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Abstract
The reduction of higher-dimensional theories over a coset space S/R is known to yield a residual gauge symmetry 

related to the number of R-singlets in the decomposition of S with respect to R. It is verified that this invariance is 
identical to that found by requiring that there is a subgroup of the isometry group with an action on the connection form 
that yields a transformation rule defined only on the base space. The Lagrangian formulation of the projection of the 
frame of global vector fields from S7 to the Lie group submanifold S3× S3 is considered. The structure of an octonionic 
Chern-Simons gauge theory is described.

Keywords: Fibre bundle; Dimensional reduction; Centralizer; Super
symmetry

Introduction
The geometrical formulation of classical Yang-Mills theory 

through principal bundles requires a fibre that is diffeomorphic to the 
structure group. Matter fields may be described by an associated vector 
bundle with the vector space forming a representation of the structure 
group. The geometry of a quantum theory and its anomalies has been 
developed by considering jet bundles with tangent vectors and higher-
order derivatives to the fibre.

The geometrical description of a Lagrangian field theory through 
fibre bundles has been achieved for Yang-Mills theories with arbitrary 
Lie groups representing gauge symmetries. The gauge field action may 
be expressed as the integral of the curvature form where the gauge 
potential is the connection of the bundle, while the actions of other 
matter fields consist of integrals of inner products of sections of vector 
bundles, where the vector space forms a representation of the gauge 
group [1]. This formalism has been extended to discrete groups [2].

Classical field theories may be formulated through tangent bundles 
with the Lagrangian invariant under transformations generated 
by vector fields along the fibre [3]. The characteristic classes of the 
principal bundle yields a sequence of topological gauge actions, which 
include the integral of Tr(F∧F) on a four-dimensional manifold that 
equals the Chern-Simons action on the boundary [4]. Generalized 
Chern-Simons forms have been given in a recursion formula in terms 
of the connection form [5].

The types of fibres which admit a connection transformation rule for 
a theory defined only on the base space must admit a global parallelism 
and have structure functions that are constant, requiring a quotient of 
a Lie group by a discrete subgroup [6]. When the fibre of a bundle is 
not a Lie group, the action of the isometry group of the fibre on the 
connection form yields a transformation rule that generally includes a 
fibre coordinate dependence. This generalized transformation reduced 
to the conventional rule for a subgroup such that the potentials are 
defined entirely on the base space.

Two methods for generalizing the transformation of the connection 
form in a principal bundle have been developed. The first, considered 
in this investigation, requires the existence of a transformation of the 
connection form, with values in the vertical subspace of the tangent 
space to the total space, under the isometry group of the fibre. The 
second consists of a projection of the vector fields on the fibre to a 
group submanifold. The example of the projection of the parallelism on 

S7 to S3× S3 provides a theoretical basis [6-8] for the effective number 
of vector bosons in the theory of the strong interactions [9]. The latter 
technique does not begin with an action, which may follow from a 
consideration of the initial formalism.

The dimensional reduction of a theory over a coset S/R can be 
achieved if the fields are invariant under S. The decomposition of the 
vector space representation of S into representations of R consists of 
singlet and nonsinglet states. The residual symmetry is determined 
by the number of singlet representations [10]. Equivalence with the 
subgroup derived by the action of the isometry group on the fibre 
would follow if the nonsinglet states have indices that must represent 
coordinates in the direction of the coset, and it is proven in §2. 
Therefore, a relation exists between the phenomenological model of the 
elementary particle forces with a geometrical description through fibre 
bundles and a Lagrangian field theory.

Generally, actions with an S7 symmetry do not exist in closed form 
because the antisymmetric combination of the structure constants 
that vanishes for a Lie algebra would equal a four-index symbol 
representing the nonassociativity of the octonions. There are other 
identities, however, which relate the products of structure constants 
and the four-index symbols or the products of the four-index symbols 
with the original set of constants. An integral equivalent to the Chern-
Simons action is demonstrated to be vary under transformations 
with generators proportional to the Gell-Mann matrices that can be 
identified the elements of the octonion algebra into an integral with this 
antisymmetric combination of structure constants. In the fibre bundle 
formulation, there is another integral of an inner product consisting 
of three vector fields on S7 transformations, which would transform 
in an integral consisting of global vector fields under a transformation 
represented by the Lie derivative along any global S7 vector field. 
Nevertheless, the four-index symbol will appear in the combination 
of vector fields in the variation of the interaction term and cause the 
action not to be invariant. The resolution of the absence of closure 
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under the variational transformations is given in §3 by a generalized 
Chern-Simons action consisting of an infinite number of interaction 
terms constructed with an S7 symmetry. This symmetry differs from 
S7 symmetries occurring within larger algebras such as the 7Ŝ  algebra 
of invariances of the heterotic string theory [11-13]. The residual 
symmetry groups in a bundle with a fibre diffeomorphic to S7 would 
represent gauge symmetries that result from a reduction sequence in a 
unified field theory with the bosons transforming under an S7 symmetry 
and the fermions belonging to the fundamental representation of the 
isometry group of an (SU(3)×U(1))/(U(1)′×U(1)″) manifold [3] under 
the gauge theoretical correspondence between G-invariant connections 
on G/H and principal bundle connections on N(H)/C(H) [14], where 
G=SU(4) and H=SU(3) and U(1)′×U(1)″ represents the different 
embeddings of U(1)×U(1) in SU(3)×U(1).

The Residual Symmetry Group
The relation between generalized dimensional reduction and 

the factorization of the fibre coordinate from the connection form 
transformation rule will be proven for fibre bundles with fibres that are 
coset space S/R, where S is the isometry group and R is the stabilizer. A 
vector field on S/R is S-invariant if Vµ(s(x))=Jµ

ρ (s, x)Vρ(x), where Jµ
ρ form 

a representation of S. By regarding an element of S as ( )exp z r  where 
r∈R and z Z∈ 

 , the Lie algebra in the sum =S R Z+   . and mapping the 
fields to a neighbourhood of the identity, it follows that R-invariance at 
the base point is necessary and sufficient for S-invariance over the coset 
space. Letting jµ

ρ (r)=Jµ
ρ (r, 0), the R-invariance in this neighbourhood 

is given by Vµ(y)=jµ
ρ (r) Vρ(y) [10].

Since nontrivial irreducible representations of R will leave invariant 
the vectors on S/R, the components of the vector fields on the base 
space are those that transform as singlets under R. A decomposition of 
the adjoint representation of S into irreducible representations of R will 
provide the gauge fields in the base space after dimensional reduction.

The examples of the seven-sphere as the coset spaces SO(8)/SO(7) 
and SU(4)/SU(3) will be considered.

Proposition 2.1

There are no trivial representations in the decomposition of SO(8) 
with respect to SO(7) representations. The number of conditions 
resulting from the independence of the connection transformation rule 
for SO(8)/SO(7) with respect to the fibre coordinate is finite. It exceeds 
the number of elements of the gauge matrix in the homogeneous term 
and the the residual gauge symmetry is given by the identity element.

Proof: The decomposition of the adjoint representation of the 
isometry group of the round seven-sphere is 28 21 7→ ⊕ . The absence 
of a singlet SO(7) representation in the decomposition of the adjoint 
representation of SO(8) causes there to be no residual gauge invariance 
in the four-dimensional theory after reduction from eleven dimensions [10].

The identical invariances are found when the transformation 
rule of the connection form is generalized to that of the action of an 
isometry group. If σ(x) represents the section of bundle E(M, G, F, π) 
and σ′(x)=σ(x).g(x), then

* * * ( )* 1 **
= ( )'

g y g g
R L L gσ ξ σ ξ ξ⋅ −⋅ ⋅ + ⋅                  (1)

and
1

* ( )* * * * 1 **
( ) = ( ) .'

y g g y g
L R L L gω σ ξ ω σ ξ ξ−

⋅ −⋅ ⋅ + ⋅                  (2)

With g*⋅ξ being the lift of the vector ξµ to the tangent space to the 
fibre at the coset g(x)H [7].

The independence of the in homogeneous term with respect to the 
fibre coordinate derived from the action of SO(8) on S7 would follow 
from that of the row vector y⋅(dABJAB)⋅(tL(y-1)T), where tL: S7→SO(8) is 
defined by yy′=y′tL(y) and {JAB} is the set of generators of SO(8) given by

( ) = {1         = , =
1         = , =

0           , , 

AB ijJ i A j B
i B j A

i j A B
−

≠

.

Identifying y with g(x)H, λy* is a composite mapping

Te(G)→Tg(x)(G)

↓

Tg(x)H(F)                                                                                       (3)

 And tL(y-1)T:Tg(x)H(F)→Te(F). At the identity e=(1,0,0,….,0), the 
tangent vector is (0c2c3c4c5c6c7). The twenty-one constraints on the 
coefficients dAB require the remaining generators to be

X1=J01−J23−J45−J67                                                                                     (4)

X2=J02−J13−J46−J57

X3=J03−J12−J47−J56

X4=J04−J15−J26−J37

X5=J05−J14−J27−J36

X6=J06−J17−J24−J35

X7=J07−J16−J26−J34

which may be transported to form a basis of smooth nonvanishing left-
invariant vector fields on the seven-sphere, given the embedding of S7 
into SO(8) [15]. The Killing vector fields on a coset space G/H represent 
generators of the isometry group G×N(H)/H. When G is the maximal 
transitive group of a constant curvature space, it includes every 
isometry and would be a subgroup of the diffeomorphism group [16]. 
The exponential maps of the tangent vector fields on S7 are elements in 
the isometry group SO(8) and represent diffeomorphisms.

The homogeneous term is

* * 1 *( )*
( ) = ( )g a gay y g
R Rµ µω σ ξ ω σ ξ−

⋅
⋅ ⋅                   (5)

Where =' '
y ay

L y y R . It remains to be established if 1( , ) = y y gh y g a ga−
⋅  

is independent of y for the = t XT i i
gR e .

Noting that

h00=1  (6)

hi 0=0 i=1,…,7
2 2

11 0 1 00 11 10 01 0 3 1 2 00 21 10 31 20 01 30 11= ( )( ) ( )( )h y y c c c c y y y y c c c c c c c c+ − + + − − +

+(y0y2−y1y3)(−c00c31−c10c21+c20+c01)

+(y0y5−y1y4)(−c00c11−c10c51+c40c01+ c50c11)
2 2

0 6 1 7 00 71 10 41 60 11 70 01 2 3 20 31 30 21( )( ) ( )( )y y y y c c c c c c c c y y c c c c+ − − − + + + + − +

+(y3y4−y2y5)(−c20c41−c30c51+c40c21+ c50c31)

+(y2y4−y3y5)(−c20c51−c30c41+c40c31+ c50c21)

+(y3y6−y2y7)(−c20c01−c30c11+c60c21+ c70c31)

+(y3y7−y2y6)(−c20c71−c30c61+c60c31+ c70c21)
2 2
4 5 40 51 50 41 5 6 4 7 40 61 50 71 60 41 70 51( )( ) ( )( )y y c c c c y y y y c c c c c c c c+ + − + + − − − + +
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2 2
5 7 4 6 40 71 50 61 60 51 70 41 6 7 60 71 70 61( )( ) ( )( )y y y y c c c c c c c c y y c c c c+ + − + − + + + − +

−((ci0,cj1)↔(ci2, cj3)+(ci0, cj1)↔ (ci4, cj5) + (ci0, cj1) (ci6, cj7))



There are 15 conditions from the y -independence of h11. Given 
an equal number of each of the elements hij, i, j=,…,7, the maximum 
number of equations for the coefficients of the matrix representing 
g is (64)(21)=1344. Although this number may be reduced by SO(8) 
relations and redundancies, the system will be overdetermined with no 
nontrivial solutions.

For S3, left and right multiplication by the group commute. The 
analogous identity does not hold for S7 and SO(8) matrices.

1 1 1( ) [ ( ) ] = ( ) ( ( )( ( ))'T T T 'T T T
L L L L Lg y G y g g y g g yι ι ι ι ι− − −⋅

     	     (7)

1 1= ( ) ( ) ( )'T T T T
L L Lg y g y gι ι ι− −

  

1 1[( ) ]'g y y g g− −↔ ⋅  

1 1( ( ) )'g y y g g− −≠ ⋅  

1= ( )'g g g− ⋅  

Then the matrix h(y, g) will be y -dependent unless the coefficients 
cij satisfy a set of relations to remove the fibre coordinate from 1

y y ga ga−
⋅

given the equation 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 = 1y y y y y y y y+ + + + + + + .

Proposition 2.2

The decomposition of the adjoint representation of SU(4) into 
the adjoint, fundamental and trivial representations of SU(3) includes 
a single one-dimensional factor. The set of conditions required for 
the independence of the inhomogeneous term in the connection 
transformation rule is given. The homogeneous term has no effect on 
the remaining component of the tangent vector to the fibre and the 
U(1) gauge symmetry.

Proof: The decomposition of the adjoint representation of SU(4) 
is 15 8 3 3 1→ ⊕ ⊕ ⊕ . There is a U(1) gauge invariance in four 
dimensions when the initial symmetry is SU(4) [10].

The isometry group of SU(4)/SU(3) is SU(4)/N(SU(3))/SU(3), and 
the dimension can be increased to the degree of symmetry of S7 with 
the round-sphere metric invariant under SU(8) [17]. Even though 
N(SU(3))/SU(3)U(1) [18], this U(1) factor is not required in a direct 
comparison with the reduction of the adjoint representation of SU(4). 
The group SU(4) can be embedded in SO(8), and therefore, it forms a 
subgroup of the diffeomorphism group of the sphere. With an Euler 
angle parameterization, let y=(y0+iy1 y2+iy3 y4+iy5 y6+iy7) and JA be the 
generators of SU(4):

1 2 3

0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0

= = =0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

J J J

     
     −     
     −
     

−     
     
     

     (8)

4 5 6

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

= = =0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

i i i
i

J J Ji
i

     
     
     
     
     
     
     
     

7 8 9

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

= = =0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

i
i i

J J J i

     
     −     
     −
     
     
     
     

10 11 12

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

= = =0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0

i
J J J

i

     
     
     
     
     

− −     
     
     

13 14 15

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

= = =0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

i
J J Ji i i

i i

     
     
     
     −
     

− −     
     
     

and
( )1 1 31

2 1 1 1( )( ( )) = (  iiT
A A Ly d J y cos cos cos e sin e δ σδι θ θ φ θ −− −

( )1 1 1
2 1 2 1 1        )i icos sin e cos cos sin eδ δ σθ θ θ θ φ −− −

7 1 4 2 5 3 6

1 4 7 14 8 9 10 11

2 5 8 9 14 15 12 13

3 6 10 11 12 13 15

id d id d id d id
d id id id d id d id
d id d id id id d id
d id d id d id id

+ + + 
 − + − + + + 
 − + − + − + +
 
− + − + − + − 
 
 

( )1 2 2 1 1
2 1 1 2 1 1 1 1 1

( )1 3
2 2

( ) ( )1 3 2 3
2 1 2 1 1

( )( ) 1 31 1
2 1 1 2 1 1 1

0 0

0

i i i i

i

i i

ii

cos cos cos e sin cos cos e sin cos e sin e

sin e cos

cos sin e sin sin e cos

cos cos sin e sin cos sin e sin sin

δ σ σ δ σ

δ σ

δ σ σ σ

σ σδ σ

θ θ φ θ θ φ θ φ φ

θ θ

θ θ θ θ θ

θ θ φ θ θ φ θ φ

− − − −

− −

− − −

−− −

−

− −

− − − ( )1 2 1
1 1

i ie cos eσ σ δφ−

 
 
 
 
 
 
 
 
 

Denoting this vector by (c0 c1 c2 c3), independence of c0 with respect 
to y requires

id7=−id7+id14=−id14+id15=−id15	   (9)

and

σ1=σ2=σ3=0	 (10)

d4=d5=d6=d9=d11=d13=0

or similar combinations

σ1=π2 σ2=σ3=0					              (11)

d3=d4=d5=d9=d10=d12=0;

1 2 3= 0 = = 0
2
πσ σ σ

D2=d4=d6=d8=d11=d12=0;	

1 2 3= = 0 =
2
πσ σ σ

d1=d5=d6=d9=d10=d13=0;

1 2 3= = = 0
2
πσ σ σ

d2=d3=d4=d8=d10=d13=0;

1 2 3= 2 = 0 =
2
πσ π σ σ



Citation: Davis S (2016) Reduction over Coset Spaces and Residual Gauge Symmetry. J Generalized Lie Theory Appl 10: 249. doi:10.4172/1736-
4337.1000249

Page 4 of 8

Volume 10 • Issue 1 • 1000249J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

d1=d3=d5=d8=d11=d12=0; 

1 2 3= 0 = =
2
πσ σ σ

d1=d2=d6=d9=d10=d12=0;

1 2 3= = =
2
πσ σ σ

D1=d2=d3=d9=d11=d13=0.

Consider the parameters which satisfy Eqs.(2.9) and (2.10). Then
1 1 1

1 1 1 1 8 1 10 1 1=        i i ic d cos cos e d sin e d cos sin eδ δ δθ φ θ θ φ+ +   (12)

which is independent of y if any of the following conditions hold:

d1=d8=d10=0                                                                                  (13)

θ1=π2 d8=0

φ1=π2 d8=0 d10=0

d1=0 θ1=0 d10=0

d1=0 d8=0 φ1=0

d1=0 θ1=0 φ1=0

φ1=π2 θ1=0 d10=0

Suppose that the first set of conditions are valid. It follows that

1 1
2 2 2 1 12 2 1= i ic d cos cos e d cos sin eδ δθ φ θ φ+  (14)

Again, c2 is independent of y if

d2=d12=0                  (15)

d2=0 φ1=0

1 12= = 0
2

dπφ

θ2=π2.

With the first choice,

1
3 3 2 1= .ic d cos cos e δθ θ                (16)

Then

D3=0  (17)

1 =
2
πθ

2 =
2
πθ

θ1=θ10 θ2=θ20 δ1=δ10.

Since c3 would vanish for the first three conditions, there would be 
no inhomogeneous term in the gauge transformation. Given the last set 
of relations, 2 10

3 3 20 10= ic d cos cos e δθ θ .

If 1 =
2
πθ  and d8=0,

c2 =[(y0+iy1)(id7)+(y2+iy3)(−d1+id4)+(y1+iy5)(−d2+id5)               (18)

2
6 7 3 6 1 1( )( )]  iy iy d id sin cos e σθ φ −+ + − +

+[(y0+iy1)(d2+id5)+(y2+iy3)(d8+id9)+(y4+iy5)(−d14+id15)

+(y6+iy7)(−d12+id13)]cosθ1

+[(y0+iy1)(d3+id6)+(y2+iy3)(d10+id11)+(y4+iy5)(d12+id13)

2
6 7 15 1 1( )( )]( )iy iy d sin sin e σθ φ −+ + − −

1 1
1 2 1 2 1 2= i id sin cos e d cos cos eδ δθ φ φ θ+

1 1
10 2 12 2 ,i id sin e d cos eδ δθ θ− +

which equals zero if d1=d2=d10=d12=0 or 2 =
2
πθ , 1 =

2
πφ  and d10=0. In 

the first instance, c3=0, and there is no gauge transformation. If two of 
the angles are fixed, 2 1

3 1= ic d e δ . Setting δ1=0 leaves no remaining U(1) 
gauge invariance.

With the choice 1 = ,
2
πφ  d8=0, d10=0

1 1 1
2 8 1 2 10 1 2 12 2=  .i i ic d sin cos e d sin sin e id cos eδ δ δθ θ θ θ θ− + +   (19)

Is independent of y if d12=0. There remain three nonvanishing 
group parameters d1, d2 and d3. It follows that 

c3=[(y0+iy1)(id7)+(y2+iy3)(−d1+id4)+(y4+iy5)(−d2+id5)+(y6+iy7)(−
d3+id6)]                 (20)

( )1 1
1  isin e δ σφ −

+[(y0+iy1)(d6+id6)+(y2+iy3)(d10+id11)+(y4+iy5)(d12+id13)+(y6+iy7)
(−d15)]

1
1

icos e δφ

When 1 =
2
πφ  and d8=d10=0,

21 1
3 1 2 2 1 2= i ic d sin e d sin cos eδ δθ θ θ+              (21)

2 1
3 1 2    .id cos cos e δθ θ+

If θ1=θ2=δ1=0, c3=d3. When 1 =
2
πθ , θ2=0 and θ2=0, c3=d2. However, 

since φ1 is fixed, there is no U(1) invariance remaining. Setting d3=0, 

2 =
2
πθ  and δ1=0, c3=d1. The coefficient d2 has not been set equal to 

zero, and yet, there is no angular variable for a second U(1) symmetry.

If d1=0, θ1=0 and d10=0, the remaining group parameters are d2, d3, 
d8 and d12. Then

1 1 1
2 2 2 1 8 2 12 2= i i ic d cos cos e d sin e d cos eδ δ δθ φ θ θ− +   (22)

and c2=0 if d2=d8=d12=0 or θ2=0 and d8=0. When d3 is the only non-
zero coefficient, 1

3 3 2 1 1= ( ) ic d cos sin cos e δθ φ φ+ , which equals 

d3 if θ2=0, φ1=0 or 1 =
2
πφ  and δ1=0, leaving no Euler angles for a gauge 

transformation. The coordinate c3 vanishes for 2 =
2
πθ .

Suppose that d1=d8=0 and φ1=0. The remaining group 
parameters are d2, d3, d10 and d12. Then 2 1

2 2 1 2= . ic d sin cos e δθ θ
11 2

10d isin sin e δ− θ θ , which is zero if d2=d10=0 or θ1=0. When d2=d10=0, 
1 1

3 3 1 2 1 2c d d12i icos cos e sin cos eδ δ= θ θ − θ θ . If θ1=θ2=δ1=0, c3=d3, while 

the Eulerangles 1 2 1, 0, 0
2

θ = θ = =
π δ  yield c3=d12. Although there are 

two non vanishing coefficients, there are no free anguler variables.

If d1=0, θ1=0 and φ1=0 , 1 1
2 8 2 12 2

i ic d sin e d cos eδ δ= − θ + θ . Let d8=0, 
such that 1 12 2

2 13 23 0
i icc d os e d sin eδ δθ − θ= . With θ2=0 and δ1=0, 

c3=d3, while c3=−d10 if 
2 2
θ =

π  and θ1=0. There are two non – zero 

coefficients and all of the angular variables have fixed values.

Finally, when 1 2
=
πφ , θ1=0 and d10=0, 1 1

2 8 2 12 2 .i ic d sin e d cos eδ δ= − θ + θ  

Setting d8=d12=0, 1 1
3 1 2 3 2

i ic d sin e d cos eδ δ= θ + θ . If θ2=0 or 2 2
π

θ =  

and, δ1=0, c3 is non vanishinhg and independent of the Eulerangles. 
Howevr, these variables and fixed and there is no freedom for a U(1) 
gauge transformation.
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If the parameters of the matrix ιL(y−1)T satisfy any set of conditions 
in Eq.(2.11), the same numbers of coefficients dA and phases σi are 
eliminated. Therefore, c1 has a similar form with different coefficients. 
The set of variables fixed by the independence of c1,c2 and c3 will be 
determined by the identical method.

Returning to the initial choice of values of the coefficients, 
independence of the homogeneous term follows from the equality 

of ( ) ( ) ( ) ( )1

1
3 3.

y .
TTT T T

y g Ly g
L R L exp d J y gι ι−

− =   with the identity, which 

follows from the unitarity derived from 

20 10 1 3 20 20 10 20 10 1 3

20 10 1 3 20 10 10 1 3

10 1 3 10 10 1 3

1 3 1 3

( ) ( )
( ) ( )

( ) 0 ( )
( ) 0 0 ( )

− − − − − 
 − − − 
 − − −
 

− − 
 
 

cos cos cos d sin cos sin cos cos sin d
sin cos cos d cos cos sin sin d

sin cos d cos sin sin d
sin d cos d

θ θ φ θ θ θ θ θ φ
θ θ φ θ θ θ φ

θ φ θ θ φ
φ φ

.

The transformation rule of the gauge potential would be

Aµ →Aµ+∂µd3 					                   (23)

which represents a U(1) gauge invariance.

The new feature of these calculations is the existence of a different 
residual gauge group given the same topology for the compact space 
inducing the dimensional reduction. It may be noted that SU(4)/SU(3) 
is a U(1) bundle over CP3. The number of U(1) factors in the fibre of 
the bundle G→S/R→B would determine the remaining abelian group 
invariance.

The isomorphism between the residual gauge symmetry resulting 
from reduction over a coset space and the invariance group derived 
from the reduction of the generalized transformation rule of the 
connection form, induced by the action of elements in the isometry 
group, to the base space will be proven.

Theorem 2.3

The residual symmetry group in generalized dimensional reduction 
over a coset space S/R coincides the the gauge group preserving the 
invariance of an action constructed from a connection form for a 
bundle E(M, S, S/R, π).

Proof: The centralizer of R in S, C(R), determines the number of 
R-singlets in the decomposition of the adjoint representation of S and 
the gauge group of the reduced theory [10]. The y-independence of the 
terms in the generalized connection transformation rule depends on 
that of 1

( )* * *y g g yL R L−
⋅ . When left on S/R and right multiplication on R 

within the group commute,
1 1 1 1= = .y g g y y g y g g y y gL R L L L R L L L R− − − −
⋅ ⋅ 			                 (24)

Therefore, the group elements in the centralizer would belong 
to the subgroup of the isometry group yielding a transformation 
rule independent of the fibre coordinate. Although inclusion in the 
centralizer is a sufficient for the gauge potential to be defined in the 
base space. The inhomogeneous term is the tangent mapping of a 
transformation which can be represented as

1( ) (( ( )) )T T
AB AB CD CD L EF EFy exp d J d J y exp d Jι −⋅ ⋅ ⋅ 	              (25)

1= ( ( )) ( ( )) ( ) .T
AB CD CD L EF EF Ly exp d JAB d J exp d J yι ι −−

When JAB belongs to the Lie algebra of the centralizer of R in S, the 
matrix representing y can be commuted through the linear combinator 
of generators to give

exp(−dABJAB)dCDJCDtL(exp(dEFJEF)),	      (26)

which is independent of y. The y -dependence can be removed from 
this matrix product only if these matrices commute. Therefore, the 
reduction of the symmetry group to the centralizer C(R) is necessary 
for gauge transformation to be defined in the base space. The residual 
gauge symmetry is identical with either method.

An exceptional fibre bundle E(M,Diff(S1),S1) has been found 
to satisfy the conditions for a factorization of the fibre-coordinate 
dependence from the transformation rule for the connection form [19]. 
Since the normalizer of U(1) in Diff(S1), the decomposition will yield an 
infinite number of independent generators of the residual gauge group 
U(1)×× U(1).

Parallelizability and Dimensional Reduction
The dimensional reduction of bosonic field theories over a coset 

manifold and the Lagrangian in four dimensions have been described 
for various gauge groups. The bosonic sector of the Weinberg-Salam 
model is derived by dimensional reduction of the six-dimensional Yang-
Mills action over S2. This model cannot be extended to include fermions 
because the expansion of fermion fields in generalized spherical 
harmonics with half-integer indices is prevented by the conditions on 
the gauge transformations derived from rotational invariance [20].

Supersymmetric Yang-Mills theory in six dimensions, therefore, 
cannot be consistently dimensionally reduced over S2. This result 
reflects the absence of a dimensional reduction of supersymmetric 
theories over manifolds that are not parallelizable. By contrast with the 
bosonic field, the fermion field requires a spin bundle which is defined 
as the square root of the frame bundle on a curved manifold. The field 
ψµ=emuaψa, where aeµ  is a vielbein on the manifold and ψa forms a 
representation of the spin covering of the tangent space group, exists 
only if the vielbein is smooth and nonvanishing. These properties of 
the frame of orthonormal tangent vectors require a global parallelism. 
A similar conclusion is found for spinors in four dimensions, which are 
defined if the second Stiefel-Whitney class vanishes [21].

The commutation relations of Killing vectors generating the 
isometry group of a coset manifold will remain consistent even though 
these vectors, which may be expanded in terms of an orthonormal 
basis, vanish at some point on this space. The Killing vectors only 
generate motion along the fibres, which is projected to the base space, 
and the reduced bosonic fields are required to form representations 
of the isometry group. The anticommutators of supercharges in 
a supersymmetric theory also would consist of generators of the 
isometry group. However, the supercharges transform bosonic fields to 
fermionic fields, and the vanishing of the lift of the tangent vector on 
the base space affects the existence of this transformation in the total 
space of the bundle. Consequently, supersymmetric theories must be 
dimensionally reduced over parallelizable spaces.

The reduction of higher-dimensional fields over coset manifolds 
has been formulated for supergravity [10]. The decomposition of S with 
respect to R is sufficient to determine the residual gauge symmetries 
for the bosonic sector since it is determined by the image of the initial 
gauge group in the invariance group of the tangent bundle. Since the 
fermionic sector would transform under the same group, the gauge 
symmetries of the entire set of fields are established. Not all of the 
supersymmetries have to be broken, and a supersymmetric theory may 
be derived under this generalized dimensional reduction. The singlet 
representations of R transform under the action of a U(1) subgroup, 
and therefore, the corresponding bundle has a parallelizable fibre. More 
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generally, the centralizer C(R) would have to be cast in the form of 
an isometry group of a parallelizable submanifold of the coset space. 
Then the dimensional reduction procedure will be consistently yield a 
Lagrangian in four dimensions.

The existence of a fibre bundle geometry for the phenomenological 
theory based on a projection of the vector fields on S7 to S3×S3 follows 
from the uniqueness of the lifting of the parallelism on the group 
submanifold to one higher dimension [22]. A Lagrangian for this 
model may be given by the reduction of an octonionic Chern-Simons 
theory to an SU(2)×SU(2) -invariant action, since the field equations 
are solved by flat connections required for a global parallelism on the 
internal symmetry space. The existence of a transformation from the 

SU(3) generators to octonions, where 
8

3
2
λ , iλ1, iλ2, iλ3, 52

i λ , 52
i λ , 

62
i λ−  and 72

i λ−  identified with OA, A=0,…,7, yields a generic gauge 

transformation = i OA Ag e α  [23]. The restriction to unit octonions 

would required 7 2
=0

= 1AA
α∑ . Closure of the algebra of SU(3) gauge 

transformations with structure constants is no longer valid for S7. The 
action of SU(3) would preserve the inner product of the octonions since 
it is included in the automorphism group G2. Consider the integral in 
an infinitesimal neighbourhood of a fixed point y0

( )0 3

7
0

= 23CS
Sy

I d xSc A dA A A A∧ + ∧ ∧∫ 		                  (27)
3= ( * ) 23 ]A B C

ABCd x Sc A A f A A Aµνρ
µ ν ρ ν ρ σε ∂ −∫

Where Sc(∑AxAOA)=x0, A=∑AAAOA and 2 = 1AA
A∑ , given that 

Sc(OAOBOC)=−fABC, A, B, C=1,..,7, which is independent of the order of 
the multiplication, even though {OA} is a basis for the octonions, since 
fABC is antisymmetric. Under the transformation

1 1A Aµ µ µ
− −→ + ∂ 				                 (28)

=1+εAOA

2(1 ) (1 ) ( )A B
A A A B C C D DA O O A O O O Oµ µ µε ε ε ε→ + − ∂ +

2= 2 ( )A B C
A ABC A A AA O f A O O Oµ µ µε ε ε− + ∂ +

2= 2 ( )A B C
A ABC A A AA O f A O O Oµ µ µε ε ε− + ∂ +

yielding the change in the components

2A A B
A ABC CA A f Aµ µ µ µε ε→ + ∂ + 			               (29)

Since the inverse of OA exists in a division algebra. The structure 
constants of the octonions do not satisfy the Jacobi identity and the 
variation of the integral will be

0 3 0 0 0 0 1 1 1 1

7
0

= [CS
Sy

I d x A A A A A A A Aµνρ
µ ν ρ µ ν ρ µ ν ρ µ ν ρδ ε δ δ δ δ∂ + ∂ − ∂ − ∂∫

7 7 7 7... A A A Aµ ν ρ µ ν ρδ δ− − ∂ − ∂

2 ( )]
3

A B C A B C A B C
ABCf A A A A A A A Aν ρ µ ν ρ µ ν ρδµ δ δ− + +

3 0 0
0 0

=1
= [ ( )A A

A Ad x A A A Aµνρ
µ ρ µ ν ρ µ ν ρ µ µ νε ε ε ε ε∂ + ∂ ∂ − ∂ ∂ + ∂ ∂∑∫

7

, , =1
2 [ ( )]B A A B C

ABC C ABC
A B C

f A A A f Aµ ν ρ µ µ ρε ε− ∂ + ∂∑

7 7

, , =1 , =1

2 [
3

D B C
ABC A ADE E

A B C D E
f f A A Aµ µ ν ρε ε

 
− ∂ + 

 
∑ ∑

7

, =1

A D C
B BDE E

D E
A f A Aµ µ ν ρε ε

 
+ ∂ + 

 
∑

7

, =1
]]B B D

C CDE E
D E

A A f Aµ ν ρ ρε ε
 

+ ∂ + 
 

∑
7

3

, , =1
= [ ( * ) 2 B B

ABC C
A B C

d x Sc A f A Aµνρ
µ ν ρ µ ρ νε ε ε∂ ∂ − ∂∑∫

7

, , =1
2 A B

ABC C
A B C

f A Aµ ν ρε− ∂∑

[ | | ] [ | | ] | | ]
2 (
3

D B C A D C
A BC A D E E A B C B D E Ef f A A A f f A A Aµ ν ρ µ ν ρε ε− +

[ | | | | ] )]A B D
AB C C D E Ef f A A Aµ µ ρ ε+

3
[ | | ]= { ( ( * )) 2 }.D B C

A BC A D E Ed x Sc A f f A A Aµνρ
µ ν ρ µ ν ρε ε ε∂ ∂ −∫

The nonvanishing of fA[BC f AD]E is the difference from 0

7
0

CS
Sy

Iδ  and 
the integral of a total derivative.

This Lagrangian will be invariant under infinitesimal transformations 
if {OA} is replaced by 0 1 2 3 4 5 6 7

2{ , , , , 2 , 2 ,2 ,2 }
3

O iO iO iO iO iO iO iO− − − − − , 

representing the Gell-Mann matrices, and the structure constants fabc 
for SU(3) are substituted for fABC. Then the Jacobi identity is valid and 
the gauge invariance of the transformed integral follows.

The combination fA[BC f AD]E may be identified with −ϕBCDE, where

[OA, OB, OC]=2ϕABCDOD. From the relations ff ∼ ϕ, fϕ ∼ f, ϕ f ∼ f 
and ϕϕ ∼ ϕ, the transformation and the Lagrangian may be modified 
to be δA(1)∼∂ε+fAε+ϕAAε and L(1)∼ε(AdA+fAAA+ϕAA), such that 

(1)( )intL ffAAA f AAAA fAA AAAδ ε ϕ ε ϕ ε ϕϕ ε+ + +

. If there is a 
cancellation between fAAAε and ϕϕAAAε, there remains fϕAAAAε 
and ϕ fAAε, yielding fAAε+ fAAAAε. Introducing a infinite series of 
interaction terms, with

(2) 2 1 2

=1 =1
[ ],m n

m n
L AdA f A Aε ϕ

∞ ∞
++ +∑ ∑ 		                (30)

the interaction terms in the variation would be

δL(1)∼ε[fAAε+ fAAAAε+ fAAAAAAε+...                                             (31)

+ϕAAAε+ϕAAAε+ϕAAAAAε+ϕAAAAAε+...]

and there may be cancellations except for the first term fAAε. Suppose 
that the term ϕε is included in transformation rule

δA(2)∼∂ε+ϕε+ fAε+ϕAAε.			                 (32)

Then
(2) 2 2 1

=2 =2
| [ ]m n
int

m n
L fAA A f A Aδ ε ϕε ϕ ϕε ε ϕ ε

∞ ∞
++ + +∑ ∑ 	              (33)

which reduces to ϕAε after the cancellation of the first term and the two 
series with the equivalent terms in Eq.(3.6). This term may be cancelled 
with the inclusion of fA in the Lagrangian

(3) 2 1 2

=0 =1
[ ]m n

m n
L AdA f A Aε ϕ ϕ

∞ ∞
++ +∑ ∑

		                (34)

Since

( ) | ( ) .intfA f fA AA A fAA fδ ε ϕε ϕ ε ϕ ε ε ε+ + + + 

	               (35)

The constant variation may be cancelled through the variation of an 
auxiliary field χ, with δχ=ε, in the Lagrangian

(4) 2 1 2

=0 =1
[ ].m n

m n
L AdA f A A fε ϕ ϕ χ

∞ ∞
++ + +∑ ∑ 	                               (36)
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The kinetic terms in the variation of the L(1) are

δL(1)kin∼∂ε∂A+A∂∂ε+fA∂Aε+ϕAA∂Aε+ϕAAA∂ε+fAA∂ε+ϕA∂ε.(37)

Cancellation of fAAε leaves fA∂Aε, ϕAA∂Aε and ϕAAA∂ε. The last 
term may be cancelled by the variation of δ(ϕAAAA) in L(2), while the 
other two terms require a change in the transformation rule

2 1 2

=0 =1
.r s

r s
A f A Aδ ε ε ϕ ε

∞ ∞
+∂ + +∑ ∑ 			                 (38)

Then the variation of the kinetic term in L(1) would yield also
2 1 2

=0 =1
[ ].r s

r s
f A A A Aε ε ϕ ε

∞ ∞
+ ∂ + ∂∑ ∑ 			                  (39)

Similarly, in L(2),

2 1 2

=1 =1
|m m

m m
f A f Aεδ ε

∞ ∞
+

∂
 

∂ 
 
∑ ∑

			                (40)

2 2 1

=1 =1
| .n n

n n
A Aεδ ϕ ϕ ε

∞ ∞
−

∂
 
 
 
∑ ∑

The two sums in Eq.(3.14) can be written as

2 2 2 1 2 1

=1 =1 =1 =1

r r s s

r r s s
f A f A A Aε ε ϕ ε ϕ ε

∞ ∞ ∞ ∞
+ +   

∂ − ∂ + ∂ −   
   
∑ ∑ ∑ ∑ 	              (41)

Giving a total derivative and a cancellation with the sums in 
Eq.(3.15). The effect of the series in Eq.(3.13) on fA and the sums in 
L(4) is

2 2 1 2 2 1

=0 =0 =1 =0

s r m r

s r m r
f A A Aε ϕ ε ϕ ε

∞ ∞ ∞ ∞
+ + ++ +∑ ∑ ∑∑ 	                              (42)

2 2 2 2 2 2 1

=1 =0 =1 =0 =1 =0
.m s n r n s

s s n r n s
f A f A Aε ε ϕ ε

∞ ∞ ∞ ∞ ∞ ∞
+ + + −+ + +∑∑ ∑∑ ∑∑

The series may cancel because the parity of the sums multiplying 
f and ϕ is unchanged. Since δ(fA)∂ ε=f∂ ε, it must be cancelled by the 
variation of f χ. Then the Lagrangian would be

(5) 2 1 2

=0 =1
[ ].m n

m n
L AdA f f A A fε χ ϕ ϕ χ

∞ ∞
++ ∂ + + +∑ ∑

	            (43)

Since εµ v has rank three, each term must have three tensor indices 
in the bracketed expression, which can be be arranged by including 
the normal vector nµ to the three-dimensional boundary of a four-
dimensional manifold and Anµ , a vector in the total bundle, to contract 
fibre coordinate indices.

Under global transformations, the elements OA would be replaced 
by vector fields Vα, α=1,…,7 and the commutators give rise to structure 
functions on the sphere. Replacing the structure functions at a point by 
global vector fields, the interaction term can be replaced by:

2 [ , ],
3

A A A V V Vµνρ α β γ
µ ν ρ α β γε 〈 〉 			               (44)

where Aα
µ  is not a constrained field. By contrast with the integral (3.1), 

the action of the vector field within the inner product can generate only 
other vector fields on the sphere through the Lie derivative. However, 
the commutators also would give a combination of vector fields with 
coefficients related to the four-index symbol ϕαβγδ. The closure of the 
variation of the action under transformations of the gauge potential 
again require an infinite series of interaction terms.

The projection of these vector field, nevertheless, yields the 
SU(2)×SU(2) algebra together with a seventh nonlinear vector field 
[7]. There also exists a G2-invariant Yang-Mills instanton in seven 
dimensions representing the internal coordinates of a heterotic string 

soliton [24], such that the SU(2)×SU(2) group after dimensional 
reduction over S3 would be a nonperturbative symmetry in a field 
theory with potentials in the tangent bundle of S7.

Conclusion
The equivalence of the residual symmetry group resulting from 

reduction of the transformation rule of a connection form in a bundle 
with a fibre diffeomorphic to a coset space and the isometry group as the 
structure group and the generalized dimensional reduction procedure 
for field theories is proven. The fibre-coordinate independence of the 
reduced transformation rule follows from the commutation of action 
of the parallelism with a subset of generators of the isometry group. 
Writing an element of the parallelism in terms of the coset rS, the 
relation rs⋅s′=s′rs″ requires only s′−1rSs′=rS, which is satisfied by the 
centralizer of C(R). Both methods yield a gauge group that is given by 
the centralizer of the tangent space group within the isometry group.

The exceptional bundle E(M, Diff(S1)/S1) does not belong to this 
category, because the fibre is S1 rather than Diff(S1)/S1. The existence 
of an infinitely generated residual symmetry group is equivalent to the 
action of the rotations along the B-cycles represented by generators 
of the Schottky group acting on a Riemann surface of infinite genus. 
The diffeomorphism on the boundary of the covering disk may be 
extrapolated to the interior, and therefore, the entire Riemann surface. 
The transformations on the surface which do not affect the Hilbert 
space of states on the ideal boundary then would be generated by this 
subgroup.

Supersymmetric theories admit a consistent dimensional reduction 
when the fibre is diffeomorphic to a parallelizable space. The residual 
symmetry group for the supersymmetric generalization of the 
exceptional bundle would be the supergroup U(11)×U(11)×…. The 
projection to a subgroup generating PSL(2, R) would yield only three 
U(11) factors. The effect of this supergroup on superstring states on 
the ideal boundary then may be determined.

Lagrangian field theories generally have Lie group symmetries 
and would not describe directly the phenomenology of the strong 
interactions related to an S7 symmetry algebra. An integral with 
an invariant categorical form under transformations generated by 
global vector fields on the sphere may be found in the fibre bundle 
formulation. The nonassociativity of the octonion algebra, however, 
causes the occurrence of four-index symbols in the coefficients and 
nonvanishing of the variation of the action. An invariant action is 
constructed by introducing an infinite sequence of interaction terms 
in the integral and the transformation rules. The connection between 
this theory and elementary particle phenomenology will require the 
corresponding (SU(3)×U(1))/(U(1)′×U(1)″) model for the fermions in 
the strong interactions.

References

1.	 Dreschler W, Mayer ME (1977) Fiber Bundles Techniques in Gauge Theories. 
Lect Notes Phys, Springer, Berlin 67.

2.	 Manton N (1987) Connections on Discrete Fibre Bundles. Commun Math Phys 
113: 341-351.

3.	 Mangiarotti L, Sardanashvily G (2000) Connections in Classical and Quantum 
Field Theory, World Scientific, Singapore.

4.	 Bleecker D (1981) Gauge Theory and Variational Principles. Bull Amer Math 
Soc (N.S.) 9: 83-92.

5.	 Gelfand IM, Smirnov MM (1994) The Algebra of Chern-Simons Classes, the 
Poisson Bracket on it, and the Action of the Gauge Group. Lie Theory and 
Geometry, Progress in Mathematics, Birkhäuser, Boston 123: 261-288.

http://www.springer.com/us/book/9783540083504
http://www.springer.com/us/book/9783540083504
http://projecteuclid.org/euclid.cmp/1104160217
http://projecteuclid.org/euclid.cmp/1104160217
http://projecteuclid.org/euclid.bams/1183550979
http://projecteuclid.org/euclid.bams/1183550979
http://dx.doi.org/10.1007/978-1-4612-0261-5_9
http://dx.doi.org/10.1007/978-1-4612-0261-5_9
http://dx.doi.org/10.1007/978-1-4612-0261-5_9


Citation: Davis S (2016) Reduction over Coset Spaces and Residual Gauge Symmetry. J Generalized Lie Theory Appl 10: 249. doi:10.4172/1736-
4337.1000249

Page 8 of 8

Volume 10 • Issue 1 • 1000249J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

6. Davis S (1987) A Constraint on the Geometry of Yang-Mills Theory. J Geom
Phys 4: 405-415.

7. Davis S (2005) Connections and Generalized Gauge Transformations. Int J
Geom Meth Mod Phys 2: 505-542.

8.	 Davis S (1988) Coset Space of the Unified Field Theory. Class Quant Grav 5: 27.

9. Davis S (2011) String Compactifications and the Regge Trajectories for 
Resonances of the Strong Interactions. Int J Pure Appl Math 70: 25-38.

10.	Manton N (1986) Dimensional Reduction of Supergravity. Ann Phys 167: 328-353.

11. Berkovits N (1990) A Geometrical Intepretation for the Symmetries of the Free
Green-Schwarz Heterotic Superstring. Phys Lett B 241: 497-502.

12.	Englert F, Sevrin A, Spindel Ph, Troost W, van Proeyen A (1988) Loop Algebras 
and Superalgebras based on S7. J Math Phys 29: 281-286.

13.	Osipov EP (1988) Sugawara’s Construction for Kac-Moody-Malcev Algebras.
Phys Lett B 214: 371-373.

14.	Adrianov AA, Novzhilov YV (1986) Correspondence Principle and Quantum
Gauge theories with Chiral Fermions. Lett Math Phys 31: 199-207.

15.	Wolf JA (1972) On the Geometry and Classification of Absolute Parallelisms. J 
Diff Geom 6: 317-342.

16.	Helgason S (1984) Groups and Geometric Analysis, Academic Press, New
York.

17.	Kobayashi S (1972) Transformation Groups in Differential Geometry. Springer-
Verlag, Berlin.

18.	Uchida F (1975) Smooth Actions of Special Unitary Groups on Cohomology
Complex Projective Spaces. Osaka J Math 12: 375-400.

19.	Davis S, The Generalized Geometric Structure of String Theory.

20.	Manton N (1981) Fermions and Parity Violation in Dimensional Reduction
Schemes. Nucl Phys B 193: 502-516.

21.	Geroch R (1968) Spinor Structure of Space-Time in General Relativity. J Math
Phys 9: 1739-1744.

22.	Petro J (1987) Great Sphere Fibrations of Manifolds. Rocky Mountain J Math
17: 865-886.

23.	Morita K (1981) Octonions, Quarks and QCD. Prog Theor Phys 65: 787-790.

24.	Günaydin M, Nicolai H (1995) Seven-Dimensional Yang-Mills Instanton and its
Extension to an Heterotic String Soliton. Phys Lett B 351: 169-172.

http://dx.doi.org/10.1016/0393-0440(87)90021-0
http://dx.doi.org/10.1016/0393-0440(87)90021-0
http://dx.doi.org/10.1142/S021988780500048X
http://dx.doi.org/10.1142/S021988780500048X
http://dx.doi.org/10.1088/0264-9381/5/1/011
http://citeweb.info/20112472451
http://citeweb.info/20112472451
http://dx.doi.org/10.1016/0370-2693(90)91859-A
http://dx.doi.org/10.1016/0370-2693(90)91859-A
http://dx.doi.org/10.1063/1.528065
http://dx.doi.org/10.1063/1.528065
http://dx.doi.org/10.1016/0370-2693(88)91379-2
http://dx.doi.org/10.1016/0370-2693(88)91379-2
http://dx.doi.org/10.1007/BF00400217
http://dx.doi.org/10.1007/BF00400217
https://projecteuclid.org/euclid.jdg/1214430496
https://projecteuclid.org/euclid.jdg/1214430496
http://www.springer.com/in/book/9783540586593
http://www.springer.com/in/book/9783540586593
https://projecteuclid.org/euclid.ojm/1200757863
https://projecteuclid.org/euclid.ojm/1200757863
http://dx.doi.org/10.1016/0550-3213(81)90343-6
http://dx.doi.org/10.1016/0550-3213(81)90343-6
http://dx.doi.org/10.1063/1.1664507
http://dx.doi.org/10.1063/1.1664507
http://dx.doi.org/10.1216/RMJ-1987-17-4-865
http://dx.doi.org/10.1216/RMJ-1987-17-4-865
http://dx.doi.org/10.1143/PTP.65.787
http://dx.doi.org/10.1016/0370-2693(95)00375-U
http://dx.doi.org/10.1016/0370-2693(95)00375-U

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	The Residual Symmetry Group 
	Proposition 2.1 
	Proposition 2.2 
	Theorem 2.3 

	Parallelizability and Dimensional Reduction 
	Conclusion 
	References 



