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Abstract

Near-native protein structure prediction through Template Based Modelling (TBM) has been a major realistic goal of
structural biology for several years. The TBM algorithms require the best-set of templates for a target protein sequence
to maximally cover it and construct its correct topology. However, the accuracy of such prediction algorithms suffers from
the algorithmic and logical problems of our template search measures which fail to quickly screen reliable structures for
a target sequence. In this study, we employ the culled PDB95 dataset of 41,967 templates to predict the CASP10 target
T0752 models for assessing the efficiency of the usually employ search engines PSI-BLAST and HHPred. Our analysis
presents a detailed study in order to open new vistas for improving the accuracy of TBM prediction methodologies. It
reveals weaknesses of most popular template search measures and thereby briefly provides a significant insight into
the qualities of a foreseen template search algorithm to illustrate the need for a more reliable template search algorithm.
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Introduction

At molecular scale in life, proteins are the major functional
molecules and are considered the building blocks of all life forms on
earth. Smooth mapping of functional network of proteins in a cell so
calls for the knowledge of their detailed structural conformation.

Currently (as of April 12th, 2016), 117,651 experimental protein
structures have been released by the Protein Data Bank (PDB), while
another 11,484 structures have been submitted and are awaiting release
[1]. However, this number of structurally characterized proteins is
way undersized when compared to 550,740 annotated sequences
in UniProtKB/Swissprot database and 63,039,659 sequences in the
entire UniProtKB/TrEMBL database. Even after removing the inferred
homologous sequences from this database, the remaining 62,488,619
sequences also exceed the total count of their experimentally solved
structures. So a major count of protein sequences does not have their
experimental structures determined and this sequence-structure gap
has been constantly increasing despite the development of dedicated
X-ray crystallography pipelines. It has lastly inspired us to exploit the
existing set of already solved protein structures as templates through
TBM methodologies for predicting the reliable target models [2].
These algorithms utilize the target-template evolutionary relationship
on the basis of fact that evolutionary related sequences share a similar
structural topology, and are thus being constantly developed and
redefined to reach experimental accuracy [3,4].

A TBM algorithm usually involve a fixed set of steps, viz., template
search, template selection, construction of a target-template alignment,
model building and lastly model assessment. The template search and
selection step is the primary step for improvising the accuracy of the
predicted model for a target sequence and thus several template search
and selection algorithms including HHPred [5], COMA [6] and PSIPRED
[7] have been developed. Further, an extensive improvisation of modelling
has been performed through algorithms like MODELLER [8]. Knowledge
based scoring functions such as TM_Score [9] have even been developed
for selecting the highly accurate conformational decoy from the sampled
set of models. It has been observed that bad models constructed through
selection of inaccurate templates could rarely be structurally improved.
Hence, template search and selection becomes the most important factor
to decide the accuracy of target model prediction.

Template search and selection step aligns all the known protein
structures to yield a well aligned and a reliable template hit. A daunting
task it might seem to be, but being able to come across templates with a
sequence identity more than 40% for the selected target can be counted
upon as a chance to yield a well predicted model. But finding such a
high sequence identity for most of the target sequences is a rarity. At
times, the screened templates might also return false positives along
with localized residue similarities to targets which might lead to the
unreliable alignments [10]. Culling of the PDB database at various
thresholds of sequence identity to select the correct template for a
specific target is also performed [11].

Template search for a target sequence is normally done through
position specific iterative - basic local alignment search tool (PSI-
BLAST) [12] which is a sequence-profile based algorithm. Such template
search algorithms are scored through the statistically significant level of
most probable target-template aligned residue substitutions and usually
employ E-value as the scoring measure for the template credibility.
Despite this rigorous calculation, template sequences sometimes prove
to be the false positive or spurious similarity at several local chunks
against the target sequence. It is because the scoring matrices like
BLOSUM [13] uniformly consider the same residue substation score at
different locations of the target sequence and it poses a huge problem
to search and select the distant although quite reliable templates for
the considered target sequence. Several methods, like Context-Specific
BLAST (CS-BLAST) [14], HMMER [15] and HHPred have thus been
developed to solve such problems by considering the sequence and
structural context of any residue substitution in a protein sequence.
These methods hereby also consider mutation probabilities of residues
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for insertions or deletions to make the template search further more
effective. However, our template search algorithm is still not efficient.
Thus solving the existing problem of structure prediction through
computational means has become a major challenge for structural
biologists. Despite our rigorous efforts, for algorithmic problems
existing or unintentionally encoded, current template search and
selection methods are insufficient to select correct hits consistently.
Here in this article, the template search problem is experimentally
proven for a Critical Assessment of Structure Prediction (CASP) target
and the plausible reasons for our algorithmic failures are highlighted.

Methods

Selection of the target sequence

A CASP10 TBM-high accuracy (TBM-HA) target sequence T0752
is arbitrarily selected because of its short length of 156 residues and ease
in computational processing.

Template set considered for modelling the target sequence

PDB database culled at a 95% sequence identity is recently
downloaded on January 16th, 2014 from the MODELLER database
(http://salilab.org/modeller/supplemental.html) for screening the best
template(s) for T0752. It enables us to consider only a minimal number
of 41,967 templates in comparison to the total count of 96,920 hits
available in PDB, and saves our computational time and resource. Each
of these 41,967 structures is then employed as an individual template to
model the selected target and further assessing its accuracy against its
experimentally solved native structure. These top-scoring template hits
with TM_Score accuracy higher than 0.4 are lastly employed to screen
all of their structural isoforms culled at the earlier step by the HHPred
algorithm for finally selecting the best available set of templates for a
target sequence.

Modelling the target sequence through MODELLER v9.9

The target sequence T0752 is modelled through MODELLER v9.9
with each of the selected 41,967 representative template structures
through in-house automated scripts. These models are then evaluated
through maxcluster tool based on Maxsub and TM_Score measures for
assessing their topological similarity locally as well as globally through
a sequence guided structural superimposition against their native
structure parsed only for the domain(s) assessed during the CASP [16].

Extending the set of highly accurate templates to their
structurally similar hits

For all the templates with even a bit insignificant TM_Score
accuracy of 0.4, structurally similar protein structures culled by the
MODELLER in the PDB95 dataset are also employed to model the
target sequence for a more accurate selection of reliable hits and for
predicting the near-native protein model for the considered sequence.
Here the differential availability of all these top-scoring hits is further
screened in the HHPred and PSI-BLAST results.

Results

Model accuracy of all selected templates

For the selected CASP10 156-residue target sequence, 41,967
representative templates out of 96,920 structures are employed. These
templates resulted in quite a scattered pattern of model accuracy, in
terms of TM_Score, with most of the hits proving to be futile for a single
template based modelling, as expected. This modelling step yielded
structures with TM_Score accuracy ranging from 0 to 1, as shown in

Table 1. The models constructed through the selected representative
templates are grouped at TM_Score intervals of 0.1 in this table.

Template set considered for modelling the target sequence

While majority of the considered templates prove to be insignificant
ill-scoring hits with a TM_Score accuracy lesser than 0.3, only 42
templates show a TM_Score accuracy of 0.4, as enlisted in Table I.
Hence, the additional 141 structural isoforms shown for these hits by
HHPred, although rejected in the earlier step, are also employed and it
increased our considered set of plausibly reliable templates to 183. This
set finally resulted in only 24 templates whose individual modelling
accuracy surpassed 0.7 in terms of TM_Score, as shown in table 2. The
table also represents the presence of these accurate templates in PSI-
BLAST or HHPred results as “YES” along with the Global Distance
Test-Total Accuracy (GDT-TS) score against the native structure. Table
3 summarizes the assessment scores of these top-24 templates through
their pairwise alignments against the target sequence with four other
scoring measures viz., the sequence identity percentage, count of the
identical residues, BLOSUMS62 score and the coverage span.

Discussion

The study is based on the TBM-HA target T0752 for the reason
that this CASP10 sequence encodes a reasonably higher and usually
encountered domain length of 156 residues, and this sequence is
assessed as a single domain segment of 148 residues (2-149) that is the
usual maximal length encountered as a single structural domain of a
protein sequence. For T0752, the study tries to demonstrate that the
existing best template search and selection tools such as PSI-BLAST
and HHPred does not screen closely related templates efficiently.

Template search engines such as PSI-BLAST that are based on
profile-sequence comparison methods and HHPred that are based
on profile HMM algorithms are useful tools to search for a reliable
template and to construct its heuristic alignment against a target
protein sequence whose structure is yet to be solved experimentally.
Template selection error by PSI-BLAST occurs due to the consideration
of non-homologous portions at the ends with well-scoring aligned
central portions [17]. The homologous over-extension issue is resolved
to an extent by HHPred. However, its reliance on high-scoring domains
in templates for target sequence results in an overall profile that is
enhanced and a better reliable local alignment for only a short portion
of the target sequence. Despite the fact that such profile HMMs in
HHPred are adequately trained to detect even very distant evolutionary
relationships for a target sequence against the templates and that it
gives better results by being probabilistic in homolog detection along
with an improved alignment [8], these servers are unable to deliver the

TM_Score Total count of structures
0-0.1 692
0.1-0.2 39776
0.2-0.3 1430

0.3-0.4 27
0.4-0.5 28
0.5-0.6 8
0.6-0.7 3
0.7-0.8 2
0.8-0.9 0
0.9-1 1
Total 41,967

Table 1: TM_Score range of all the predicted models through all the 41967
representative templates.
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complete or utmost reliable set of templates, as hereby shown.
Model accuracy of all the selected templates

As clearly enlisted in Table 1, there is a quite expected pattern
of accuracy of all the selected representative templates. Here only 1
structure yielded a highly accurate model with TM_Score more than
0.9 and that was certainly the actual answer conformation for the
selected target sequence. Excluding this answer conformation, only 14
templates showed TM_Score accuracy higher than a cutoff of 0.5 [18].

Encompassing and analyzing highly accurate templates to all
structurally similar hits

The modelling of target sequence through all the 183 structurally
similar hits yields only 24 models with a TM_Score accuracy of
more than 0.7, as enlisted in Table 2. Out of these 42 templates and
141 structurally similar hits, only 2 templates 4GB5_A (Experimental
structure of the target sequence) and 3B8L_A (Top ranked template
by HHPred), are shown as representative structures by both the culled
PDB95 dataset of MODELLER and PDB70 dataset of HHPred. It thus
illustrates the loophole of our template search algorithms as the ones
considered as redundant hits could actually prove to be the more
accurate templates. Among 183 total structurally similar templates,
22 templates are available in the set of redundant structures and are
discarded by our well-known supposedly reliable template search
algorithms.

Where are we missing in our template search algorithms?

In search of a reliable template for a target sequence, we encounter
several problems. Firstly, during the search for a reliable template to
model the target sequence, a specific insertion in target sequence can
be wrongly predicted to be in a coiled state confirmation by PSIPRED,

S No. Template TM_Score o .o Resulted in
Model 207 PSI-BLAST  HHPred

1. 4GB5A 0.999 100.000 YES YES
2. 4STDC 0.836 72.774

3. 4STDB 0.786 67.295

4. 4STDA 0.782 65.753

5. 7STDB 0.775 64.897

6. 3STDA 0.774 63.699

7. 3STDB 0.774 64.555

8. 6STDA 0.774 64.384

9. 5STDA 0.772 63.185

10. 1STDA 0.771 65.068

1. 5STDB 0.77 64.726

12. 6STDB 0.77 64.726

13. 7STDA 0.77 62.842

14, 3STDC 0.768 62.842

15. 5STDC 0.767 63.699

16. 6STDC 0.767 63.014

17. 7STDC 0.766 63.699

18. 2STDA 0.763 63.356

19. 3B8LD 0.735 64.384

20. 3BSLA 0.733 63.87 YES
21. 3B8LC 0.733 63.87

22. 3B8LB 0.73 62.5

23. 3B8LE 0.73 63.87

24. 3B8LF 0.73 64.384

Table 2: Template Details For Top 24 Models With Tm_Score Accuracy Higher
Than 0.7.

Page 3 of 4

Template | Sequence Ider.ltical BLOSUM Cover

S.no Template Length Identity Residues | Score Span
1 4gb5A 148 97.37 148 5.25 95.51
2 4stdC 164 18.12 29 0.34 98.8
3 4stdB 164 19.38 31 3.12 98.8
4 4stdA 164 19.38 31 3.12 98.8
5 7stdB 164 19.38 31 3.12 98.8
6 3stdA 162 19.5 31 3.14 100
7 3stdB 162 19.5 31 3.14 100
8 6stdA 164 19.38 31 3.12 98.8
9 5stdA 164 19.38 31 3.12 98.8
10 1stdA 162 19.5 31 3.14 100
1 5stdB 164 19.38 31 3.12 98.8
12 6stdB 164 19.38 31 3.12 98.8
13 7stdA 164 19.38 31 3.12 98.8
14 3stdC 162 19.5 31 3.14 100
15 5stdC 164 19.38 31 3.12 98.8
16 6stdC 164 19.38 31 3.12 98.8
17 7stdC 164 19.38 31 3.12 98.8
18 2stdA 162 20.75 33 3.77 100
19 3b8ID 144 25.33 38 0.83 100
20 3b8IA 147 25.08 38 0.83 98.14
21 3b8IC 144 25.33 38 0.8 100
22 3b8IB 144 25.33 38 0.83 100
23 3b8IE 144 25.33 38 0.8 100
24 3b8IF 143 24.75 37 0.83 100

Table 3: Pairwise alignment results of the top 24 templates against the target
sequence.

if that insertion sequence data is unavailable in its repository of solved
structures or is probably a novel fold. This is simply done to simply
maximize the score of the prediction servers and this effortless trend
normally comes at the cost of decreased biological significance of the
evolutionary sequence insertions in the target sequence.

Secondly, errors on the basis of either misalignment or shifted
alignment caused due to the addition or substitution of amino acid
residues in the target or the template itself results in a bad model
topology. That is why such alignments are either improved through
other scoring measures and alignment algorithms like PRALINE [19]
MUSCLE [20] and MAFFT [21] are manually curated.

Thirdly, PDB culling performed by HHPred, MODELLER or any
other algorithm for that matter, compares structural similarity only
of the templates without comparing their actual correlation against
the target. So any template that is dissimilar or least similar to other
templates is normally discarded. However, the discarded template
could in fact share a biological relationship with the target [5,22].

Fourthly, while parsing the target template alignment, the start and
the end chunks are normally pruned to simply improve the probability
score of the alignment. Since considering the entire length could result
in a lower TM_Score of the target model, only local alignments with
high scoring conserved residues are normally considered for modelling
a target. Such a practice should not be implemented as it is biologically
important to predict the detailed target conformation, with a better
topology closer to its actual native structure, and locally best alignment
construction attempt through HHPred does not satisfy this constraint
very well.

HMM based sequence comparison in a profile is yet another
problem. HMM based residue substitution probability as such does
not hold any biological significance. It is because the complete local
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fold normally evolves together with an evolved alteration in some of
its encoded residues and hence the complete fold should be scored
together along with the individual residue probabilities. Other than
this secondary structure constraint, loop residues are also important
for a mutually correct orientation of secondary structure elements
of the target sequence. Yet another problem here is the usage of
scoring measures through alignment algorithms. These algorithms
simply construct the best possible optimal target-template alignment
without checking the biological validity and significance of the model
constructed with the alignment results thus obtained. So, a set of sub-
optimal alignments should also be included in the results by such
algorithms as they could be structurally closer to the actual target
conformation yielding a more accurate model topology.

Lastly as shown in the Table 3, the top 22 templates other than
the HHPred resultant hits (4GB5_A and 3B8L_A) also show quite
significant similarity against the target sequence. This table shows the
template list in the order of their modelling accuracy, as shown earlier
in the Table 2. The Table 3 further enlists the sequence length, identity,
count of identical aligned residues, BLOSUMS62 residue substitution
score of the pairwise alignment (Constructed through MODELLER’s
default alignment script) and target coverage span scores for all the
top 24 templates. It quite lucidly highlights the highly accurate score,
certainly lesser than the answer structure 4GB5_A, although quite
better than 3B8L_A. Hence, the need for an improved template search
algorithm is strongly justified.

Conclusion

Because protein modelling accuracy is primarily rooted in the
structural and functional homology of template against the target
sequence, a thorough template search tool is mandatorily required to
screen all the reliable hits for predicting the most accurate target models
consistently. In this study, the template search measures PSI-BLAST and
HHPred are scrutinized to assess the entirety of their results. Among a
culled PDB95dataset of 41,967 structures 96,920 PDB entries in total
and out of 24 templates with TM_Score more than 0.7, PSI-BLAST and
HHPred protocols fail to search 23 and 22 hits, respectively. Therefore,
this study attempts to highlight the logical problems prevailing in our
normally employed template search measures and bridge the path for
our further research methodologies.
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