alexa Reducing Viral Load Measurements to Once a Year in Patients on Stable, Virologically Suppressive Cart Regimen: Findings from the Australian HIV Observational Database
ISSN 2155-6113
Journal of AIDS & Clinical Research
Like us on:
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Reducing Viral Load Measurements to Once a Year in Patients on Stable, Virologically Suppressive Cart Regimen: Findings from the Australian HIV Observational Database

Mahshid Rafiee1, Azar Kariminia1, Stephen Wright1, Graham Mills2, Ian Woolley3, Don Smith4, David J Templeton5, Matthew G Law1 and Kathy Petoumenos1*

1The Kirby Institute, UNSW Australia, Sydney, NSW, Australia

2Department of Medicine, Waikato Hospital, Hamilton, New Zealand

3Infectious Diseases Department, Monash Medical Centre, Vic., Australia; Department of Medicine, Monash University, Vic., Australia

4The Albion Street Centre, Sydney, NSW, Australia; School of Public Health and Community Medicine, UNSW Australia, Sydney, NSW, Australia

5The Kirby Institute, UNSW Australia, Sydney, NSW, Australia; RPA Sexual Health, Sydney Local Health District, Sydney, NSW, Australia; Central Clinical School, University of Sydney, Sydney, NSW, Australia

*Corresponding Author:
Kathy Petoumenos
Senior Lecturer, Biostatistics and Databases Program
The Kirby Institute, Level 6, Wallace Wurth Building
UNSW Australia, Sydney NSW 2052, Australia
Tel: (02)9385 0972
Fax: (02)9385 0940
E-mail: [email protected]

Received date: October 16, 2014; Accepted date: November 19, 2014; Published date: November 25, 2014

Citation: Rafiee M, Kariminia A, Wright S, Mills G, Woolley I, et al. (2014) Reducing Viral Load Measurements to Once a Year in Patients on Stable, Virologically Suppressive Cart Regimen: Findings from the Australian HIV Observational Database . J AIDS Clin Res 5:383. doi:10.4172/2155-6113.1000383

Copyright: © 2014 Rafiee M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited..

Visit for more related articles at Journal of AIDS & Clinical Research

Abstract

Reducing viral-load measurements to annual testing in virologically suppressed patients increases the estimated mean time those patients remain on a failing regimen by 6 months. This translates to an increase in the proportion of patients with at least one Thymidine Analogue Mutation from 10% to 32% over one year.

Keywords

HIV; Antiretroviral therapy; HIV viral load; HIV viral load monitoring; HIV resistance

Introduction

In the current era of effective treatment, reducing the frequency of virological monitoring may become more common. Current treatment guidelines recommend viral load monitoring every 3 to 4 months in clinically stable patients with suppressed viral load [1]. However, studies have previously indicated that viral load monitoring may be safely reduced to 6-monthly in stable patients [2]. There is little data on the impact of reducing viral load monitoring to annually, yet anecdotal evidence from Australia suggests that some clinicians are extending the interval between viral load measures for up to one year in clinically stable and virologically suppressed HIV positive (HIV+) patients.

We aimed to investigate the effects of reducing the frequency of viral load tests to annually among HIV+ve patients with long-term virological control.

Methods

We used data from the Australian HIV Observational Database (AHOD). Patients were required to fulfil the following inclusion criteria: commenced combination Antiretroviral Therapy (cART) on or after 1 January 1997; remained virologically suppressed (<400 copies/mL) while on a stable cART regimen for at least one year; and had two or more viral load measurements per year.

Person-year methods were used to calculate the rate of virological failure (defined as two consecutive detectable viral loads (≥400 copies/mL) within one year or one measure of virological failure followed by a change of treatment within one year). Baseline date was the end of the first year of experiencing suppressed viral load while on a stable regimen. Follow-up was calculated from baseline to the time of virological failure; or (a) the date treatment was stopped/interrupted for more than 14 days or (b) the last visit date for patients who did not fail (censored).

To estimate the additional time a patient remained on a failing regimen if HIV viral load testing occurred annually we created a paired dataset by duplicating patient data and allowing each patient to act as his/her own control. The first line of data in each pair included all the viral load measures and the true stop or failure date from the observed data. The second line included a theoretical annual HIV test date calculated as the anniversary date of the baseline date. The patients’ censor or failure date was therefore the last anniversary date from baseline that was greater or equal to the observed true stop or failure date. We calculated the additional time on a failing regimen as the time to failure using the observed data subtracted from the theoretical data.

We estimated the rate of accumulation of Nucleoside Reverse Transcriptase Inhibitor (NRTI), non- Nucleoside Reverse Transcriptase Inhibitor (NRTI) and Thymidine Analogue Mutation (TAM) resistance mutations if the rate of viral load testing was reduced to annual testing. Estimates were based on the rates of resistance accumulated in patients remaining on failing regimens as reported by Sigaloff et al. [3] and Cozzi-Lepri et al. [4]. We assumed the rate of resistance mutations accumulated exponentially and that virological failures occur uniformly in relation to viral load testing. Hence, if viral load testing was carried out annually, 25% of failures fail in the period 0-3 months after the previous viral load test, a further 25% in the period 3-6 months, 25% during 6-9 months and the final 25% during the period 9-12 months since the last viral load test.

To illustrate the absolute impact of reduced viral load testing we applied the failure rate reported in AHOD to a hypothetical population of 1000 HIV patients who had been virologically suppressed on cART for one year, and subsequently followed for two years. We estimated the number of patients who would be expected to fail virologically based on AHOD data, the reduced number of viral load tests over the two years if only annual virological monitoring, and contrast that with the increase in proportion of failing patients who develop resistance during the two-year period.

Results

By March 2013, 3551 patients were recruited to AHOD, of whom 2651 started cART on or after 1 January 1997; 584 (16%) patients fulfilled our study inclusion criteria. Most were male (92%) with overall mean age of 50 years (SD: 11.2). The median viral load at cART initiation was 68 200 copies/ml (IQR, 17 347-14 900).

Overall 76 patients (13%) experienced virological failure over 1946 person-years (py) of follow-up with a failure rate of 3.9 per 100 py. Of the failures 64 (84%) switched treatment following two consecutive failures while 12 patients (16%) switched treatment after a single measurement of >400 copies/ml. The mean extra time patients remained on a failing regimen if viral load testing is reduced to annual was estimated at 6 months (SD: 3).

Table 1 shows the rate of accumulated resistance based on the rates reported by Sigaloff et al. [3] and Cozzi Lepri et al. [4]. If the frequency of viral load monitoring remained at every 3 months, then based on the Sigaloff data, we estimate that 10% would have TAM related resistance, while 4.4% would be NRTI-related and 7% NNRTI-related. If viral load monitoring was performed annually and we assumed that of patients who failed 25% did so in each of the windows 0-3, 3-6, 6-9 and 9-12 months following failure, then the estimated rate of resistance accumulated over one year would be 32% with at least one TAM, and 16% and 35% with any NRTI and NNRTI mutation respectively.

Studies Mutation Rate of accumulation
(per month)
(95% CI)
Probabilities of accumulated mutations
0-3 month
window
3-6 month
window
6-9 month
window
9-12 month window At one
year
Sigaloff et al. [3] TAM2 0.07
(0.04-0.11)
0.1 0.27 0.4 0.52 0.32
NRTI-associated 0.03
(0.01-0.06)
0.04 0.13 0.2 0.27 0.16
Any NNRTI -associated 0.05
(0.03-0.09)
0.07 0.2 0.31 0.41 0.25
Cozzi-Lepri et al. [4] Any TAM mutation 0.02 0.03 0.09 0.14 0.19 0.11

Table 1: Probabilities of accumulated mutation for virological failure. 1We assumed virological failure distributed uniformly during one year, 25% of failures fail in the period 0-3 months after the previous viral load test, a further 25% in the period 3-6 months, 25% during 6-9 months and the final 25% during the period 9-12 months since the last viral load test. 2Thymidine Analogue Mutation (TAM). 3Yearly rate was given in the Cozzi_Lepri, et al. study and therefore confidence interval for monthly rate cannot be calculated.

Based on the data from Cozzi-Lepri et al. [4] we estimated that with 3-monthly viral load monitoring 3% of failing patients would have accumulated one or more TAMs, compared with an estimated 11% of failing patients with annual viral load monitoring.

In our hypothetical population of 1000 patients, if we applied the failure rate observed in AHOD (3.9/100 py) we estimate that 80 patients would have failed within two years. Regular three monthly viral load testing would yield approximately 9000 viral load tests over a complete 2-year period (including tests at baseline and at year 2). Reducing viral load testing to annually would reduce the viral load tests to 3000, a saving of around 6000 viral load tests over two years. However, based on the data from Sigaloff et al. [3] the reduction in viral load testing to annually would increase the rate of accumulated TAMs in the 80 patients who failed from 10% to 32%.

Discussion

We reported a relatively high rate of virological failure of almost 4 per 100 py among virologically suppressed patients in AHOD. Reducing viral load testing to annually increased the time patients remained on a failing regimen for an additional 6 months. While this translates to 6000 less viral load tests over two years, the proportion of the 80 failures with at least one TAM could increase from 10% to 32% (applying the rates reported by Sigaloff et al. [3]); or from 3% to 11% according to the Cozzi-Lepri estimates.

There is considerable variation in rates of developing antiretroviral resistance mutations in the published literature [5,6]. The lower estimate produced from the Cozzi-Lepri et al. [4] is based on patients from the EuroSIDA cohort and may more likely reflect the rates in other developed countries, including Australia. Although reducing viral load testing frequency may be cost-effective, as demonstrated in the case of reducing the frequency of CD4 monitoring [7], we have shown a high failure rate even among patients on apparently stable suppressive therapy. If viral load testing was reduced then around one-third of these patients who fail could potentially develop further resistance mutations, thereby reducing potential future treatment choices. Our results contrast with the findings by Reekie et al. who found that it is reasonable to extend visit intervals to 6 months for stable and fully suppressive patients on cART with minimal impact on treatment failure 3 to 6 months later [2].

There are some limitations to our analysis. First, we have used >400 copies for the virological failure cutoff as the data spanned over 10 years of data where many of the AHOD sites will still using assays at this level. However, using a higher viral load level in some ways may indicate true virological failures rather than virological blips that might range between 50 and 400 copies/mL. Second, we censored patients with treatment interruptions of greater than 14 days. We therefore would have excluded some patients who had one measure of virological failure and who stopped treatment, therefore still failing off treatment and subsequently accumulating resistance. Thirdly, we assumed that patients with virological failure were still taking some of their cART, thereby maintaining selection pressure for the evolution of resistance mutants. If these patients had discontinued all cART, ongoing viral evolution may not be occurring. Finally, we are unable to determine whether reducing the frequency of viral load testing would decrease the frequency of attendance or have an effect on adherence in this model.

Despite effective and well-tolerated regimens, stable and suppressed patients continue to fail therapy. While annual viral monitoring could reduce virological testing costs, our study suggests there could be a substantial increase in the numbers of failing patients who develop resistance which has its own costs due to more expensive resistance testing, treatment regimens and potential community costs of increased transmission of drug resistance virus. The pros and cons of reduced frequency of viral load monitoring in stable patients warrants more research, including well-conducted randomised trials.

Acknowledgements

Australian HIV Observational Database contributors: Asterisks indicate steering committee members in 2014.

New South Wales: D Ellis, General Medical Practice, Coffs Harbour; M Bloch, S Agrawal, T Vincent, Holdsworth House Medical Practice, Darlinghurst; D Allen, JL Little, Holden Street Clinic, Gosford; D Smith, R Hawkins, K Allardice, Lismore Sexual Health & AIDS Services, Lismore; D Baker*, V Ieroklis, East Sydney Doctors, Surry Hills; DJ Templeton*, CC O’Connor, S Phan, RPA Sexual Health Clinic, Camperdown; E Jackson, K McCallum, Blue Mountains Sexual Health and HIV Clinic, Katoomba; M Grotowski, S Taylor, Tamworth Sexual Health Service, Tamworth; D Cooper, A Carr, F Lee, K Hesse, St Vincent’s Hospital, Darlinghurst; R Finlayson, S Gupta, Taylor Square Private Clinic, Darlinghurst; R Varma, J Shakeshaft, Nepean Sexual Health and HIV Clinic, Penrith; K Brown, V McGrath, S Halligan, N Arvela Illawarra Sexual Health Service, Warrawong; L Wray, R Foster, H Lu, Sydney Sexual Health Centre, Sydney; D Couldwell, Parramatta Sexual Health Clinic; DE Smith*, V Furner Albion Street Centre; Clinic 16 – Royal North Shore Hospital, S Fernando; Dubbo Sexual Health Centre, Dubbo; J Watson*, National Association of People living with HIV/AIDS; C Lawrence*, National Aboriginal Community Controlled Health Organisation; B Mulhall*, Department of Public Health and Community Medicine, University of Sydney; M Law*, K Petoumenos*, S Wright*, H McManus*, C Bendall*, M Boyd*, The Kirby Institute, University of NSW. Northern Territory: N Ryder, R Payne, Communicable Disease Centre, Royal Darwin Hospital, Darwin. Queensland: M O’Sullivan, S White, Gold Coast Sexual Health Clinic, Miami; D Russell, S Doyle-Adams, C Cashman, Cairns Sexual Health Service, Cairns; D Sowden, K Taing, K McGill, Clinic 87, Sunshine Coast-Wide Bay Health Service District, Nambour; D Orth, D Youds, Gladstone Road Medical Centre, Highgate Hill; M Kelly, D Rowling, N Latch, Brisbane Sexual Health and HIV Service, Brisbane; B Dickson*, CaraData. South Australia: W Donohue, O’Brien Street General Practice, Adelaide. Victoria: R Moore, S Edwards, R Woolstencroft Northside Clinic, North Fitzroy; NJ Roth*, H Lau, Prahran Market Clinic, South Yarra; T Read, J Silvers*, W Zeng, Melbourne Sexual Health Centre, Melbourne; J Hoy*, K Watson*, M Bryant, S Price, The Alfred Hospital, Melbourne; I Woolley, M Giles*, T Korman, J Williams*, Monash Medical Centre, Clayton. Western Australia: D Nolan, J Robinson, Department of Clinical Immunology, Royal Perth Hospital, Perth. New Zealand: G Mills, C Wharry, Waikato District Hospital Hamilton; N Raymond, K Bargh, Wellington Hospital, Wellington.

Funding Source

The Australian HIV Observational Database is funded as part of the Asia Pacific HIV Observational Database, a program of The Foundation for AIDS Research, amfAR, and is supported in part by a grant from the U.S. National Institutes of Health’s National Institute of Allergy and Infectious Diseases (NIAID) (Grant No. U01-AI069907) and by unconditional grants from Merck Sharp & Dohme; Gilead Sciences; Bristol-Myers Squibb; Boehringer Ingelheim; Janssen-Cilag; ViiV Healthcare. The Kirby Institute is funded by the Australian Government Department of Health and Ageing, and is affiliated with the Faculty of Medicine, UNSW Australia. The views expressed in this publication do not necessarily represent the position of the Australian Government.

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Recommended Conferences

  • Global experts meet on STD - AIDS and Infectious Diseases
    May 30-31, 2018 Auckland, New Zealand
  • 6th World Congress on Control and Prevention of HIV/AIDS , STDs & STIs
    August 27-29, 2018 Zurich, Switzerland
  • 6th International Conference on HIV/AIDS , STDs and STIs
    October 29-30, 2018 San Francisco, USA

Article Usage

  • Total views: 11474
  • [From(publication date):
    December-2014 - Dec 17, 2017]
  • Breakdown by view type
  • HTML page views : 7736
  • PDF downloads : 3738
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version