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Introduction
During the last decade, the US military has experienced an increase 

in the incidence of traumatic brain injury (TBI) resulting from the use 
of explosive devices by enemy forces [1,2]. The Department of Defense 
(DoD) reported that 273,859 new cases of TBI have been clinically 
confirmed from 2000 to the first quarter of 2013, with mild TBI (mTBI) 
accounting for 82 percent of all cases [3]. Unfortunately, Warfighters 
with TBI are often identified only when moderate or severe head 
injuries have occurred, leaving more subtle mTBI cases undiagnosed. 
The diagnosis of mTBI has been a challenge for the military primarily 
because of the lack of objective assessment tools [4,5], the overlap of 
symptoms with co-morbid conditions such as post-traumatic stress 
disorder (PTSD) [6], and the interpretation of the signs and symptoms 
by healthcare providers relies on self-reported symptoms from injured 
Warfighters [4,7]. Cognitive and neurosensory abilities potentially 
degraded by mTBI are crucial for military personnel in combat since 
their lives and safety depends on accurate and rapid situational awareness 
and perception of the environment. Prompt and accurate diagnosis and 
management of mTBI generally increases an individual’s prognosis 
for neurological recovery [8-10] and safe return-to-duty (RTD) [11-
13]. Premature RTD places Warfighters at greater risk of disability if 
they suffer additional concussive trauma [14]. Consequently, there 
is a quest for objective biomarkers (e.g., protein, imaging, cognitive, 
neurosensory) to accurately diagnose Warfighters with mTBI [5,15]. 
Valid objective biomarkers are particularly important in the combat 
zone to assist deployed clinicians in making an accurate determination 
of fit-for-duty (FFD) and RTD or evacuation from theater [4].

While the pupillary light reflex (PLR) has long been used as an 
indicator of neurological function in severely brain-injured patients 
[16-18], there is no research describing PLR as a potential objective 
biomarker for mTBI. The pupillary examination is the cornerstone 
for the neurological assessment by healthcare providers; however, 
it has relied on the standard manual “swinging flashlight” pupillary 

assessment performed with a penlight. Unfortunately, the manual 
pupillary assessment is highly subjective and does not provide the level 
of accuracy necessary to detect subtle deficits of dynamic pupillary 
function [19-21]. Advances in technology have significantly improved 
the accuracy and repeatability of automated infrared pupillometers 
allowing for precise quantification of pupil dynamics [19,22]. However, 
changes in the PLR have not been systematically characterized as 
a potential biomarker for mTBI. Therefore, the present study was 
designed to identify potential PLR parameters that can serve as 
objective biomarkers for early identification of Warfighters with mTBI. 
More specifically, this study compared eight PLR parameters between 
subacute blast-induced mTBI military personnel and normal controls.

Methods
Subjects

Forty U.S. military personnel participated in this study, equally 
divided in two groups: blast induced-mTBI group and non-TBI group. 
The non-TBI subjects who had deployed, but had no history of TBI 
or concussion were tested at the U.S. Army Aeromedical Research 
Laboratory. The age-matched blast-induced mTBI subjects were 
recruited during the subacute stage, i.e., between 15 and 45 days post-
injury [23], and were receiving medical care at Walter Reed Army 
Medical Center (WRAMC). Subjects in the blast-induced mTBI group 
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had a documented history of mTBI based on the criteria of the American 
Congress of Rehabilitation Medicine: 1) loss of consciousness of no 
more than 30 min; 2) post-traumatic amnesia of no more than 24 hours; 
3) a Glasgow Coma Scale from 13 to 15; 4) alteration of mental stage 
[24]. For this study, “blast-induced mTBI” included mTBI caused by 
improvised explosive devices (IEDs), rocket propelled grenades (RPGs) 
and mortars. Subjects in the mTBI group were enrolled regardless 
the level of symptomatology. The study protocol was approved by the 
U.S. Army Medical Research and Materiel Command Institutional 
Review Board and the WRAMC Department of Clinical Investigation. 
Informed consent was obtained from all volunteers before participating 
in the study. All subjects underwent a comprehensive medical history 
review and eye examination to determine refractive error and ocular 
health using standard clinical procedures [25].

Pupillary Light Reflex (PLR) assessment 

The PLR-200™ (NeurOptics, Irvine, CA) monocular infrared 
pupillometer was used to quantify PLR under mesopic conditions 
(approximately 3 cd/m2). This is an FDA-approved hand-held 
cordless device that measures pupil size and dynamics (Figure 1). 
This pupillometer has a rubber eyecup that was placed over the tested 
eye to standardized stimulus distance and intensity [26]. Monocular 
PLR measurements were taken under binocular viewing conditions. 
The subject was asked to fixate with the non-tested eye on a distance 
target located at 10 feet away to avoid changes in pupil size due to 
accommodation and to prevent recording artifacts by blinking during 
PLR recordings. The PLR was recorded twice in the right eye and 
then twice in the left eye with an interval of about 30 second between 
the first and second recording. The pupillometer presented a 180 
microWatts light stimulus for 167 milliseconds using a 32-frames per 
second sampling rate. Eight PLR parameters were assessed: maximum 
diameter; minimum diameter; percent of constriction; constriction 
latency; average constriction velocity; maximum constriction velocity; 
75% recovery time; average dilation velocity. Figure 2 illustrates a 
schematic of the pupil response curve and PLR recorded parameters 
[27]. The maximum and minimum diameters refer to the diameter of 
the pupil during the resting stage before the light stimulation and at the 
peak constriction amplitude, respectively. The percent of constriction 
indicates the percent of relative constriction, whereas the constriction 
latency indicates the reaction time to constriction onset. The average 
and maximum constriction velocities represent the constricting 
movement of the pupil diameter after the light stimulation. The 75% 
recovery time indicates the total time for the pupil to recover 75% 

of its initial resting pupil size after reaching peak constriction. The 
typical pupillary recovery response after stimulated pupil constriction 
is characterized by an initially brisk dilation followed by a relatively 
slower dilation phase [19]. The average dilation velocity refers to the 
initial brisk phase after the reaching peak constriction. The PLR-200™ 
pupillometer is programmed to record PLR for 5 seconds. 

PLR recordings were automatically saved by the pupillometer after 
each measurement and data were later transferred as an ASCII text file 
to an external computer via an infrared transreceiver. The mean of the 
two readings per eye was used for the analysis. Descriptive statistics 
(mean ± SD) were used to characterize the eight individual PLR 
parameters for the two groups. All significance levels were p < 0.05. 
Statistical analyses were performed with Statistical Package for Social 
Sciences (SPSS) software. 

Results
The current study compared PLR of 20 Warfighters with mTBI 

(14 males and 6 females) during the subacute stage post blast injury 
and 20 age-matched controls (18 males and 2 females) who had 
neither experienced an mTBI nor been exposed to a blast event. The 
participants’ mean (SD) age was 31.2 (7.4), ranging from 20 to 43 
years. All subjects were corrected to 20/20 and had similar spherical 
equivalent refractive error (mTBI -0.49 ± 2.07 D; non-TBI +0.12 ± 0.98 
D; p = 0.25). All subjects, in both groups, had normal pupil response 
and no afferent pupil defect with the manual penlight examination. 
Additional clinical data and demographics for these participants were 
recently reported [25,28]. 

Figure 3 shows images of the typical pupillary response curve for 
the right and left eye for a subject with blast-induced mTBI and an age-
matched control. There was no statistically significant difference for any 
of the PLR parameters between the right and left eye within each group 
based on Student’s paired t-test analysis (Table 1). Consequently, the 
data for the right and left eye were combined for further between-group 
comparison of PLR parameters.

Table 2 summarizes the mean (SD) for the eight PLR parameters 
for the blast-induced mTBI and non-TBI groups. Student’s paired 
t-test showed that four of the eight PLR parameters were statistically 
different between the groups. The constriction latency was higher for Figure 1: PLR-200™ (NeurOptics) monocular infrared pupillometer.

 

Figure 2: Schematic diagram of the pupillary reaction curve illustrating PLR 
recorded parameters: 1) maximum diameter; 2) minimum diameter; 3) percent 
of constriction; 4) constriction latency; 5) average constriction velocity; 6) 
maximum constriction velocity; 7) average dilation velocity; 8) 75% recovery 
time.
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the mTBI group indicating slower reaction time compared to the control 
group. Similarly, the average constriction velocity was slower for the 
mTBI group. In addition, the dilation velocity was slower for the mTBI 
group, and consequently, the time required for the pupil to reach 75% 
of its original size was also slower. There were no significant between-
group differences for mean pupil diameter during the resting state, peak 
constriction, percent of constriction and maximum constriction velocity. 

Discussion
Pupil abnormalities have been found in various conditions such as 

Alzheimer’s disease, opiate withdrawal, headaches, recurrent abdominal 
pain, familial dysautonomia, diabetes, glaucoma, exophthalmos, and 
transtentorial uncal herniation [18,29-35]. To our knowledge, this is 
the first study describing defective PLR in blast-induced mTBI subjects 
during the subacute stage. The results of the present study indicate that 
four of the eight PLR parameters are better suited toward differentiating 
normal subjects from blast-induced mTBI patients. Specifically, the 
average constriction latencies and velocities were significantly slower 
in the mTBI group. In addition, the 75% re-dilation rate and average 
dilation velocity were slower in the mTBI group. The 75% re-dilation 
rate appears to be the most sensitive of the four significant parameters. 
Furthermore, in the majority of the mTBI cases a complete re-dilation 
was not observed in the 5-second recording window for the PLR-200™ 
pupillometer (Figure 3). It is worth mentioning that even though the 
ADV and 75% recovery values are not presented on the pupillary 
response curve summary for the mTBI subjects (Figure 3A) that 
did not completely recover during the recordings time, the stored 
pupillometry quantitative data had these values, which were used for 
the analysis. While PLR is normally expected to be completed within a 
5-second window, PLR can be delayed by neuro-ophthalmic pathology 
or neurological deficit, as shown in this and other studies. While a 
5-second recording window was adequate to detect PLR deficits, longer 
recording times are recommended to accurately characterize PLR re-
dilation deficits in blast-induced mTBI patients.

Figure 3: Images of the typical pupillary response curve for a subject with 
blast-induced mTBI (A) and age-matched non-TBI (B). Note: MAX = maximum 
diameter; MIN = minimum diameter; CON = percent of constriction; LAT = 
constriction latency; ACV = average constriction velocity; MCV = maximum 
constriction velocity; ADV = average dilation velocity; T75 = 75% recovery time.

PLR Parameter

mTBI Non-TBI

OD OS OD OS

Mean (SD) Mean (SD) P Mean (SD) Mean (SD) P
Maximum Diameter (mm) 5.53 (0.76) 5.46 (0.75) 0.22 5.71 (0.74) 5.54 (0.91) 0.08
Minimum Diameter (mm) 3.65 (0.47) 3.59 (0.49) 0.25 3.84 (0.51) 3.72 (0.66) 0.09
Percent Constriction (%) 34.08 (3.40) 34.25 (0.02) 0.42 32.78 (0.33) 33.03 (0.04) 0.34
Constriction Latency (ms) 240.73 (25.73) 237.48 (28.66) 0.27 214.48 (18.31) 209.03 (12.80) 0.17
75% Recovery Time (sec) 4.49 (0.63) 4.46 (0.50) 0.43 1.81 (0.48) 1.72 (0.42) 0.21
Average Constriction Velocity (mm/sec) -3.45 (0.99) -3.72 (0.55) 0.13 -4.13 (0.43) -4.09 (0.51) 0.30
Maximum Constriction Velocity (mm/sec) -4.86 (0.78) -4.96 (0.70) 0.29 -5.18 (1.37) -5.11 (1.49) 0.44
Dilation Velocity (mm/sec) 0.83 (0.41) 0.77 (0.27) 0.28 1.02 (0.17) 1.02 (0.23) 0.48

Table 1: Between-eye comparison of mean PLR parameters for the mTBI and non-TBI groups. OD = right eye; OS = left eye; mTBI = mild traumatic brain injury; PLR = 
pupillary light reflex; minus value indicates a constriction response.

PLR Parameter
mTBI Non-TBI

Mean (SD) Mean (SD) P
Maximum Diameter (mm) 5.50 (0.73) 5.63 (0.79) 0.29
Minimum Diameter (mm) 3.62 (0.45) 3.78 (0.56) 0.14
Percent Constriction (%) 34.16 (2.16) 32.90 (3.09) 0.10
Constriction Latency (ms) 239.10 (24.58) 211.75 (9.51) <0.001
75% Recovery Time (sec) 4.47 (0.48) 1.77 (0.38) <0.001
Average Constriction Velocity (mm/sec) -3.58 (0.61) -4.11 (0.44) 0.003
Maximum Constriction Velocity (mm/sec) -4.91 (0.62) -5.15 (0.99) 0.19
Dilation Velocity (mm/sec) 0.80 (0.27) 1.02 (0.17) 0.001

Table 2: Between-group comparison of mean PLR parameters. mTBI = mild traumatic brain injury; PLR = pupillary light reflex; minus value indicates a constriction 
response. Bold value indicates statistical significance at p < 0.05.
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These results are not surprising given the close relation of the 
pupillary pathways to brain structures. Pupil constriction and dilation 
in response to a light stimulus are controlled by the autonomic 
nervous systems (ANS), specifically, the parasympathetic (PNS) and 
sympathetic nervous system (SNS), respectively [36]. Pupil constriction 
results from an increase in PNS activity and decrease in SNS activity. 
The reverse process is required for pupil dilation. Thus, an equilibrium 
between PNS and SNS is a prerequisite for optimal PLR. Because of 
these dual innervations, PLR deficits could be caused by a defective 
PNS or SNS activation. Therefore, the slower pupil constriction 
parameters and the slower pupil re-dilatation observed in this study 
suggest reduced parasympathetic and sympathetic activity. Additional 
studies of PNS and SNS activity inhibition utilizing pharmacological 
agents will be required to determine the specific ANS mechanism 
affected in mTBI patients. An alternate explanation for the significant 
sympathetic pupillary deficit found on the present study is the presence 
of a neuroendocrine dysfunction (NED). The hypothalamus links the 
nervous and endocrine systems via the pituitary gland. Therefore, it is 
expected that, in addition to the primary damage to the hypothalamus 
and/or the pituitary gland induced by mTBI, the production of pituitary 
hormones will be impacted. In particular, changes in pituitary hormone 
secretion can be observed during the acute phase after TBI as part of the 
adaptive response to the injury [37]. Post-traumatic hypopituitarism 
can result in adrenal insufficiency [38], which can cause decreased 
sympathetic activity and consequently a reduced dilating response. 
Recently, the DoD has placed a strong emphasis in the screening of 
NED on those patients with persistent mTBI symptomatology [39]. 
Additional studies will be needed to correlate indicators of PLR and 
NED. 

It has been established that ANS dysfunction can occur in those 
with mTBI/concussion-type injuries. Increases in heart rate and 
fluctuations in blood pressure have been observed with autonomic 
testing procedures [40]. In addition, variability in heart rate has been 
seen with low/moderate exercise in athletes who have had a concussive 
event [41]. Furthermore, a recent case study of a teenage gymnast three 
weeks post-concussion revealed attention and recall deficits in addition 
to, “sympathetic dysfunction with the absence of a late phase II rise in 
blood pressure with Valsalva, suggesting altered vascular tone and heart 
rate response compared with normal controls” [42]. However, in this 
case study, all the signs and symptoms improved six weeks post-injury 
with physical, cognitive, and emotional rest. 

Despite the defective pupillary dynamics observed in the present 
study, there was no significant difference in the pre-stimulated resting 
pupil size or the peak constriction size for either of the groups. 
Anisocoria (i.e., unequal pupil size) has not been reported in mTBI, 
therefore equal response by the contralateral eye observed in the 
present study is expected and consistent with a previous study involving 
the quantitative evaluation of PNS and SNS control of iris function [31].

While PLR can be affected by systemic and ocular disease processes 
and age, the subjects included in this study were relatively young and did 
not have any other concomitant systemic or ocular disease. In addition, 
subjects were age-matched to control for age-related differences in 
pupil size. 

Digital infrared pupillometry provides an effective method to 
assess ANS control of PLR; it is an objective test, non-invasive, quick 
to perform, accurate causes reproducible measurements, requires 
no specialized training and causes no added discomfort or risk to 
the patient. Its PLR data are retrievable for further analysis and can 
easily transferred to electronic health records. This technology can 

be easily implemented in the operational environment to assess brain 
injuries secondary to combat trauma. It is hand-held, light-weight, 
portable, battery-operated, and relatively inexpensive. Digital infrared 
pupillometry also eliminates the inter-examiner variability inherent 
in the standard penlight technique [19]. In addition, the pupillary 
response curve displayed on the pupillometry screen provides the 
user with an instant visual representation of the defective curve 
(Figure 3). While additional studies are required to standardize the 
use of infrared pupillometry for different conditions, the present study 
suggests that this methodology could be used as the standard of care 
for PLR assessment when suspecting a neuro-ophthalmic disease or 
neurological deficit. If infrared pupillometry is performed during 
pre-deployment evaluations, not only could PLR help with the initial 
ANS assessment, but also to monitor subsequent recovery, or lack of 
recovery, after ANS deficit. 

There were three limitations to this study. First, the small sample 
prevented further analysis of PLR and levels of symptomatology to 
determine which PLR parameters are indicators of continuing pathology 
in asymptomatic individuals, who have presumably recovered from 
their mTBI. Second, the pupils were assessed monocularly, therefore 
no consensual pupillary response was assessed. The assessment of 
consensual pupillary response could potentially identify subtle cases 
of afferent pupillary defect not readily identified through subjective 
manual testing. Finally, PRL measurements were taken over a 5-second 
period. More information about the pupil reflex may have been 
demonstrated if the measurements had been taken over a longer time 
period. 

In conclusion, the evidence presented in this study demonstrates 
the potential application of PLR as an objective index of ANS activity 
and the value of using PLR, in conjunction with other biomarkers, to 
optimize the diagnosis of mTBI in the battlefield and to facilitate the 
RTD decisions by deployed healthcare providers. Consequently, the 
results support the implementation of digital infrared pupillometry 
in the clinical and operational setting. Further research with a 
larger sample size, as well as during different mTBI stages, levels 
symptomatology, and mechanisms of injury (blast vs. non-blast), could 
shed light on the specific PLR parameters to accurately diagnose mTBI, 
monitor recovery, and make RTD determination. Additional studies are 
also needed to correlate PLR and NED screening labs.

Disclaimer
The views, opinions and/or findings contained in this report 

are those of the author(s) and should not be construed as an official 
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in this report does not constitute an official Department of the Army 
endorsement or approval of the use of such commercial items. None of 
the authors has financial or other interest in the PLR-200™ pupillometer 
or any other NeurOptics products.
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