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Introduction
Kinases, notably those regulated the action of RAF-MEK-MAPK 

and AKT-mTOR-PI3K pathways have attracted increasing attention 
to identify anticancer therapeutic targets, in view of their activity 
in integration of signals of growth, proliferation, angiogenesis and 
apoptosis. Oncoprotein RAS activates the RAF/MEK/ERK (Extracellular 
Signal-Regulated Kinases) pathways, involving proteins of MAPK 
mfamily as end effector; and pathways of PI3K (Phosphatidylinositol 
3-Kinase)/Akt/NF-KappaB (Nuclear Factor-Kappa B) pathway, p120-
GAP/p190-B/Rac/NF-Kappa-B, and Raf/MEKK1/IKK (I-Kappa-B
Kinase)/I-Kappa-B/NFKappa-B pathway activate transcription factor
NF kappa-B through signaling molecules PI3K and Akt [1]. RAS
proteins are encoded by members of oncogene RAS family with H-,
Ki-and N-RAS, whose mutational activation has been seen more than
50% of human cancer cases [2], leading to cancerous cell growth.
Inhibition of the kinases has demonstrated efficacy in therapy against
cancers, and is also targeted by tumor suppressor genes (TSGs) when
exerting their anti-oncogenic activities, through downregulation of cell 
cycle entry and angiogenesis, and potentiation of apoptosis. Mitogen-
activated protein kinase (MAPK) is a serine/threonine kinase, which
activates transcription factors and other cytoplasmic factors leading
to mitogenesis [3]. The modulation of RAF-MEK-MAPK pathway
in the context of oncogenes-TSGs interaction, and of intervention of
anticancer drugs is to be discussed in the present paper.

The Implications of RAF-MEK-MAPK Pathway in 
Promotion of Cell Growth and Proliferation

The family of RAS gene comprises of a group of oncogenes that 
are frequently mutated in human tumors like pancreas, lung, and 
colorectal cancers and neuroblastoma. The prominent members of the 
family include N-Ras (neuroblastoma cell line), H-Ras (Harvey murine 
sarcoma virus), and the alternatively spliced K-Ras (Kirsten murine 
sarcoma virus). Among these, K-Ras is most frequently constitutively 
activated in human cancers [2]. The genes of this family code for 
RAS proteins, which reversely binds guanidine nucleotides of GDP 
and GTP. The metabolic forms of guanidine phosphate correspond 
with functional statuses of RAS, a small molecule G protein. RAS is 
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activated when recruiting adapter proteins such as Grb2 that in turn 
engages guanine nucleotide exchange factors (GEFs) like SOS to the 
cell membrane, GDP bound to RAS is replaced by GTP transferred by 
factors SOS [4,5]. 

RAS is normally activated in response to the binding of extracellular 
signals, such as growth factors, RTKs (Receptor Tyrosine Kinases), TCR 
(T-Cell Receptors) and PMA (Phorbol-12 Myristate-13 Acetate). The 
GTP associated Ras triggers the activation of a sequential three-kinase 
phosphorylation cascade through RAF, MEK, and ERK. RAF-MEK-
ERK is essential for the regulation of cellular proliferation and survival 
[6]; the pathway integrates a wide range of signals into major cellular 
programs such as proliferation, differentiation, or apoptosis. And half 
of all human malignancies display aberrations in the RAS-RAFMEK-
ERK pathway. 

RAF is a downstream effector kinase of RAS, and is found in 
three isoforms: A, B and C-RAF (also called RAF-1 or C-RAF- 1). 
Many studies showed the role of RAF kinase as a potential cellular 
oncogene for cancer therapy [7]. RAF-1 is a 74 kDa mitochondrial 
protein, ubiquitously expressed in adult tissues, with highest expression 
in muscle, cerebellum, and fetal brain. It was the first RAF isoform 
identified. The agents targeting the RAF family as a whole or C-RAF 
extensively examined in many pre-clinical studies and more recently 
some of them are in clinical trials [8-11]. 

B-RAF is a 94 kDa mitochondrial protein identified as second
RAF isoform which acts as mutational target in various human cancers 
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[1,12]. It is the strongest RAF kinase in terms of induction of MEK 
activity. A-RAF isoform is the weakest activator of MEK, and can only 
activate MEK1 but not MEK2. At present, no mutations in A-RAF have 
been found in human cancers [13,14].

MEK activates MAPK, the members of the family include 
extracellular signal regulated kinase (ERK) or MAPK, p38 MAPK, 
and JNK [15]. While different MAPK family members involve the 
same pathway with similar components with similar activities, the 
downstream effects notably regualtors of cell cycle are not completely 
overlapped between different molecules.

In the field of anticancer drug, success in screening drugs targeting 
to the upstream factor RAS have been limited [16]. RAF and MEK, 
however, are important intermediates in the MAPK pathway [17], 
researchers invested efforts to screen inhibitors of RAF and MEK as 
agents in anticancer therapy.

The Regulation of RAF-MEK-MAPK Involving Interactions 
between Oncogenes and Tumor Suppressor Genes

The pathway is activated by oncoproteins, and targeted by 
tumor suppressors while exerting their anticancer potential, and in 
some context, the activity involves interactions between TSGs and 
oncogenes. TSGs are implicated in the genesis of malignancies in case 
of inactivation, through loss of heterozygosity (LOH) mutation, or 
epigenetic inactivation, in a manner of loss-of-function. As a result, the 
transformed cells are no longer harnessed in growth and proliferation 
by the regulation of cell cycle progression [18,19]. In fact, cell cycle 
progression, and hence cell proliferation is regulated by cyclin dependent 
kinases (CDKs) in complexed with cyclins transcriptionally activated 
mostly by RAS-RAF-MEK-MAPK pathway [20]. Tumor suppressors 
have been shown to downregulate the signaling axis of MAPK-cyclin, 
for example, JNK-cyclin D1, and some through interactions with RAS 
proteins [21-23]. 

FHIT is tumor suppressor mapped on 3p14, a frequently lost 
chromosomal region in human cancers; its inactivation is an early event 
in development of the cancer [24-26]. Data obtained from lung cancer 
lines have not just indicate the importance of FHIT in carcinogenesis 
but also its potential to serve as an early biomarker for lung cancer [27]. 
A new role of FHIT in down-regulating the Ras/Rho GTPase-associated 
oncogenic signaling pathway has been suggested [28]. 

We have reported that BLU, a TSG mapped on the same 
chromosomal region as RASSF1, i.e. 3p21 which is frequently lost in 
nasopharyngeal carcinoma (NPC) and a variety of human tumors, 
mainly of epithelial origin, suppressed the signaling of JNK pathway, 
and reduced the level of cyclin D1 to arrest cell cycle at G1 phase when 
it is re-expressed in negative NPC cells [29]. Structurally, BLU protein 
contains a zinc finger MYND domain on its amino-terminus. The 
molecular mechanisms underlying its downregulation of JNK-cyclin 
D1 axis remain to be elucidated. 

Transcription factor AP1 is formed by, hetromerization of c-FOS 
and c-JUN, whose phosphorylation is catalyzed by JNK and another 
protein c-FOS. AP1 binds to the genomic DNA sequences upstream to 
the coding portion of a number of genes coding for cell cycle regulator, 
notably CCND1 coding for cyclin D1. Known as product of proto-
oncogene, cyclin D1 promotes proliferation in malignancy through 
interaction with oncogenic molecules [30]. It has been reported that 
over-expressed cyclin D1 facilitates the infection of nasopharyngeal 
epithelial cells by a lymphotropic human herpesvirus, Epstein-Barr 
virus (EBV), a ubiquitous human virus that is tightly associated with 

the occurrence of NPC and Burkitt lymphoma (BL) [31]. It has been 
proposed that MAPK pathway and cyclin D1 forms a signaling axis to 
regulate cell proliferation, and amplification of the chromosomal region 
that harbors CCND1 is a frequent anomaly at cytogenetic level during 
the occurrence of human tumors [32,33].

We reported that re-expression of BLU downregulated JNK signaling 
through reducing phosphorylation on JNK and inhibiting formation of 
AP1. It is reasoned that the effect was due to the inhibition of upstream 
kinase(s) by reducing their levels via epigenetic mechanism. In fact, we 
have shown that BLU inhibited the expression of IKK alpha, reduced 
the level of NFkappaB and hence NFkappaB dependent anti-apoptotic 
factors, so as to promote death receptor induced apoptosis [34]. It is 
speculated that BLU binds HDACs or SIRT, to repress transcription of 
genes coding for kinases in the pathway of RAF-MEK1/2-MAPK to 
downregulate the pathway and exert tumor suppression. 

Previous study has shown that lymphoid-specific helicase 
(LSH), a SNF2-SWI chromatin remodeler, plays an essential role in 
cancer progression via regulation of fumarate hydratase (FH) [35]. 
Mechanistically, together with histone methyltransferase G9a, LSH is 
critical for the normal development of mammals and is involved in 
the establishment and maintenance of DNA methylation [36]. Since 
apart from depositing of H3K9me2 [37], G9a and its partner modifier 
GLP also interact with DNA methyltransferases (DNMTs) and protect 
proper DNA methylation at certain loci [38], LSH might also directly 
interact with DNMTs and affect the patterns of DNA methylation in 
the cells. Therefore, in human NPC cells, investigation of chromatin 
loading of LSH and the patterns of DNA methylation at the BLU locus 
might shed light on the mechanisms that required for the regulation of 
BLU and the progression of these malignant carcinomas.

The tumor suppression of a family of proteins RASSF is exerted by 
downregulation of RAS-RAF-MEK1/2-ERK pathway. RASSF1A, the 
founding member of the RASSF family and RASSF5/NORE inhibits 
tumor growth and proliferation by targeting to signaling molecules 
of the MAPK family [23,35]. Phosphorylated ERK (pERK) is a key 
downstream component of the Ras/Raf/MEK/ERK signaling pathway. 
After phosphorylation, it translocates to the nucleus, and regulates 
various transcription factors such as Ets family transcription factors 
(Elk-1) [39].

The Implications of RAF-MEK-MAPK on Malignant 
Transformation of Cells

The aberrant activation of the RAF/MEK/MAPK signaling pathway 
is correlated with the occurence of hepatocellular carcinome (HCC) and 
a variety of human cancers. The activity of the RAF/MAPK signaling 
pathway was significantly higher, and the activity of ERK1/2 and MEK1 
were upregulated threefold to fourfold in neoplastic liver specimens 
when compared to normal liver tissue adjacent to the HCC lesions 
[40,41]. Furthermore, it has been reported that the over-expression 
of RAF-1 could be regarded as an indicator of HCC prognosis [42]. 
These data suggest that the RAF/MEK/MAPK pathway may serve as an 
attractive target in the therapy of HCC. 

The Applications of Components of RAF-MEK-MAPK 
Pathway in Anticancer Therapy

Epidermal growth factor receptor (EGFR) signaling is triggered 
by the binding of its ligand, resulting in the dimerization of EGFR 
molecules or heterodimerization with other closely related receptors, 
such as HER2/neu. EGFR is overexpressed in 40-80% of non–small 
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cell lung cancers (NSCLC) and many other epithelial cancers [43]. 
Besides the mutations in EGFR and HER2, KRAS genes are generally 
identifiable in over 40% of NSCLCs [44,45]. Tyrosine kinase inhibitors 
(TKIs), gefitinib and erlotinib acting as reversible inhibitors for binding 
to the ATP pocket of the protein tyrosine kinase were clinically approved 
agents targeting EGFR. In NSCLC, gefitinib was shown to induce partial 
responses (PR) in approximately 10% of cases [46]. The downstream 
kinases were also tested as target for therapeutic intervention, resulting 
in the development of several potent MEK inhibitors [47,48]. Patients 
with lung cancer whose tumors harbor EGFR and HER2 mutations 

respond to EGFR TKIs but develop drug resistance can still benefit 
from the use of second generation tyrosine kinase inhibitors [49-51].

The downstream signaling that EGFR triggers is the RAS/RAS/
MEK/ERK pathway. While RAF-MEK-MAPK pathway is targeted to 
be downregulated by TSGs, it has always been thought as an attractive 
pathway for anticancer therapy because it plays a central role in 
regulating various cellular processes from a broad spectrum of human 
tumors [52]. The activities of the pathway are often aberrant in tumors 
it therefore serves as a potential target for inhibitors of small molecule 
inhibition [53]. The blocking the post-translational modifications that 
promote Ras membrane association have been adopted as a strategy of 
anticancer therapy [54]. In recent years, various inhibitors have been 
developed for RAS downstream effector signaling, with efforts focused 
on the ERK/MAPK pathway (Figure 1). 

In the recent years, small molecule intervention has been used 
targeting for the members of the RAS–RAF–MEK–ERK signaling 
pathway. The potential of AZD6244, a selective MEK1/2 inhibitor 
[55,56] which exerts anti-proliferative effects on NSCLC cell lines 
was characterized [57,58]. The dual inhibition of MEK and EGFR or 
MEK and signal transducer and activator of transcription 3 (STAT3) 
signaling pathways may constitute a potent therapeutic strategy for the 
treatment of KRAS mutant NSCLCs. But AZD6244 displays insufficient 
efficacy in non-small cell lung cancers (NSCLCs) due to deregulated 
expression and/or mutations of PIK3CA and PTEN [59-63]. A rational 
basis has been validated for choosing the inhibitor to best combine with 
the MEK inhibitor in cells on the basis of the expression and mutations 
of several oncogenes [64-74]. 

Emerging problems of using kinase inhibitors to treat cancer 
include acquired resistance in cancer cells [75]. A strategy to overcome 
to obstacle so as to achieve efficacy was to administer the drugs 
according to the gene profile of the individual patient, notably the status 
of EGFR, RAS and PTEN. Alternatively, combined administration of 
the inhibitor has been proved to be efective; for example, the use of 
BRAF inhibitor dabrafenib and MEK inhibitor trametinib in treating 
melanoma patients with BRAF V600E mutation has significantly 
improved progression-free survival of the patients [76]. We have 
identified glabridin, an isoflavone isolated from licorice as BRAF and 
MEK double targeting, based on computational modeling and shown 
that the drug suppressed the proliferation of HCC cells by inhibiting the 
phosphorylation of MEK1/2 and the downstream molecules including 
ERK1/2 and transcription factors ATF1 and CREB [77] (Table 1). 

Conclusion 
In conclusion, small molecule inhibitors to RAS-RAF-MEK-MAPK 

pathway have been validated as effective in therapy against a variety 
of cancers, and have gained wide application (Table 1). To circumvent 
the problems like acquired resistance, agents with multiple targeting 
are to be developed, and modality with combination of agents should 
be considered based on cancer related gene profile of the individual 
patients. 
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