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Introduction
The study of physical phenomena by means of mathematical 

models is an essential element in both theoretical and experimental 
fields [1-4]. In this paper, there exists a special class of nonlinear wave 
equations that support soliton solutions in nonlinear physical systems. 
Propagating solitons through nonlinear directional fiber couplers is an 
interesting field in optical communication systems [5-8]. This should 
not be surprising because the soliton pulses are used as the information 
carriers (elementary bits) to transmit digital signals over long distances [9].

Recently some analytical solutions and analytical studies for higher-
order nonlinear problems in optical fibers have been investigated 
[10,11]. Signal propagation through the nonlinear coupler can be 
affected by higher-order effects such as third-order dispersion (TOD), 
self-steeping (SS) and stimulated Raman scattering (SRS), which 
describes the propagation of ultrashort pulses. The TOD can make 
the asymmetrical temporal broadening [9], the SS is responsible for 
asymmetrical spectral broadening [12], and the SRS can account for 
the self-frequency shift in the femtosecond regime [5]. Furthermore 
directional couplers composed of waveguides with gain and loss 
regions can be used to realize PT-symmetric optical structures [13-
17]. In this paper, our study focuses on the HNLS equations for such 
couplers. We assume that gain in one waveguide and loss in the other 
have the same absolute value. We will derive the Hamiltonian of the 
system and investigate its PT-symmetric properties, also we derive the 
equilibrium points and discuss about stability.

Theoretical Equation
The PT-symmetric coupler with gain in one waveguide and loss in 

the other one has been studied theoretically and experimentally [16]. 
Since nonlinear directional couplers have two identical cores with gain 
in one waveguide and loss in the other, by considering the ultrashort 
pulse condition which causes the existence of three higher-order 
effects, the coupled equations for propagating pulses can be extended 
to the following higher-order nonlinear coupling equations: 

iuz+α1uττ+α2|u|2 u+iϵ[α3uτττ+α4u (|u|2 )uτ+α5 (|u|2 )τ]= −v–iγu

ivz+α1vττ+α2|v|2 v+iϵ[α3vτττ+α4v(|v|2 )vτ+α5v(|v|2)τ]= −u–iγv           (1)

Where u and v represent the slowly varying envelops, z and τ are 
variables for propagation direction and retarded time respectively, ϵ 
is the ratio of the width of spectra to the center frequency. α1, α2, α3, 

α4 and α5 are group velocity dispersion (GVD), self-phase modulation 
(SPM), TOD, SS, and SRS coefficients respectively, which are real 
parameters. For analysis of the coupled equations, an assumption of 
the following form is considered:

u (z,τ)=expi(Ωz -θ) U (z,τ), ν(z, τ)=expi(Ωz) v (z, τ)	 	                (2)

Where θ is a constant angle satisfying:

sin θ=γ	  				                     (3)

and Ω is a real parameter.

By applying U=V ≡ ϕ eqn. 1 reduce into:

iϕz+(α1−ϵα3Ω)ϕττ+(α2−ϵα4Ω)|ϕ|2 ϕ+iϵ[α3ϕτττ+α4|ϕ| ϕτ+α5ϕ(|ϕ|2 )τ ]

+[−α1Ω2+ϵα3Ω
3+Ω−a2]ϕ=0 			                (4)

Where a2=Ω−cosθ. In order to make eqn.4 look like Kodama and
Hasegawa derived general HNLS equation [18,19], we obtain:

η1=(α1−ϵα3Ω) 

η2=(α2−ϵα4Ω) 

η3=α3

η4=α4 

η5=α5

(−α1Ω2+ϵα3Ω3+Ω−a2)=0

By substituting these changes eqn.4 is reduced into

iϕz+η1ϕττ+η2|ϕ|2 ϕ+iϵ[η3ϕτττ+η4|η|2 ϕτ+η5u(|ϕ|2 )τ ]=0	                    (5)

By using the traveling wave transformation

ϕ(z, τ )=q(λ)exp(iθ), λ=b(τ−cz), θ=kτ−ωz 		               (6)
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Where b, c, m and ω are real constants and ϕ(λ) is a real value 
function of λ, eqn. 5 is transfered into the following form:

i [ b 3 ϵ η 3 q ′ ″ + b ϵ ( η 4 + 2 η 5 ) q 2 q ′ − ( b c − 2 b k η 1 + 3 b k 2 ϵ η 3 ) q ′ 
]+[(b2η1−3b2kϵη3)q″ +(ω−k2η1+k3ϵη3)q+(η3−kϵη4)q3]=0 	                (7).

The prime means the differentiation with respects to λ. Now we 
divide eqn.7 into real and imaginary parts and obtain the following 
equations:

b3ϵη3q′″+ bϵ(η4+2η5)q2q′−(bc−2bkη1+3bk2ϵη3)q′=0	                  (8)

(b2η1−3b2kϵη3)q″+ (ω−k2η1+k3ϵη3)q+(η3−kϵη4)q3=0	                 (9)

Integrating eqn.8 and taking integration constant as zeros gives:

b3ϵη3q″+b(2kη1−3k3ϵη3−c)q+1/3bϵ(η4+2η5)q3=0	                (10)

As we want to have a solution for eqn. 9 and eqn. 10 simultaneously, 
we should have the following relations for k and ω:

1 4 2 3 1 5

3 5

   3   2
6  

k η η − η η + η η
=

η η
 			                  (11)

( ) ( )2 2
1 1 3 2

3
3

 2k   c  8k  
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k c k

η − η + η
ω = + + η

η





	                 (12)

Then the system equations are reduced into the ordinary differential 
equations as follow:

with

β1q″+β2q+β3q
3=0				                   (13)

( )2
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1
5

b 3   
=             
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η

 			                  (14)
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η η − η η + η η − η
β = − η η − η η ×

η η




 (15)

Introduce M ≡ q and N ≡ qλ, substitute into eqn.13, two-
dimensional independent systems are obtained:

M′=N, 32 3N     M-  M     
1 1 

β β′ =
β β

 			                 (16)

reach the Hamiltonian function as:

( ) 2 2 42

1

1 3M,  N   N   M     M . 
 2 2 4 1

H β β
= + +

β β
	               (17)

PT-Symmetric Hamiltonian
Directional couplers with gain in one waveguide and loss in the 

other can be used to realize PT-symmetric optical structures [20,21].

In quantum mechanics theory the requirement for the Hamiltonian 
to be PT-symmetric is that to commute with PT operators: [H, PT ]=0.

Since the Hamiltonian in eqn. 17 can be written in the usual form 
of in quantum mechanics [14,22,23]:

H=1/2p2+ν (x)					                    (18)

where the p operator is p  i d
dx

= − .

Any Hamiltonian in this form is real and symmetric [13,24,25] and 
the condition of PT-transmission is satisfied by this Hamiltonian. In 
general, for optical structures a necessary condition for a Hamiltonian 
to be PT-symmetric is that the complex potential satisfies: n(x; 
y)=n∗(−x; y) [13]. It means that the absolute value of gain is the same 
as the absolute value of loss, and gain/loss regions should have mirror 

configurations with respect to the central symmetry point [16], which 
is happened in this Hamiltonian. Clearly, Hamiltonian in eqn.17 can be 
realized as a PT-symmetric Hamiltonian.

Stability Analysis
According to the Hamiltonian eqn.17 and the introduced 

parameters M, N in eqn.16, we derive the equilibrium points and 
investigate their stabilities. We have to use the following Jacobian 
matrix of the system: 

2
2 3

22
1

0 1
J = 3 M a

 
 
−β + β 

 β 

 			                  (19)

The corresponding characteristic equation is derived as:

2
3

1

2  3 M 2    0
 

β + β
ρ + =

β
			                  (20)

Simple calculations show that the eigenvalues are:

( )22 3
1

1

  3 M
,2    

β β
ρ

β

− +
= ±  			                    (21)

There are two cases for deriving the equilibrium points which are 
related to the sign of the value under radical in eqn. 21. 

In the first case if 2

3

 0β
≥

β
, only one equilibrium point (0, 0) is 

obtained and the related eigenvalue is:

± 2β−
β3

. If 2

3

 0β
<

β
it is an unstable point and If 

1
2

0num
β >

β
, it 

is a center point.

In the second case if 2

3

0β
<

β
, three equilibrium points (0, 0), 

( ,0)β
β

− 2

3

 and ( ,0)β
β

− − 2

3

are obtained and the corresponding 

eigenvalues are β
β

± 2

3

- ,
1

β
β

± 22
and 

1

β
β

± 22
. As it can be seen, 

the second and third points have the same eigenvalue, so they are 
degenerate.

If 1
2

0num
β >

β
, (0, 0) point is an unstable point where as two other 

points are both centers. If 1
2

0num
β >

β
 (0,0) is a center point and can 

be stable or unstable while two others points both are unstable ones.

Conclusion
In this paper, the stability of an ultrashort pulse in a higher-order 

nonlinear fiber coupler with gain in one fiber waveguide and loss in the 
other one have been studied. Three effects, the third-order dispersion 
(TOD), self-steeping (SS) and stimulated Raman scattering (SRS) are 
considered in the equations. Furthermore we reduced two coupled 
equations to the one nonlinear equation, then obtain the Hamiltonian 
of system. We have shown the Hamiltonian is PT -symmetric.

After that we have obtained the equilibrium points as: (0,0), 

( ,0)β
β

− 2

3

and ( ,0)β
β

− − 2

3

. The second and third points have the 

same eigenvalue which means that they are degenerate. Therefor these 
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points have been investigated under two the conditions, first 
1

0β
β

≥2 , 

there exists an unstable point and two centers. In the second condition

1

0β
β

<2 there exist one center point and two unstable points.
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