillin GE2270 analogue NVP-LFF571, GDP, Mg2+
GDP, TAC, Mg2+
GDP, Mg2+
Elongation factor Ts, Q replicase
Phe-tRNA, GNP, KIR, Mg2+
GDP, Mg2+

Pseudomonas putida KT2440 4J0Q
4IW3 2.29

2.70
GDP, MES, MPD, Mg2+
Putative uncharacterized protein, GDP, Mg2+

Thermus aquaticus

1EFT
1B23
1TTT
1TUI
1OB5

2.50
2.60
2.70
2.70
3.10

GNP, Mg2+
Cys-tRNA, GNP, Mg2+
Phe-tRNA, GNP, Mg2+
GDP, Mg2+
Phe-tRNA, ENX, GNP, Mg2+

Thermus thermophilus

2C78
2C77
1EXM
4LBW
4H9G
1HA3
4LBV
4LBZ
4LC0
4LBY
1AIP
4V5L
4V5P
4V5Q
4V5R
4V5S
4V8Q
4V5G

1.40
1.60
1.70
1.74
1.93
2.00
2.03
2.22
2.22
2.69
3.00
3.10
3.10
3.10
3.10
3.10
3.10
3.60

GNP, PUL, Mg2+
Thiocillin GE2270, GNP, Mg2+
GNP, Mg2+
GNP, Mg2+
GNP, Mg2+
GDP, MAU, Mg2+
GNP, Mg2+
GNP, Mg2+
GNP, Mg2+ GNP, Mg2+
Elongation factor Ts
16S rRNA, 23S rRNA, Trp-tRNA, GCP, Mg2+
16S rRNA, 23S rRNA, Trp-tRNA
16S rRNA, 30S rpS12, Trp-tRNA, GDP, KIR
16S rRNA, Trp-tRNA, GDP, KIR 16S rRNA, Trp-tRNA, GDP, KIR
16S rRNA, 23S rRNA, Small protein B SMPB, tmRNA , GDP, KIR, 
Mg2+
16S rRNA, 23S rRNA, 30S rpS12, Thr-tRNA, GDP, KIR, Mg2+

aEF1A

Aeropyrum pernix
3VMF
3WXM 2.30

2.30
Peptide chain release factor subunit 1, GTP, Mg2+
Protein pelota homologue, GTP, Mg2+

Sulfolobus solfataricus 1JNY
1SKQ GD P

GDP, Mg2+

eEF1A

Oryctolagus cuniculus 4C0S GDP, Mg2+

Saccharomyces cerevisiae

1F60
2B7C
1G7C
1IJE
2B7B
1IJF

Elongation factor 1Bα
Elongation factor-1 β
Elongation factor 1- β, 5GP
Elongation factor 1- β, GD P
Elongation factor-1 β, GD P
Elongation factor 1- β, GD P

TAC; Tetracycline, ENX; Enacyloxin IIa, GNP; Phosphoaminophosphonic acid-guanylate ester, KIR; Kirromycin, MES;  2-(N-morpholino)-ethanesulfonic acid, MPD; (4S)-
2-methyl-2,4-pentanediol, PUL; Pulvomycin, MAU; N-methyl kirromycin, GCP; Phosphomethylphosphonic acid guanylate ester, 5GP; Guanosine-5′ -monophosphate. 

Table 1: 54 PDB entries of EF-Tu/EF-1A proteins.
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( )
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3 3
1

1

1
12 =

 
= − − − 

 
∑
N

n n
n

T I I t t                                                  (19)

And

( )
2

3 3
2

1

1
12 =

 
= − − − 

 
∑
N

n n
n

T I I t t                                             (20)

where N1 and N2 are numbers of tied ranks in F1 and F2, respectively.

Visualization

( )1 if M , ( )2 if M , AUC and Spearman’s ρ were visualized by the 
matplotlib Python package [45]. A three-dimensional structure was 
visualized by the VMD program [46].

Results
Fitness between f1 and f2

If xg , xh ,τ  and A are same but i G  is different, Table 2 shows that 
when 1=i iG G , the AUC or the Spearman’s ρ is smaller than = G

i iG G . In 
the latter case, Figure 3 shows that when the time point increases, the 
AUC or the Spearman’s ρ tends to increase.

Evaluation of predicted functional amino acid residues by f2

Figure 4A shows that ∈i M M is classifiable in 4 by ( )1 if M and
( )2 if M using a receiver operating characteristic (ROC) curve [47] 

in Figure 4B. Figures 4C and 4D show that the left sides tend to have 
small ( )1 if M  and small ( )2 if M  but the right sides tend to have large 
( )1 if M  and large ( )2 if M .

Discussion
Meanings of ( )1 if M , ( )2 if M , AUC and Spearman’s ρ  are as 

follows. ( )1 if M  becomes small when characters are only diverged in 
near to the root of the phylogenetic tree. ( )1 if M  becomes large when 
characters are diverged in far from the root. ( )1 if M  becomes small 
when at least one amino acid residue in i M  is proximate from an ion 
or a molecule. ( )1 if M  becomes large when amino acid residues in i M  
are not proximate from ions or molecules in all cocrystal structures. If 
the AUC is 0.5, a correlation between ( )1 if M  and being proximate 
and being non-proximate under a cutoff of ( )2 if M  may not exist. If 

the AUC is close to 1, small ( )1 if M  and large ( )1 if M  correlate with 
being proximate and being non-proximate, respectively. If the AUC 
is close to 0, large ( )1 if M  and small ( )1 if M  correlate with being 
proximate and being non-proximate, respectively. If the Spearman’s ρ 
is 0, a linear correlation between ( )1 if M  and ( )2 if M  may not exist. 
If the Spearman’s ρ is close to 1 or -1, ( )1 if M and ( )2 if M  have a 
positive or a negative linear correlation, respectively.

If T=1, 3=xg g , 2=xh h , 20=A A  and 1=i iG G , the method is the 
method based on SE [8]. If T=1, 3=xg g , 2=xh h , 9=A A and 1=i iG G , 
the method is the method based on SE of residue properties [10]. If T=1 
is changed to T=N in the former and the latter, Figure 3 shows that the 
AUC is from 0.5779 to 0.6147 and the Spearman’s € ρ is from 0.0757 
to 0.1241 and the AUC is from 0.5709 to 0.5992 and the Spearman’s 
ρ is from 0.1152 to 0.1405, respectively. Therefore, in the former and 
the latter, distinguishing characters utilizing the phylogenetic tree is 
effective for improving the AUC and the Spearman’s ρ.

If T=1, 3=xg g , 3=xh h and 1=i iG G , the method is the method 
based on a sum of pairs [11]. If T=1, 3=xg g , 4=xh h and 1=i iG G , the 

method is the method based on a sum of pairs with weighting [11]. If 
T=1 is changed to T=N in the former and the latter, Figure 3 shows that 
the AUC is from 0.6083 to 0.6276 and the Spearman’s ρ is from 0.1982 
to 0.1653 and the AUC is from 0.6093 to 0.6211 and the Spearman’s 
ρ is from 0.2263 to 0.1502, respectively. Therefore, in the former and 
the latter, distinguishing characters utilizing the phylogenetic tree is 
effective for improving the AUC but not for the Spearman’s . However, 
in the above case, if 1=i iG G  is changed to = G

i iG G  in the former and 
the latter, Figure 3 shows that the AUC is from 0.6941 to 0.7349 and 
the Spearman’s ρ is from 0.4981 to 0.5650 and the AUC is from 0.6846 
to 0.7335 and the Spearman’s ρ is from 0.4749 to 0.5637, respectively. 
Therefore, in the former and the latter, distinguishing characters 
utilizing the phylogenetic tree and considering that each gap is different 
are effective for improving the AUC and the Spearman’sρ.

If T=N, 3=xg g , 1=xh h , 
20=A A and 1=i iG G , the method is the 

iv-ET method [17]. If T=N, 3=xg g , 2=xh h , 20=A A  and
1=i iG G

, the method is equivalent to the rv-ET method [17]. If 1=i iG G  is 
changed to = G

i iG G  in the former and the latter, Table 2 shows that 
the AUC is from 0.5896 to 0.6242 and the Spearman’s ρ is from 0.1221 
to 0.3650 and the AUC is from 0.6180 to 0.7417 and the Spearman’s ρ 
is from 0.1308 to 0.5722, respectively. Therefore, in the former and the 

Figure 2: Computations of f1 and f2. (A) N sequences and K structures are 
extracted from the Swiss-Prot and the PDB, respectively. After all the sequences 
are aligned, ( )1 if M  and ( )2 if M  are computed by (B) and (C), respectively. 
(B) After a phylogenetic tree is written from sequences, ( )1 if M is computed. 
(C) In structure k, k

i R  and kQ  denote coordinates of an amino acid residue and 
coordinates of ions or molecules, respectively. After proximity of k

i R  and kQ  is 
measured as ( )2 if M and computed on K structures, ( )2 if M  is computed.
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gx hx A i G τ AUC Spearman's ρ

g1

h1

20 A
1
i G
G
i G

0<τ  <1
0<τ  <1

0.5896
0.6242

0.1221
0.3650

9 A
1
i G
G
i G

0<τ  <1
0<τ  <1

0.5700
0.6184

0.1015
0.3509

h2

20 A
1
i G

0.1
0.2
0.3
0.4

0.6036
0.6376
0.6420
0.6120

0.1436
0.1977
0.2015
0.1585

G
i G

0.1
0.2
0.3
0.4

0.7207
0.7412
0.7374
0.7037

0.5566
0.5773
0.5613
0.5028

9 A
1
i G

0.2
0.3
0.4
0.1

0.5757
0.6023
0.6151
0.5885

0.1171
0.1659
0.1715
0.1160

G
i G

0.1
0.2
0.3
0.4

0.6997
0.6984
0.7084
0.6854

0.5185
0.5097
0.5063
0.4797

h3 A

1
i G

0.1
0.2
0.3
0.4

0.5901
0.6052
0.6366
0.6391

0.1288
0.1467
0.2315
0.2763

G
i G

0.1
0.2
0.3
0.4

0.6758
0.6975
0.6905
0.6865

0.4474
0.4734
0.4823
0.4922

h4 A

1
i G

0.1
0.2
0.3
0.4

0.5872
0.5939
0.5916
0.5995

0.1200
0.1387
0.1460
0.1733

G
i G

0.1
0.2
0.3
0.4

0.6602
0.6805
0.6888
0.6782

0.4162
0.4470
0.4599
0.4675

g2

h1

20 A
1
i G
G
i G

-
-

0.5916
0.7399

0.0718
0.5780

9 A
1
i G
G
i G

-
-

0.5652
0.7020

0.0587
0.5145

h2

20 A
1
i G
G
i G

-
-

0.6180
0.7417

0.1308
0.5722

9 A
1
i G
G
i G

-
-

0.5890
0.7012

0.1257
0.5091

h3 A

1
i G
G
i G

-
-

0.6225
0.7287

0.1579
0.5517

h4 A

1
i G
G
i G

-
-

0.6138
0.7265

0.1412
0.5501
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g3

h1

20 A
1
i G
G
i G

-
-

0.5792
0.7386

0.0378
0.5801

9 A
1
i G
G
i G

-
-

0.5655
0.7052

0.0501
0.5244

h2

20 A
1
i G
G
i G

-
-

0.6147
0.7393

0.1241
0.5723

9 A
1
i G
G
i G

-
-

0.5992
0.7059

0.1405
0.5170

h3 A

1
i G
G
i G

-
-

0.6276
0.7349

0.1653
0.5650

h4 A

1
i G
G
i G

-
-

0.6211
0.7335

0.1502
0.5637

Table 2: Correlations between f1 and f2.

Figure 3: Dependence on time points. The time point is T in Eq. (1). (A) (B) AUC and (C) (D) Spearman’s ρ  were computed using xg  , xh  , A and iG  as 
shown in the figures.
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Figure 4: A scatter plot, an ROC curve and three-dimensional structures. ( )1 if M was computed using 2g , 2h , 20 A  and G
i G  (A) A scatter plot of ( )1 if M  and 

( )2 if M  However, one point whose ( )1 468f M  122.2 and ( )2 468f M  45.56 was not shown. i M M∈  was classified into 2 by whether ( )2 if M  is equal to or smaller 
than 3 Å or larger than 3 Å. (B) By regarding the former as true and the latter as false, the ROC curve was written using ( )1 if M  The threshold was determined so 
that (true positive rate + 1 − false positive rate) is maximum and, eventually, M M∈  was classified into 4, which were visualized onto three-dimensional structures 
of (C) Thermus thermophilus EF-Tu [42] and (D) Saccharomyces cerevisiae EF1A [48].

latter, considering that each gap is different is effective for improving 
the AUC and the Spearman’s ρ Thus, ( )1 if M  is evaluable by ( )2 if M  
and our methods improved some existing methods.

EF-Tu/EF-1A proteins are responsible for protein biosynthesis 
[42,48] and we selected cocrystal structures involving the function. 
Therefore, if ( )2 if M  is small, an amino acid residue in i M is 
proximate from a region involving protein biosynthesis. If ( )2 if M  
is large, the amino acid residues in i M are not proximate from the 
region. Figures 4A, 4C and 4D show the proximate region and the 
non-proximate region and Figure 4B shows that, on the ROC curve of 

( )1 if M , the AUC is 0.742, which indicates that the proximate region 
tends to become small ( )1 if M but the non-proximate region tends to 

become large ( )1 if M In addition, Table 2 shows that the Spearman’s 
ρ is 0.5722, which indicates that ( )1 if M tends to be small if ( )2 if M  
is small and ( )1 if M tends to be large if ( )2 if M c is large. However, a 
complete linear correlation between 

 and ( )2 if M was not obtainable and therefore not all of ( )1 if M  
can explain ( )2 if M . This may indicate that ( )1 if M  and ( )2 if M  
can measure a similar thing each other but cannot always measure 
a same thing and, by ( )1 if M  and ( )2 if M , measurable things such 
as importance for binding ions or molecules or importance for 
maintaining the structure may be different. Thus, from a different point 
of view, ( )1 if M  and ( )2 if M  can evaluate an amino acid residue.
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Conclusions
Methods to map an MSA, which is represented as a character type 

and a coordinate type, were described and we propose two usages. The 
first one is to assess fitness between the first map and the second map. 
The second one is to evaluate predicted functional amino acid residues 
by use of the second map. Our methods show a better performance and 
reliability for functional site prediction of EF-Tu/EF-1A proteins.
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