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Introduction
It is natural to group homologous genes into well-defined 

categories, into gene families. There are several existing approaches. 
The most popular collection is the database of Clusters of Orthologous 
Groups (COG) of proteins, containing a comprehensive collection of 
prokaryotic gene families in complete genomes. Generally, proteins 
belonging to the same functional family have high sequence similarity; 
however, their lengths may be substantially different [1-3]. It is not clear 
how variations of gene lengths (some genes become longer than their 
predecessors, while other genes become shorter and the sizes of these 
factions are randomly different from organism to organism) depend 
on organismal evolution and adaptation. To answer this question we 
propose to rank genomes according to lengths of their genes, and 
calculate coefficients of association between genome rank and genome 
property. The main purpose of this study is to find a computationally 
effective ranking method that consistently gives reasonable results.

In this work we analyze four methods: Average ranking, Simple 
Additive Ranking, Bubble Sort and Simulated Annealing. It appearsthat 
the four selected methods give similar results applied to the same 
genomic set. Comparing the sortedness obtained by application of the 
four ranking methods to the matrix of gene lengths, we have found that 
two Monte Carlo heuristics (Bubble Sort and Simulated Annealing) 

show the best values of sortedness. Therefore, Bubble sort is a preferable 
method because it is considerably faster than the Simulated Annealing 
method.

This paper is organized as follows. Section 2 describes the formal 
definition of genome-ranking problem, general description of ranking 
methods, and structure of input data. It also introduces terminology 
used throughout this paper. Section3presents a detailed description of 
the selected ranking algorithms, and genomic data as an input to them. 
Section 4 presents the results and discussion of them. Finally, Section 
5presents our conclusions.

Problem Formulation
Ranking

The manuscript is motivated by the following problem: Given a set 
of objects, with each object described by a set of attributes, the rationale 
is to find out whether associations between a group of certain object 
attributes, which we call “object descriptors” and other attributes, 
which we call “object properties”, are significantly non-random. There 
are different ways to do this [3-5]. Two main approaches are clustering 
and ranking.Using measures of similarity between the objects based 
on similarity between the sets of attribute values (object descriptors) 
one can cluster the objects(for example, genome-classification related 
applications in [5]), and after that apply methods of multifactor 
analysis to reveal which object properties are associated with different 
clusters. We explored this approach, taking genomes as objects and 
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Abstract
How variations of gene lengths (some genes become longer than their predecessors, while other genes become 

shorter and the sizes of these factions are randomly different from organism to organism) depend on organismal 
evolution and adaptation is still an open question. We propose to rank the genomes according to lengths of their genes, 
and then find association between the genome rank and variousproperties, such as growth temperature, nucleotide 
composition, and pathogenicity. This approach reveals evolutionary driving factors. The main purpose of this study is to 
test effectiveness and robustness of several ranking methods. The selected method of evaluation is measuring of overall 
sortedness of the data. We have demonstrated that all considered methods give consistent results and Bubble Sort 
and Simulated Annealing achieve the highest sortedness. Also, Bubble Sort is considerably faster than the Simulated 
Annealing method.
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gene lengthsas object descriptors [5-7], and found that performed 
classification closely related to phylogeny and/or taxonomy of 
prokaryotes. Alternatively, one can work with the precedence relations 
between the descriptors to rank the objects for further analysis whether 
object properties correlate with the ranking [3].

A ranking is a relationship between a set of objects such that, 
for any two objects, the first is either ‘ranked higher than’, ‘ranked 
lower than’ or ‘ranked equal to’ the second. In a framework of our 
approach [5-7], every object is defined by a sparse vector of attribute 
values. So, a sparse matrix presents a set of objects. Permutations of 
the rows generate different orderings of the objects. There are different 
approaches to define the optimal order of rows in the matrix (the best 
ranking). Here we present two possible attitudes: maximization of 
the sortedness, measured as a minimum of the number of discordant 
pairs, and the Kemeny-optimal ranking [8,9]. In both cases,Kendall tau 
distance, based on the Kendall tau correlation coefficient, is used.

Sortedness

To compare quality of ranking obtained as results of different 
procedures, it is essential to select an appropriate measure of sortedness. 
Note, that the ranking procedures produce different permutations of 
rows of the same matrix. The task is not trivial, since each column has 
an individual sortedness, and ranks of elements in one column do not 
necessarily agree with the ranks inother columns. 

Let us start with the definition of array sortedness and then expand 
it to matrices. There are several measures for quantifying the sortedness 
of an array[10]. Here, we present the three most popular measures: 
DISC, LIS and ED. 

a) The number of inversions in a sequence η, denoted by DISC (η),
is defined as the number of pairs of items in η which violate the natural 
ordering property (number of discordant pairs). 

b) Another measure for sortedness is the length of the longest
increasing subsequence in η, denoted by LIS (η). 

c) The third measure is an edit distance to monotonicity, denoted
by ED (η), defined as the minimum number of single item deletions 
needed to reach a sorted sequence η’ (it can be easily verified that in 
fact ED (η)=n–LIS (η)).

Among the three definitions of sortedness, the LIS and ED are 
more suitable for data stream applications and are not applicable for 
our purposes, while DISC is as a naturally appropriate definition of the 
sortedness of a matrix. A pair of numbers either follows the natural 
ordering or violates it. To apply the DISC criteriato array to a matrix 
we first should define the precedence rules for the rows, which may be 
determined in a few different ways, especially when a matrix is sparse:

1) The relationship between two rows r1 and r2 is determined by
simple un-weighted comparisons of the elements common to both 
rows (both elements are not equal to zero):

n
i 1 2i=1

1Sg= c (r ,r )
K∑    (1)

Where i i
i 1 2 1 2c (r ,r )=sign(r -r )  if, i i

1 2r .r 0≠  and K is the amount of the 

elements common to both rows. In other words, if for the majority of 
the pairs of the common attributes i i

1 2r .r 0≠ , the condition i i
1 2r >r   is 

true then r1 precedes r2; if for the majority of common attributes the 
condition   is true,then r2 precedes r1; otherwise r1 and r2 are tied.

2) The relationship between two rows (objects) r1, r2 is determined
by the sign of the sum of differences between non-missing elements of 
the rows:

 i i i i
1 2 1 21

Sg= (r r ) : r .r 0
=

− ∀ ≠∑n

i
i 			    (2)

Having the definition of the precedence relations, we may count 
all contradictions of the type “r1 precedes r2 but r1 ranked higher than 
r2”´in the given ranking, i.e. the number of discordant pairs. An optimal 
ranking will have a minimal number of discordant pairs of objects.

Kemeny-optimal ranking

A complementary to the sortedness approach is an optimal rank 
aggregation approach. The approach is to combine k different complete 
ranked lists of the same set of n elements into a single ranking, which 
best describes the preferences expressed in the given k lists. This 
problem dates back to as early as the late 18th century, when Condorcet 
and Bordain dependently proposed voting systems for elections with 
more than two objects [11,12]. There are numerous applications in 
sports, databases, and statistics[13,14] in which it is necessary to 
effectively combine rankings from different sources. 

In the last decades, rank aggregation has been investigated and 
defined from a mathematical perspective. In particular, Kemeny [8] 
proposed a precise criterion for determining the “best” aggregate 
ranking. Given n objects and k permutations of the objects, {π1, π2, . . . , 
πk}, a Kemeny optimal ranking [8,9] of the objects is the ranking π that 
minimizes a “sum of distances”, 1

( , )k
ii

p d
=

= π π∑ , where d(π,πk) denotes 
a distance between a “total” ranking π and an “individual” ranking πk. 
Usually, either Kendall’s τ rank-correlation coefficient or Spearman’s 
ρ rank-correlation coefficient is used to find a distance. Kendall’s τ is 
calculated as the difference between the number of concordant and 
discordant pairs divided by the total number of pairs. For our purposes, 
we should mention that a Kemeny optimal ranking minimizes the 
number of pairwise disagreements with the given k rankings. 

It is known that finding a Kemeny optimal ranking is NP-hard 
[15] and remains NP-hard even when there are only four input lists
to aggregate [13]. This motivates the problem of finding a ranking that
approximately minimizes the number of disagreements with the given
input rankings. Several approximation algorithms are currently used
[13,16].

Solving of the optimization problem

Kemeny optimal ranking may be formulated in terms of solving 
an optimization problem using either Kendall’s τ rank-correlation 
coefficient or Spearman’s ρ rank-correlation coefficient. As 
described above, these coefficients provide measures of the degree of 
correspondence between two ranking vectors. In particular, they assess 
how well the natural ordering property of the vectors is preserved. 

K N=1 N
X ijk=1 i=1 j=i+1

X max [ C (X, )]τ = ∑ ∑ ∑




kr , where given a rating 

vector x , is equal to 1, if 
i ij

k k
x x(r r )< ; equal to ½, if 

i ij

k k
x x(r = r ) , and

0–otherwise				 (3)
K Nñ k k

X i ik=1 i=1
X max (X X)(r -r )= −∑ ∑ , where only k

ir 0≠  

are considered                (4)

Comparing two pairs of equations (Eq. 1, Eq. 3) and (Eq. 2, Eq. 
2) we can see that searching for the maximal sortednessis equivalent
to finding the Kemeny optimal ranking in terms of combinatorial
optimization.
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For our goals Kendall’s τ coefficient is more suitable than the 
Spearman’s coefficient. However, finding a solution that maximizes 
the Kendall’s τ rank-correlation coefficient is a difficult, NP-hard [15], 
task. Therefore heuristic methods, such as the Monte Carlo method 
[17] and the Simulated Annealing Procedure [18], are frequently used. 

Monte carlo methods 

In this section we will make aslightly artificial distinction between 
the Monte Carlo Method (MCM) and the Simulated Annealing (SA) 
procedure. The Monte Carlo method was developed in the late 1940s 
by Stanislaw Ulam while he was working on the nuclear bomb project 
at Los Alamos. It was named by Nicholas Metropolis after the Monte 
Carlo Casino [19]. In this study we propose to apply MCM to select the 
best B-rank ranking.

MCM follows the following steps:

Define a domain of possible inputs.

Generate inputs randomly from a probability distribution over the 
domain.

Perform a deterministic computation on the inputs.

Aggregate the results.

The Metropolis–Hastings algorithm is a Monte Carlo method 
for obtaining a sequence of random samples from a probability 
distribution for which direct sampling is difficult or impossible. The 
algorithm was named after Nicholas Metropolis, who was the first 
author of [18], and W. K. Hastings, who extended it to the more 
general case in 1970 [20]. The Simulated Annealing procedure is an 
adaptation of the Metropolis-Hastings algorithm. The method was 
described by [21] and by [22]. This method simulates behavior of a 
physical system, the internal energy of which is to be minimized. The 
goal of the procedure is to bring the system from an arbitrary initial 
configuration to a configuration with the minimum possible energy. 
At each step, SA considers some neighboring configuration ψ’ of the 
current configuration ψ and probabilistically decides between moving 
the system to configuration ψ’ or staying in configuration ψ. These 
probabilities ultimately lead the system to move to configurations of 
lower energy.

Gene Length-based model

In the works of Bolshoy et al. [5,6] a “gene length based” model was 
introduced. It is an algebraic model to represent genomes as vectors of 
genes. The set of genomes is represented as a matrix, in which each row 
stands for a genome and each column stands for a gene family, and each 
item stands for the length of a member of a gene family i in a genome 
j. In our study, the objects are prokaryotic genomes; the descriptors are 
the lengths of the genome proteins indexed according to the certain 
database. (We usethe database named “Clusters of Orthologous 
Groups of proteins database”, see below in Materials and Methods.) 

Rankings of the selected genomes are performed using the descriptors 
in order to calculate coefficients of association between a genome 
rank and a genome property. The descriptors are of a homogenous 
nature–they’re all positive integers. There are different types of genome 
properties, i.e., a prokaryote is either Archaea or Bacteria; an organism 
may be hyper thermophile, thermophile, psychrophile or mesophile; 
a genome has a certain GC-content, and so on. There are different 
types of data: Nominal, Ordinal, Interval, and Ratio. There are different 
types of data of genome properties as well: Kingdom is a nominal 
dichotomous (binary).

Variable: thermophilicity is an ordinal variable; GC composition is 
a ratio variable; and number of genes is an interval variable. 

Materials and Methods
COGs database

The presented procedures are evaluated on the subset of the 
database of Clusters of Orthologous Groups of proteins (COGs) 
[1,2,23]. The principles of the database construction are described by 
[23]. Briefly, the COGs were constructed by applying the criterion of 
consistency of genome-specific best hits to the results of an exhaustive 
comparison of all protein sequences from these genomes. The data 
in COGs are updated continuously following the sequencing of new 
prokaryotic genomic sequences.

COGs database is a comprehensive gene-family definition 
database, developed to classify all conserved genes based on their 
homologous relationships and evolutionary development [23]. Each 
COG consists of at least three proteins assumed to have the same 
evolutionary counterparts. As described by [23], the COGs database is 
a growing and useful resource to identify genes and groups of orthologs 
across prokaryotic species that are related by evolution. Information 
about every completely sequenced and annotated prokaryotic genome 
is stored in the PTT-formatted files. The PTT file format is a table of 
protein features, prepared by the National Center for Biotechnology 
Information (NCBI). The complete collection of current PTT files can 
be found at ftp://ftp.ncbi.nih.gov/genomes/. Organization of the PTT 
files is summarized in Table 1 [24].

From every suitable NCBI PTT file, we extracted information 
about length (column 3) and COG (column 8). We added the genome 
index and a nominal binary identifier (chromosome, plasmid) to get 
a file describing the complete set of gene lengths across all available 
prokaryotic genomes. After the processing of the PTT files, two files 
were obtained. 

One contained the names of genomes with a record format /integer, 
string/ <genome_index, genome_name> (for example, 22, Bacillus 
amyloliquefaciens dsm 7). The other was a gene-length file with a 
record format /integer, integer, integer/ <genome_index, COG_index, 
protein_length> //for example, 2, 1474, 411//. These data were sorted 

1 2 3 4 5 6 7 8 9
Location Strand Length PID Gene Synonym Code COG Product
16..1251 + 411 284161129 - Arcpr_0001 - COG1474LO orc1/cdc6 family replication initiation protein
1251..1961 + 236 284161130 - Arcpr_0002 - COG0179Q 5-carboxymethyl-2-hydroxymuconatedelta-

isomerase

Line 1: Description of sequence to which the features belong, e.g. “ Archaeoglobusprofundus DSM 5631chromosome, complete genome-1..1560622”. 
Line 2: Number of proteins, e.g. “1819 proteins”
Line 3: Column headers, tab separated, e.g. “Location Strand Length PID Gene Synonym Code COG Product” 
Line 4 onwards: Feature lines, nine columns, tab separated, “-” used for empty fields: 

Table 1: Format of PTT files.
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by COG_index, genome_index, protein_length in ascending order.All 
currently available genomes were described in these two files. To check 
the ranking procedures described below we used small subsets of this 
dataset.

Pre-processing procedures

To get an input file for further ranking the following pre-processing 
procedures were applied:

1. Selection of subsets of genomes. A subset may be defined 
applying different criteria: it may be either a representative sample, a 
taxa-specific subset, or randomly chosen genomes.

2. Application of a filtering parameter (an entry threshold) on a 
selected subset. Only COGs containing more than a threshold number 
of genomes are considered for further processing. For example, if the 
filtering value is equal to 20% and an amount of genomes in a subset 
is equal to 500, then only COGs containing at least 100 genomes are 
considered (passed the entry threshold).

3. Sampling: If there are multiple instances of a COG related to 
the same genome, a median length value for all paralogs (triplets 
<genome_index, COG_index, protein_length> from the same genome 
and from the same COG) is used for further processing. 

Set of genomes

To compare performance of the methods, we used the same dataset 
as in our previous publication [3]. This small set contains 9 Archaeal and 
91 Bacterial genomes. Table 2 of [3] briefly describes these genomes. 

Average ranking method (A-rank)

Given a matrix AMxN where Ai,j is the value of jth descriptor of the ith 
object, the average ranking method works this way: for each object i the 
average ofall its descriptor values are calculated, which determines the 
rank of object i relative to other objects. All missing values are ignored.

Simple additive ranking (SAR)

SAR or, alternatively, SAW (Simple Additive Weighting) is the 
oldest, most widely known and practically used method [25,26]. The 
method integrates several criteria into a single-weighted value. This is 
reflected in its name. In the framework of this method the object gets its 
rank through a simple addition of weighted ranks obtained by sorting 
of individual attributes. First, weights based on the importance of 
various attributes are assigned. Second, the ranks within the attribute 
are scaled. This means that whatever the ranges of the intra-ranks of the 
particular intra-attribute rankings are, they should each be converted 
to a comparable scale. For example, if there are 100 objects, one 
attribute has a ranking scale from 1 to 10 and the other has a ranking 

Filtered Matrix (100×1455)
Genome Name SAR-rank A-rank B-rank SA-rank
bacillus cereus atcc 14579 1 6 16 17
campylobacter concisus 13826 2 12 6 9
thermotoga sp. rq2 3 26 3 2
aquifexaeolicus vf5 4 15 12 8
campylobacter curvus 525.92 5 17 9 12
bacillus cytotoxicusnvh 391-98 6 5 19 19
dictyoglomus thermophilum h-6-12 7 10 13 14
thermotoganeapolitanadsm 4359 8 19 5 5
bacillus amyloliquefaciensdsm 7 9 13 22 24
helicobacter felisatcc 49179 10 38 10 13
caldicellulosiruptor bescii dsm 6725 11 34 14 23
listeria monocytogenes serotype 4b str. 12 11 15 20
archaeoglobus fulgidusdsm 4304 13 1 1 1
francisella sp. tx077308 14 36 21 28
thermoplasmavolcanium gss1 15 8 2 4
thermoplasmaacidophilumdsm 1728 16 9 4 6
. . . . .
…. … … … …
. . . . .
gluconacetobacter diazotrophicus pal 5 88 83 90 88
starkeya novella dsm 506 89 72 87 87
bifidobacteriumanimalis subsp. lactis ad011 90 99 100 100
rhodopseudomonas palustris dx-1 91 76 88 89
rhodospirillumcentenumsw 92 92 89 90
burkholderiarhizoxinicahki 454 93 60 97 96
intrasporangiumcalvumdsm 43043 94 91 95 93
rhodopseudomonas palustris py2 95 90 91 91
rothiadentocariosaatcc 17931 96 97 99 99
streptomycesgriseus subsp. griseusnbrc 3350 97 93 93 95
streptomycesscabiei 87.22 98 96 94 94
salinibacterruber m8 99 98 98 98
haliangium ochraceumdsm 14365 100 100 96 97

Table 2: Results of rankings obtained by the SAR-ranking, Average ranking (A-rank), Bubble sorting (B-rank), and Simulated Annealing (SA-rank). List of genomes in the 
SA ranking order. Only top- and bottom-ranked genomes are shown.
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scale from 1 to 55, they both must be converted to the scale [1:100]. 
Once all attribute rankings cover the same scale, they can be multiplied 
by their respective attribute weights. The “utility” for each object is 
defined by adding the scaled weighted scores across the attributes with 
further dividing by the number of contributing attributes. Objects are 
sorted in order of ascending utility.

Here is how SAR strategy is applied to the COGs dataset. All COGs 
are assigned a number. Given a matrix AMxN where Ai,j is the value of jth 
descriptor of the ith object, the ranking is based on an individual ranking 
of each object based on the weighted sum of ranks for each descriptor 
separately. Thus, the eventual rank of the ith object, Ri, is calculated as

N

i j ij
j=1

1R r
M

= ∑w

Where j refers to descriptor number and wj is the weight of the 

jth descriptor and rij the ranking of the ith object with regard to the jth 
descriptor. Subsequently the ranks are scaled (normalized). In case of a 
sparse matrix, rij of a missing descriptor value takes the fixed rank value 
M/2 while rij of non-missing descriptor values are calculated regularly 
and then scaled uniformly to the range [1..M]. Note that we used the 
version in which wj=1 for every j.

Bubble-sort ranking (B-rank)

The strategy of Local Pairwise Interchange (LOPI) amounts to 
choosing a pair of objects, interchanging them, and evaluating a quality 
of ranking t(ψ) for the changed ranking [27]. If the new ranking is better 
than a previous one, then the new ranking is accepted. The procedure 
is stopped if there is no interchange that may improve t(ψ). LOPI does 
not guarantee global optimality, but it is very efficient [28], and being 
enhanced by the Monte Carlo technique[17] brings sufficiently good 
results. (Randomness is introduced through the random choice of the 
initial configuration.) In a simulation study by [28] the LOPI strategies 
found a global maximum of t (ψ) in the majority of the cases.

As a LOPI strategy we apply here the regular “bubble sort” 
procedure [29] interchanging the rows of a given matrix. The order of 
any two rows, r1 and r2, under this method is determined by the sign 
of the scalar G(r1,r2), such that if G(r1,r2)<0, then r1 precedes r2, and if 
G(r1,r2)>0, then r2 precedes r1, otherwise no change to their original 
order.

N
i i i i

1 2 1 2 2 1
1

G(r ,r )= ( (r -r )- (r -r ))
=

η η∑
i

Where step function η(x)=1 if x>0 and η(x)=0 otherwise.

Simulated annealing

For large datasets an exhaustive search is computationally 
demanding and not feasible. For example, in order to use direct 
maximization for ranking of N=1390 genomes, one needs to examine 
N! ≈ 10103765 configurations and calculate “system energy” for every 
configuration. Because of this, heuristic methods such as the Simulated 
Annealing method [21] are frequently used. Simulated Annealing 
Procedure is a general probabilistic meta-heuristic for the global 
optimization problem of obtaining a good approximation to the global 
optimum of a given function in a large search space.

Simulated Annealing models a process of heating a material 
and then slowly lowering the temperature to decrease defects, thus 
minimizing the system energy. At each step, a pair of objects is randomly 
chosen, than the objects are interchanged, and a quality of ranking τ for 
the changed ranking is evaluated. The algorithm accepts the proposed 

ranking that increases τ, but also, with a certain probability, rankings 
that lower the τ. We used acceptance probability function in the form  

new -
t

new( , ,t)=min 1,e
τ τ 

α τ τ  
 

The algorithm was implemented in 

R using the mpiR package to enable parallel processing using a high 
performance computer cluster for large datasets. By accepting points 
that lower the objective, the algorithm avoids being trapped in local 
maximum in early iterations and is able to explore globally for better 
solutions.

Results and Discussion
The Average ranking, the Simple Additive Ranking, and the 

Bubble sort ranking methods were applied both to the non-filtered 
input (matrix of size 100×5664, Figure 1) and to a smaller matrix 
(filtered version: excluding columns that contain more than 65% 
null values given a matrix of size 100×1455, Figure 2). Simulated 
Annealing procedure was applied only to the smaller matrix because of 
computational complexity. Each procedure produced a certain order 
of rows in matrix, a ranking vector X. Calculating of the Kendall tau 
correlation coefficients between the ranking vector X and each column 
of the matrix yielded distribution of correlations between the global 
ranking and individual COGs. These distributions are shown in Figures 
1 and 2.

Distribution of τ’ before the ordering (random ranking) is shown as 
a blue line and the post-ordering distributions are shown as bar graphs. 
Unordered genomes produce distributions of τ that are centered at 
zero. Application of all four ranking algorithms to this set resulted in 
right-shifted distributions of τ. The distributions of τ in Figures 1 and 
2 are bell-shaped and are similar to each other, and the post-ordering 
distributions were all distinctly shifted to the right. 

We conducted the Shapiro-Wilk test of normality for the unordered 
genomes and found that p-value is 0.19>0.05, supporting our visual 
examination that the randomly ordered genomes have approximately 
normal distribution of τ. All ordered distributions fail the normality 
test (p-value<0.05). For the unordered distribution, the skewness 
is 2.0703. The ordered distributions have larger absolute values of 
skewness, which are ≈ -5 (Figure 1).

Since the distributions in Figures 1 and 2 are approximately normal 
and our sample sizes are large, we used t-test to find the significance of 
the differences of the means (shown in Table 3). Difference between 
the means of ordered and unordered sets is around 0.2 for all four 
methods (p-value <10-16 for all four comparisons) [6,30]. It should also 
be mentioned that (a) all τ values for the filtered matrices are higher 
than their counterparts calculated for the complete matrices, and (b) 
the Simulated Annealing approach results in the best ordering, with 
Bubble sort being a close second [31-34] (Table 3).

It has already been mentioned [3,4,35] that A-rank is not likely 
to produce valuable results as compared with other ranking methods 
mentioned in this study. The difference between Simulated Annealing 
and Bubble Sort ranking is 0.002, which is not significant, given p-value 
of the t-test is 0.9854. We do not expect different ranking methods to 
yield identical genome orders, since different methods use different 
criteria for ordering. 

Significant differences in genome orders produced by different 
ranking methods are expected, since the four methods use different 
criteria for ranking. However, we find that the four methods are highly 
correlated (Table 4). B-rank (Bubble Sort) and SA-rank (Simulated 



Citation: Bolshoy A, Salih B, Cohen I, Tatarinova T (2014) Ranking of Prokaryotic Genomes Based on Maximization of Sortedness of Gene Lengths. 
J Data Mining Genomics Proteomics 5: 151. doi:10.4172/2153-0602.1000151

Page 6 of 9

Volume 5 • Issue 1 • 1000151J Data Mining Genomics Proteomics
ISSN: 2153-0602 JDMGP, an open access journal

A) B) 

C) D) 

Figure 1: Histograms of the Kendall tau correlation coefficients between the ranking vectors and vectors of gene lengths of individual COGs obtained using the input 
matrix of size 100×5664. The blue lines show histograms of the Kendall tau correlation coefficients between a random ranking (using the alphabetic order of the 100 
bacteria names as a random control) and individual COGs. In red the histograms of τ’s obtained by various ranking methods are shown: A) Simple Additive ranking 
B) Average ranking C) Bubble Sort, and D) Simulated Annealing. The red + shows the average value of Tau in the various methods.

A) B) 

C) D) 

Figure 2: Histograms of the Kendall tau correlation coefficients between the ranking vectors and vectors of gene lengths of individual COGs obtained using the 
input matrix of size 100×1455 (Filtered version: excluding columns that contain more than 65% null values). Usage of colors, line and bar graphs is as in Figure 1. 
The red + shows the average value of the distributions obtained by the various methods.
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Figure 3: Violin plots of length distributions for six groups of prokaryotic genomes. Ranks calculated by applying Bubble sort to the filtered set of 1390 prokaryotic 
genomes. 
Top: Crenarchaeota (left),  Halobacteriales (right)
Middle: Campylobacterales (left), Chlamydiae (right)
Bottom: Actinobacteria (left), Cyanobacteria (right)
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Annealing) are the most similar rankings (τ=0.84 for the filtered 
datasets). Table 4 also shows that filtering improves the agreement 
between different ranking methods by removing less abundant COGs 
that skew the results.

For all four methods there is significant average correlation 
between global rankings and individual COGs lengths. The filtering 
procedure results in the distributions without heavy left and right tails. 
COGs in the two extremes of the distribution have a small number of 
genomes and addition of these scores to the total τ may create a bias. 
The comparison of Figures 1 and 2 clearly demonstrates necessity of 
a filtering stage among the preprocessing procedures. We should not 
be surprised by this observation, since have already demonstrated 
that COGs containing very small amount of genomes (“unpopulated” 
COGs) should not be considered in phylogenomic methods. The 
“Forest of Life” concept was developed by [31-34]. They showed that 
there is a general evolutionary trend in the “Forest of Life” as well as 
in the “Tree of Life”, but gene trees constructed from unpopulated 
COGs poorly contribute to and frequently contradict it. Now we 
demonstrated that the same is true while ranking prokaryotic genomes- 
unpopulated COGs should be excluded. Note that although histograms 
A-D in Figure 2 are very similar, this does not imply identical genome 
orderings.

Table 2 shows the genomes in ascending order as dictated by the 
SAR technique: genomes with shorter genes occupy the top portion 
of the table. Several features of the Table 2 are quite remarkable. 
First, the columns are not identical; moreover, they are not even 
nearly identical. Nevertheless, the SAR ranking at the bottom part 
(longer genes) amazingly coincides with all of the other three ranking 
methods. This is not the case for the top part of the SAR ranking. 
While all hyperthermophiles that have high SAR ranks (Thermotogae, 
Thermoplasmata, Aquifex, and Archaeoglobus) also have high SA and B 
ranks as well, Bacilli that have high SAR ranks (ranks 1, 6, 9) have much 
lower ranks by the SA ranking method (17, 19, 24, correspondingly). 

Performance for Bubble Sort is O(n2), and for Simulated Annealing 
is O(K(n2+n) log n) [35,36], where K is the number of COGs and n is 
the number of genomes. Therefore, we conclude that Bubble Sort is 
faster than Simulated Annealing and produces nearly identical ranking 
(Table 4).

As we can see from the Table 3, the Average ranking method results 
in the lowest value of sortedness (0.15114 for the complete COG’s 
dataset and 0.19459 for the filtered dataset). It also has the lowest 
correlation, in the vicinity of 0.5, with the other three methods (Table 
4).

Motivated by the performance of Bubble sort for the 100-genome 
dataset, we applied it to the set of 1390 genomes. We used the same 
35% filtering cut-off as for the 100-genome dataset. Here we show some 
preliminary results of ordering the big set of genomes (Figure 3) for 
several groups of genomes. 

•	 Crenarchaeota, phylum of Archaea, tend to have shorter genes 
(Figure 3, top left). Almost all sequenced genomes of this phylum 
are related to hyperthermophilic species. Probably, it is the main 
factor affecting gene lengths of the species of this phylum, but 
contribution of other factors is an open question. 

•	 Halobacteriales have longer genes (Figure 3,top right).In 
taxonomy, the Halobacteria are a class of the Euryarchaeota, 
and the extremely halophilic, aerobic members of Archaea 
are classified within the family Halobacteriaceae, order 
Halobacteriales. So, at the top of Figure 3 we present plots 
describing distribution of ranks of genomes from two different 
groups of Archaea. Our speculation is that hyperthermophilicity 
is a factor of gene shortening, while halophilicity is factor acting 
in the opposite direction.

•	 Middle plots of Figure 3 present Campylobacterales (left) and 
Chlamydiae (right). All genomes of these two selections are 
pretty short; however, the plots are very different. Family of 
Campylobacterales (belonging to the phylum Proteobacteria), 
have an average rank of 203, with the smallest rank of 10 (Helico 
bacterbizzozeronii ciii-1) and the largest rank of 392 (Helicobacter 
hepaticus ATCC 51449). Members of the class of Chlamydiae 
have exceptionally long genes: the ranks of 21 members of this 
class are located from positions 835 to 1127 in the ranking list.

•	 Bottom plots of Figure 3 present Actinobacteria (left) and 
Cyanobacteria (right). As a rule, members of the class of 
Actinobacteria have long genes. Finally, Cyanobacteria also tend 
to have long genes. At this point, it is only observation and we 
have no speculations on this issue.

Conclusions
We have presented four methods of genome ranking and compared 

their performance using a dataset of 100 genomes randomly selected 
from the entire NCBI collection of Eubacterial and Archaeal genomes. 
We have demonstrated that all four methods produce consistent results 
and that Bubble Sort and Simulated Annealing have the best ranking. 
Given computational advantages of Bubble Sort, it is the optimal 
method for the task of genome ordering. We also showed that filtering 
procedure (removal of the less populated COGs) improve the final 
sortedness of the dataset.

Using the subset of 100 randomly selected genomes, we 
demonstrated that hyperthermophilic species have shorter genes than 
the mesophilic species. Addition of all currently sequenced genomes 

Tau sortedness
Ranking Method Complete Matrix 

(100× 5664)
Filtered Matrix 
(100×1455)

Average Ranking 0.15114 0.19459
Simple Additive Ranking 0.17990 0.21736
LOPI (Bubble Sorting) 0.18048 0.22057
Simulated Annealing 
(applied to the filtered 
matrix)

0.17841 0.22381

Table 3: Goodness of fit of rankings measured by Kemeny measure.

SAR-
rank

A-rank B-rank SAR-
rank 
�����

A-rank 
�����

B-rank 
�����

SA-rank 
�����

SAR-
rank

1

A-rank 0.47556 1
B-rank 0.74949 0.47152 1
SAR-
rank 
(filtered)

0.87475 0.52081 0.80121 1

A-rank 
(filtered)

0.5899 0.77253 0.56566 0.64242 1

B-rank 
(filtered)

0.7503 0.48848 0.95313 0.81333 0.58424 1

SA-rank 
(filtered)

0.73293 0.53333 0.81212 0.80646 0.63313 0.84444 1

Table 4: Pairwise Kendall coefficients of correlation between different rankings.
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did not change this conclusion. It would be wrong to claim that 
environmental stress always causes genes to be shorter.
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