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Introduction
Dynamic evolution (parabolic) equations in biological, chemical, 

mechanical and physical systems involving fractional derivatives had 
received the attention of different works in many areas. This may be 
argued to the fact that the fractional derivatives retain many novel 
aspects. So that some new phenomena were revealed by the fractional 
equation modelling. Many studies of fractional equation modelling 
to these systems were currently studied in the literature, notably for 
biological and chemical dynamical-system [1-6]. In contrast, up to our 
knowledge, few works were devoted to the fractional mechanical and 
physical systems [7,8]. This may be due to the fact that in these later 
systems evolution equations are nonlinear or semilinear and they are 
of higher order derivatives. The relevant studies are mainly focusing on 
the numerical treatment to these equations [9-11]. It had been pointed 
out that anomalous diffusion and anomalous transport, as novel 
phenomena do occur [1-6].

In the real applications, the Caputo definition for fractional 
derivative FD is convenient and it is the mainly used in mathematical 
modelling. Indeed, an observable function is required to have 
continuous derivatives up to some order “m” with relevance to a given 
evolution equation. We mention that, the kernel in the definition of the 
time (or space) FD is a monomial in (t-t’) (or (x-x’)) (say), respectively. 
In the case of time FD, it retains the effect of the recent history on the 
growth (or decay) of an observable function “u (x, t)”. While in the case 
of the presence of a general kernel, namely, K(t, t’) it measures the effect 
of the complete history when the lower bound of the integral extends to 
-∞ (see 1.1) and when t replaces x. We think that fractional equations 
modelling are relevant whenever a system has a characteristic time: (τc) 
which is assumed to be high enough to support a time history. It is 
worthy to notice that 

( )lim ( , / )c t
Log u x t tτ

→∞
= −

When the limit exists [4,5]. The notion of the characteristic time 
may be made clear in what it follows. When considering the fractional 
equation modelling of an oscillatory system with frequency ω, then, 
merely we have τc=ω-1. So that fractional equation modelling for high 
frequency oscillators is inadequate. In contrast to the limitation of using 
time FD in real systems, using the space FD has everywhere a meaningful 
aspect. For example, when the order of the space derivative is α and 
m-1<α<m,( cf. (1.1), then the space fractional modelling describes a 
system that changes its behaviour from being with convection to be 
diffusive, from being diffusive to be dispersive, or from being dispersive 
to be ultra-diffusive when m=1; 2; 3; 4 respectively. Thus, in this case 

space-fractional equation modelling shows the behaviour of a system 
in transient states. So that, it may stand to explain a “strange space-
behaviour” of the dynamical systems.

Now the Caputo fractional derivative is defined for x>0 and for x<0 
respectively [12,13];
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Where, (m){ , },mf C f f Cα α∈ = ∈

And Cα is the space of functions such that the integrals in the right 
side of (1.1) and (1.2) exist.

Reduction of the Fractional Evolution Equations
Here, we consider the equation;

( ) ( ) ( )( )u , , , 0
k

j
t k x

x t a u x t b u x t
x
∂

+ + =
∂                               (2.1)

Where t>0, -∞<x<∞, k<n

It is worth noticing that (2.1) reduces to Burger's, KdV, modified 
KdV, KdV-Burger's, or Kuramoto-Sivashinsky equations when a=0; 
n=2; j=2, a=0; n=3; j=2, a=0; n=3; j=3, a≠0; k=2; n=4; j=2, or a≠0; k=2; 
n=4; j=2. In this section we shall find two fractional forms to (2.1) and 
analyse their reduction to partial differential equations (PDES) with 
variable coefficients.

Reduction to the first form

We assume x>0; t>0, and consider the first form to the fractional 
differential equation for (2.1), namely

( ) ( ) ( ) ( ), , , , 0,
0 1, 1 , 1 ,0 1

j
t x x xD u x t aD u x t D u x t bD u x t

k k n n

α β γ δ

α β γ δ
+ + + =

≤ < − ≤ < − ≤ < ≤ <
                        (2.2)
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We use the FD which is defined in (1.1) into (2.2) and we have the 
following theorems. Theorem 2.1. The equation (2.2) reduces to the 
functional equations

( ) ( ) ( ) ( )( ), ( , , , ) 0
( ) ( )

k n
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γ γ− −∂ ∂ ∂ ∂
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Proof. In (2.2), by setting 1,n n k= = − + = − +α δ γ β γ and by using 
the transformations 1 1,x xy t ty= = , it becomes;
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As the function in the outside of the brackets is strictly increasing in 
0 ≤ y ≤ 1, then (2.3) holds when the terms between brackets vanish and 
we get the functional equation (2.3).

In the case when 

( , 1, 1)Max k n> − + − +α δ β γ , 

and in a way similar to that done in the above, the equation (2.2) is 
reduced to (2.4). We mention that functional equations similar to (2.4) 
can be obtained as a reduction to (2.2) when,

 ( )( , 1, 1), 1 , , 1Max k n k Max nα δ β γ β δ α γ> − + − + − + > − +

or when ( )1 , , 1n Max kγ δ α β− + > − + . 

Further reductions of (2.2) to a functional equation for less 
restrictive conditions on α, β, γ, δ, n, k, can also be done.

It is worth noticing that functional equations (2.3) and (2.4) are 
PDE's with proportional delay. We may justify this by the following. 
When considering (1.1) by replacing x by t (or namely when replacing 
the space FD by the time FD) then this shows that the system 
under consideration retains distributed delays. Indeed, an equation 
with “distributed” delay can be transformed to another one's with 
proportional delay by the transformation ( )0' Log /t t T T− = .

By using the assumption that that u(x, t) has a continuous partial 
derivatives up to n-nth order, then, in (2.3) by taking the limit when 
y→1-, we get a PDE's with variable coefficients.
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Reduction to the second form

For the second fractional form to (2.1), we proceed by rewriting 
(1.1) when m=1,
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0
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              (2.7)

In (1.13) by writing 1, 1s s sα µ µ= − + − ≤ <  and by using the 
equality 

( )( ) ( )( )1 1 1 1( ) s s s s
x x x x xD f x D D f x D D f xµ µ µ− + − − − += =                                      (2.8)

The first equality gives rise to the definition in (1.1), while the 

second ones gives rise to,
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Now by using (2.9) into (2.2), and by the same way as in the above, 
and when

 1,n n k= = − + = − +α δ γ β γ , 

we get for the second reduced form namely the functional equation
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We mention the case when

 ( , 1, 1),0 1,Max k n y> − + − + < <α δ β γ  

we get,
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Equations similar to (2.11) are obtained when, 

( ) ( ) ( ), 1, 1 , 1 , , 1 , 1 , , 1Max k n k Max n n Max kδ α β γ β δ α γ γ δ α β> − + − + − + > − + − + > − +

In (2.10) by taking the limit when y→1-, we get the PDE;
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Fractional equation when x<0; t>0

For fractional equations when x<0; t>0, the equations (2.1) and 
(2.2) take respectively the form

( ) ( )
( )
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( )
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( )

, 1 , 1 , , 0
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k n j
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , 1 , , 0k n j
t x x xD u x t a D u x t D u x t b D u x tβ γ δα + − − + − − − − =              (2.14)

In this case reduction of FDE's to functional one's is not direct as 
done in sections 2.1 and 2.2.

Exact Solution of Fractional Burger's Equation
The First and second form to the fractional Burger's equation read

( ) ( ) ( ) ( )( )2 2 2, , , , 0
j

t u x t x u x t x u x t u x t
t x x x

γ γ γ− − −∂ ∂ ∂ ∂ + + = ∂ ∂ ∂ ∂ 

( ) ( ) ( ) ( )( )2 2 2, , , , 0
j

t u x t x u x t x u x t u x t
t x x x

γ γ γ− − −∂ ∂ ∂ ∂ + + = ∂ ∂ ∂ ∂ 

                   (3.1)

Hereafter, we confine ourselves to find the exact solutions of (3:1)2 
by using the extended unified method which had been suggested by the 
author, in collaboration [14-16]. It generalizes the unified method that 
unify all methods known in the literature for finding exact traveling 
wave solutions. By this method the solution of (3:1)2 is mapped to 
polynomial solutions, or to a rational function in an auxiliary function 
with first order linear or nonlinear auxiliary equations [17].

Polynomial solutions

We proceed by writing τ=tγ-1 assume that the solution of (3:1)2 takes 
the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

, , , , , , , , , , ,
j n j k j k

j j j
j j j

j j j
u x a x x x c x x x b x xττ τ ϕ τ ϕ τ τ ϕ τ ϕ τ τ ϕ τ

= = =

= = =

= = =∑ ∑ ∑           (3.2)

together with compatibility equation ( ) ( ), ,x xx xτ τϕ τ ϕ τ= . It is worth 
noticing that the last equation splits into 2k-1 equations when k≥2, 
and when substituting from the equation (3.2) into (3:1)2, we get 
n+2(k-1)+1 “principle”equations. The symbolic computations were 

respectively.

(2.4)

(2.11)(2.5)
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used to solve these two sets of equations via Mathematica or by any 
package. The balance and consistency conditions are respectively given 
by n=k-1 and 2k ≤ 7. Thus, solutions hold when k=2, 3.

3.1.1 When k=2

We list the steps of computations

Step 1. Solving the principle equations. These equations were solved 
respectively to get a1(x, t), bj(x, t),j=2, 1, 0.

Step 2. Solving the compatibility equations. They were solved to get 
a0(x, t) and c0(x, t), where two equations hold simultaneously.

Step 3. Solving the auxiliary equations, namely (3:2)2 is solved and 
(3:2)3 has to hold identically.

Step 4. Finding the exact solution by using (3:2)1: We found that

( ) ( )
1

1

30

2, , 1,a xu x t a t
a C x

γ
γ

γ

γ γ τ
τγ

−
−= = − =

+ −                                            (3.3)

where C30 is an arbitrary constant [14-16].

3.1.2 When k=3

By repeating the same steps of computations, we find that the 
solution in this case is 

( )( )( )
2 1
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2 , 1,
2 2

aC x a t
a C x C

γ
γ

γ

γ γ τ
γ τγ

−
−= − =

− + + − +                                   (3.4)

where C30 and C40 are constants.

Rational function solutions

In this case, we assume that the solution of (3:1)2 takes the form
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                 (3.5)

When substituting from the equation (3.5) into (3:1)2, we get 
n+2(k-1)+1+2r “principle” equations. The balance condition is 
n-r=k-1. As k≥1, and we require that n≤ r, then we take k=1, thus n=r. 
The consistency condition is n≤3.

3.2.1 When n=1

In this case we have r=1and two compatibility equations. For 
convenience we use the transformations

( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 1 0 0, , , , , , , ,p x A x q x p x A x q x B xτ τ τ τ τ τ τ= = +   (3.6)

When substituting from (3.6) into the principle equations we find 
that the function A(x, τ) satisfies the equation which it is required to 
solve it, namely (3.1)2. That is by using the equation (3.6)1 into the 
numerator in (3:5)1 and expanding, we find that it can be an auto-
Backlund transformation. In this respect we search for a particular 
solution A(x, τ)for (3.1)2, namely

( ) ( )
( )

1
0

0

,
A x

A x
γ

τ
τ τ

−+
=

+
                                                                        (3.7)

By using the same steps of computation, first the principle equations 
solve to bj(x, τ), j=1, 0 and then find c1(x, τ). The two compatibility 
equations were solved to get c0xx(x, τ) and c0x(x, τ). The compatibility 
equation between these two partial derivatives and the equation results 
was solved to get c0τ(x, τ): The compatibility equation between c0x(x, τ) 
and c0τ (x, τ) is constructed and it solves to c0(x, τ), where new equation 
obtained is identically equal to zero. The steps 3 and 4 in the case for 
polynomial solutions are directly used. We get the solution

( ) ( )
( )

1
40 50 0

50 0

,
1

aC C A x
u x

C

γ

τ
τ τ

−+ +
=

− + +                                                              (3.8)

where a is given in (3.4). In the case for finding rational solutions, 
the computation is very lengthy, the cases when n=2, 3 will not be 
considered here. We mention that we have verified that the solutions 
(3.3), (3.4) and (3.8) satisfy the equation (3:1)2.

Conclusion
Fractional evolution equations applied to functional partial 

differential equations with variable coefficients to get exact solutions. 
The method applied to fractional Burger's equation and some solutions 
of this equation found. We think that this work will allow to advance 
the study of applied analysis to solutions of fractional equations. Also, 
better viewing the behaviour of these solutions will be amenable that 
leads to better interpreting phenomena revealed by fractional equation 
modelling in the applied sciences.
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