Pyrostegia venusta (Ker Gawl.) Miers: A Botanical, Pharmacological and Phytochemical Review

Nada M Mostafa, Omayma El-Dahshan and Abdel Nasser B Singab*
Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt

Abstract

Objective: Pyrostegia venusta (Ker Gawl.) Miers (Bignoniaceae) has been commonly used in the traditional Brazilian medicine as a general tonic, treating skin infections (leukoderma, vitiligo), as well as a treatment for diarrhoea, cough and common respiratory diseases related to infections, such as bronchitis, flu and cold. This study highlights the botany, traditional uses, phytochemistry and pharmacology of Pyrostegia venusta. Information was obtained from Google Scholar, Scirus, PubMed and Science Direct.

Keywords: Pyrostegia venusta; Bignoniaceae; Traditional uses; Phytochemistry; Pharmacology

Introduction

Family Bignoniaceae is a dicot family, which contains 100-125 genera and 700-800 species [1]. Chemical constituents recognized in the family are naphthoquinones of the lapachol type, iridoid glucosides, alkaloids, flavones, triterpenes, polyphenols, tannins and seed oils [2].

Pyrostegia C. Presl (Bignoniaceae) is a genus of four species. All four species are native to South America [3]. Pyrostegia venusta (Ker Gawl.) Miers, a popular ornamental, is cultivated throughout the tropics, and is native to the Brazilian Cerrado, and popularly known as “cipó-de-são-joão” [3,4].

In the traditional Brazilian medicine, the aerial parts of Pyrostegia venusta are used as infusion or decoction and administered orally as a general tonic, as well as a treatment for diarrhoea, vitiligo, cough, and common diseases of the respiratory system related to infections, such as bronchitis, flu and cold [4,5].

The literature records the isolation of oleanolic acid from both the aerial parts and flowers of Pyrostegia venusta [6]. Oleanolic acid proved to be biologically very important. It has cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, alpha-glucosidase, antimicrobial, hepatoprotective, anti-inflammatory, antipruritic, spasmolytic activity, anti-angiogenic, antiallergic, antiviral activity [10,11]. These results highlight the possible promising activities of Pyrostegia venusta.

Botanical Characterizations

Pyrostegia species are lianas; the most reliable way to identify Pyrostegia venusta is by the disposition of the leaves, the type of inflorescence, the level of the staminode insertion, and the characteristics of the fruits, which according to Pool [3].

Leaves

2-foliolate, often with an apically trifid terminal tendril (the ends rarely branched again, bifid or trifid), or leaves 3-foliolate; petioles densely suberect, pilose in the adaxial canal or glabrous; leaflets ovate (rarely lanceolate), slightly subinequilateral, chartaceous (rarely membranous), 3 to 5 pairs of lateral veins prominent below, densely short-pilose to glabrous, pelliculose, often especially conspicuous abaxially; with large glands in the axils of lower lateral veins, base rounded or truncate (rarely cordate), apex briefly acuminate-mucronulate, or acuminate-mucronulate (obtuse-mucronulate or acuminate).

Inflorescence

A terminal or axillary panicle, generally dense or subcorymbose, with calyces often overlapping in dried specimens; unbranched or 1 or 2 (rarely 3) times branched; peduncle, rachis, and bracteoles nearly glabrous to densely puberulent or pilose; the trichomes initially perpendicular to the surface; calyx excluding denticules at apex, with sparse lepidote scales; glabrous to densely short-pilose to puberulent, apex ciliate; corolla narrow tubular-infundibular, orange or reddish orange (rarely yellow); tube internally sericeous at and below insertion of stamens and staminode, externally glabrous; lobes oblong, puberulent apically and marginally; stamens inserted 1.3-3.5 cm from base of corolla tube, stigma lobes broadly ovate, ovate, orbicular, or broadly oblong.

*Corresponding author: Abdel Nasser B Singab, Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt, E-mail: dean@pharma.asu.edu.eg

Received January 28, 2013; Accepted March 18, 2013; Published March 20, 2013

Citation: Mostafa NM, El-Dahshan O, Singab ANB (2013) Pyrostegia venusta (Ker Gawl.) Miers: A Botanical, Pharmacological and Phytochemical Review. Med Aromat Plants 2: 123. doi:10.4172/2167-0412.1000123

Copyright: © 2013 Mostafa NM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Staminode
 Inserted (rarely 0.8) 1.2-1.6 cm above insertion of higher stamens.

Fruit
 Capsule glabrous; drying with olive cast, midvein apparent, but not conspicuous; base acute; apex aristate.

 Flowers of *Pyrostegia venusta* are typical of those pollinated by humming birds: odorless and the corolla usually bright red-orange, of fairly thick texture, with a narrow tube and wider mouth, and more or less glabrous internally [12].

Distribution
 Pyrostegia venusta is cultivated throughout the tropics and subtropics as a popular ornamental, and possibly naturalizing in some areas [3]. It was included (as *Pyrostegia ignea*) on a list of the most beautiful flowering climbers in the world, and was ranked as the most popular of all in the tropics [13]. In table 1 [3,14-16], the common names for *Pyrostegia venusta* are reported. In table 2 [3], the names and distribution of the four species are presented.

Ethnobotanical studies

 Pyrostegia venusta is a native Brazilian plant, which has been used in traditional folk medicine as a remedy for treating white patches and infections on the skin (leukoderma, vitiligo) [17,18].

 Native Brazilians use the aerial parts of *Pyrostegia venusta* for the treatment of cough and common diseases of the respiratory system related to infections, such as bronchitis, flu and cold. They administer its decoction orally as a general tonic, and also as an infusion to treat diarrhea, vitiligo and jaundice [4,5,9,19]. Tonics made from the stems of this plant are useful for the treatment of diarrhea, whereas flower preparations have been shown to attenuate vomiting [4,5].

<table>
<thead>
<tr>
<th>Country</th>
<th>Common names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Cipo de Sa'o Jo'a'o, Cipo Callibu, Cipo Tinga, Dedo de Moca</td>
</tr>
<tr>
<td>Argentina</td>
<td>Pico de Tuca', Flor de San Juan</td>
</tr>
<tr>
<td>Peru</td>
<td>Luvia de Oro</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Chilote', Chorro de Oro', Chorro'</td>
</tr>
<tr>
<td>El Salvador</td>
<td>San Carlos</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Triquilarque</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>Flame Flower, Flaming-Trumpet, Golden-Shower</td>
</tr>
</tbody>
</table>

The names marked with a correspond to the source *Bignoniaceae* [14]. The names marked with b correspond to the source *Bignoniaceae*, in Flora of Guatemala [15]. The names marked with c correspond to the source *Pyrostegia*, a Concise Dictionary of Plants Cultivated in the United States and Canada [16].

Biological studies

 A summary of some of the relevant literature is given in table 3, and discussed in the following section.

Antioxidant activity

 The antioxidant potential of the flowers and roots of *Pyrostegia venusta* were evaluated using 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2', 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays. The reducing ability of both extracts was in the range (in μm Fe(II)/g) of 112.49-3046.98, compared with butylated hydroxytoluene (BHT; 63.56 ± 2.62), catechin (972.02 ± 0.72 μm) and quercetin 3208.27 ± 31.29. A significant inhibitory effect of extracts of flowers (IC_{50}=0.018 ± 0.69 mg/ml) and roots (IC_{50}=0.026 ± 0.94 mg/ml) on ABTS free radicals was detected. The antioxidant activity of the extracts of flowers (95%) and roots (94%) on DPPH radicals was comparable with that of ascorbic acid (98.9%) and BHT (97.6%) [5].

Treatment of sickness behavior

 A study was conducted to evaluate the effects of a hydroethanolic extract of flowers of *Pyrostegia venusta* on sickness behaviors induced by lipopolysaccharide in mice. *Pyrostegia venusta* extract attenuated the depressive-like and exploratory behaviors induced by lipopolysaccharide. These results supported the previous claims of the usefulness of these plants in traditional therapies, and suggest that these plants may be useful in the treatment of disorders that induced sickness behavior, such as flu and cold [4].

Estrogenic activity

 In recent years, the tea from the plant, *Pyrostegia venusta*, has been used to reduce the symptoms of menopause. However, the active ingredients in this extract are found in rather low concentration. Plant tissue culture represents an alternative for the generation of plant extracts with higher concentration of metabolites [20].

Genotoxic activity

 The genotoxic effect of extracts of *Pyrostegia venusta* was evaluated in mice, using the micronucleus (MN) and chromosome aberration tests (CA). The experimental groups received different concentrations (50, 100, and 200 mg/kg body weight) orally. Frequency of micronucleated polychromatic erythrocytes (MNPCE) of experimental controls was significantly lower, when compared with negative control group receiving water, and was statistically lower than that of positive control group receiving Ciclophosphamide. *Pyrostegia venusta* did not show genotoxic activity [21].

Anti-inflammatory, antinociceptive and wound healing activities

 Pyrostegia venusta hydroethanolic extract (PvHE) was used to...
evaluate the anti-inflammatory and analgesic effects in carrageenan-induced paw edema, peritonitis induced by lipopolysaccharide. PvHE at doses of 30–300 mg/kg orally demonstrated an anti-inflammatory effect. PvHE reduced paw edema induced by carrageenan and inhibited leukocyte recruitment into the peritoneal cavity. The extracts also showed antinociceptive activity in acetic acid-induced writhing and formalin-induced paw-licking tests in Swiss male mice tests [22].

Methanol extracts of *Pyrostegia venusta* flowers were studied for wound healing efficiency, along with its effect on pro-inflammatory and anti-inflammatory cytokines, which was assessed using excision and incision model of wound repair in Wistar rats. Healing was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content. The results indicated that *Pyrostegia venusta* extract has potent wound healing capacity, as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also correlative with the healing pattern observed [18]. *In vivo* antioxidant activity was performed to understand the mechanism of wound healing potency. It was found that during early wound healing phase, TNF-α and IL-6 level, were found to be up regulated by *Pyrostegia venusta* treatment [18].

Antimicrobial activity

Pyrostegia venusta methanol extract was evaluated for its antibacterial activity, using agar-diffusion method against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Salmonella typhimurium*, *Shigella sonnei*, *Klebsiella pneumoniae*, *Escherichia coli*, and *Bacillus cereus*. According to the results of the agar diffusion assay, *Pyrostegia venusta* extract showed antibacterial activity against all bacteria tested [23].

Antimicrobial activity of the flower extract against twelve microorganisms was assessed. *Pyrostegia venusta* extract exhibited moderate antimicrobial activity against the organisms: *Bacillus subtilis*, *Staphylococcus epidermidis*, *Staphylococcus pyogenes*, *Staphylococcus aureus*, *Micrococcus luteus*, *Enterobacter aerogenes*, *Salmonella typhi*, *Pseudomonas aeruginosa*, *Candida albicans*, *Aspergillus niger* and *Candida tropicana* [18].

Melanogenic activity

Recently, the melanogenic activity of hydroalcoholic extracts from the leaves and flowers of *Pyrostegia venusta* on murine B16F10 melanoma cells was investigated; both extracts, leaves (0.1; 0.3; 1 and 3 μg/mL) and flowers (0.03 and 0.1 μg/mL) increased the melanin content in a concentration dependent manner, after 4 days of incubation on melanoma cells. Also, cell viability was tested by using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay in murine B16F10 cells, and showed that in the same tested concentrations of both extracts, no cell death was detected. Both extracts were also evaluated for the mushroom tyrosinase activity in vitro. Actually, either extract was not able to cause any change in the tyrosinase activity [17].

Chemistry

Phytochemical screening revealed the presence of terpenoids, alkaloids, tannins, steroids, and saponins [5]. Compounds identified upon in-depth phytochemical study of *Pyrostegia venusta* constituents.
Figure 1: Representatives from different classes of compounds isolated from *Pyrostegia venusta*. Isolated from *a* the root [9], *b* leaves and flowers [17], *c,d* flowers [5,8], *e* stem bark [24], *f* leaves [25], *g* both aerial parts and flowers [6], *h* aerial parts [6].
Pyrostegia venusta is one of the most popular and beautiful flowering climbers in the world. It has been used in Brazil as a traditional medicine throughout history. It is considered a natural source of antioxidants, containing significant amounts of phytochemicals with antioxidative properties, that could serve as inhibitors or scavengers of free radicals. Pyrostegia venusta could be a potential source for plant-based pharmaceutical products, and could form a sound basis for further investigation in the potential discovery of new natural bioactive compounds.

Pyrostegia venusta extracts have been used in the treatment of different skin diseases, it may be useful in the tropical management of wound healing. The mechanism could be attributed to increased wound contraction, tensile strength, hydroxyproline, hexosamine and cytokine content, along with antioxidative and antimicrobial activities. These healing properties could be associated with activities of isolated compounds reported in Pyrostegia venusta, such as oleanolic acid, which has shown wound healing properties in tests performed in vivo. Pyrostegia venusta can be also used in the treatment of hypoglycemia in murine B16F10 melanoma. J Ethnopharmacol 141: 1005-1011.

The author(s) declare(s) that they have no conflicts of interest to disclose.

Funding
This review received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

