Refined Estimates on Conjectures of Woods and Minkowski-I

Kathuria L* and Raka M

Centre for Advanced Study in Mathematics, Panjab University, Chandigarh-160014, India

Abstract

Let ${ }^{\wedge}$ be a lattice in R^{n} reduced in the sense of Korkine and Zolotare having a basis of the form ($A_{1}, 0,0, \ldots, 0$), $\left(a_{2},{ }_{1}, A_{2}, 0, \ldots, 0\right), \ldots,\left(a_{n, 1}, a_{n, 2}, \ldots, a_{n, n-1}, A_{n}\right)$ where $A_{1}, A_{2}, \ldots, A n$ are all positive. A well known onjecture of Woods in Geometry of Numbers asserts that if $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}=1}$ and $\mathrm{A}_{i} \leq A_{1}$ for each i then any closed sphere in R^{n} of radius $\sqrt{n / 2}$ contains a point of \wedge. Woods' Conjecture is known to be true for $n \leq 9$. In this paper we obtain estimates on the Conjecture of Woods for $n=10 ; 11$ and 12 improving the earlier best known results of Hans-Gill et al. These lead to an improvement, for these values of n, to the estimates on the long standing classical conjecture of Minkowski on the product of n non-homogeneous linear forms.

MSC: 11H46; 11-04; 11J20; 11J37; 52C15.

Keywords: Lattice; Covering; Non-homogeneous; Product of linear forms; Critical determinant; Korkine and Zolotare reduction; Hermite's constant; Centre density

Introduction

Let $\mathrm{L}_{\mathrm{i}}=\mathrm{a}_{\mathrm{il}} \mathrm{x}_{1}+\ldots .+\mathrm{a}_{\mathrm{in}} \mathrm{x}_{\mathrm{n}} ; 1 \leq i \leq n$ be n real linear forms in n variables $\mathrm{x} 1 ;::: ;$ xn and having ${ }^{\mathrm{in}} \mathrm{determinant} \Delta=\operatorname{det}\left(\mathrm{a}_{\mathrm{ij}}\right) \neq 0$ The following conjecture is attributed to H. Minkowski:

Conjecture I: For any given real numbers $\mathrm{cl} ;::: ; \mathrm{cn}$, there exists integers x1; : : : ; xn such that

$$
\begin{equation*}
\left|\left(\mathrm{L}_{1}+\mathrm{c}_{1}\right) \ldots\left(\mathrm{L}_{\mathrm{n}}+\mathrm{c}_{\mathrm{n}}\right)\right| \leq \frac{1}{2 n}|\Delta| \tag{1.1}
\end{equation*}
$$

Equality is necessary if and only if after a suitable unimodular transformation the linear forms L_{i} have the form $2 c_{i} x_{l}$ for $1 \leq i \leq n$

This result is known to be true for $n \leq 9$ For a detailed history and the related results,

Minkowski's Conjecture is equivalent to saying that [1]

$$
M_{n} \leq \frac{1}{2 n}|\Delta|
$$

where $M_{n}=M_{n}(\Delta)$ is given by

$$
M_{n}=\operatorname{Sup}_{L_{1}, \ldots, L_{n}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right) \in \mathrm{R}^{\mathrm{n}}} \operatorname{Sup}_{\left(\mathrm{u}_{1}, \ldots \mathrm{u}_{n}\right) \in \sum^{\mathrm{n}}} \prod_{i=1}^{n}\left|L_{i}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right)+\mathrm{c}_{\mathrm{i}}\right|
$$

Chebotarev proved the weaker inequality

$$
\begin{equation*}
M_{n} \leq \frac{1}{2^{n / 2}}|\Delta| \tag{1.2}
\end{equation*}
$$

Since then several authors have tried to improve upon this estimate. The bounds have been obtained in the form

$$
\begin{equation*}
M_{n} \leq \frac{1}{v_{n} 2^{n / 2}}|\Delta| \tag{1.3}
\end{equation*}
$$

where $\mathrm{Vn}>1$. Clearly $v_{n} \leq 2^{n / 2}$ by considering the linear forms $\mathrm{Li}=x i$ and $c_{i}=\frac{1}{2}$ for $1 \leq i \leq n$ During 1949-1986, many authors such as Davenport, Woôds, Bombieri, Gruber, Skubenko, Andrijasjan, Il'in and Malyshev obtained V_{n} for large n . obtained $v_{n}=4-2(2-3 \sqrt{2 / 4})^{\mathrm{n}}-2^{-n / 2}$ for all n [2-4] improved Mordell's estimates for $6 \leq n \leq 31$ Hans-Gill et al. [12,14] got improvements on the results of [5-8] for $9 \leq n \leq 31$ Since recently $\mathrm{V}_{\mathrm{n}} 9=2^{9 / 2}$ has been established by the authors [9], we study Vn for $10 \leq n \leq 33$ in a series of three papers.

In this paper we obtain improved estimates on Minkowski's Conjecture for $\mathrm{n}=10 ; 11$ and 12. In next papers [10-12], we shall derive improved estimates on Minkowski's Conjecture for $n=13 ; 14 ; 15$ and for $16 \leq n \leq 33$ respectively [13-16]. For sake of comparison, we give results by our improved Vn in Table 1.

We shall follow the Remak-Davenport approach. For the sake of convenience of the reader we give some basic results of this approach. Minkowski's Conjecture can be restated in the terminology of lattices as : Any lattice \wedge of determinant $\mathrm{d}(\wedge)$ in Rn is a covering lattice for the set

$$
S:\left|\mathrm{x}_{1} \mathrm{x}_{2} \ldots . \mathrm{x}_{\mathrm{n}}\right| \leq \frac{d(\wedge)}{2^{n}}
$$

The weaker result (1.3) is equivalent to saying that any lattice \wedge of determinant $\mathrm{d}(\wedge)$ in Rn is a covering lattice for the set

$$
S:\left|\mathrm{x}_{1} \mathrm{x}_{2} \ldots . \mathrm{x}_{\mathrm{n}}\right| \leq \frac{d(\wedge)}{v_{n} 2^{n / 2}}
$$

Define the homogeneous minimum of \wedge as

$$
m_{H}(\wedge)=\inf \left\{\left|\mathrm{x}_{1} \mathrm{x}_{2} \ldots . \mathrm{x}_{\mathrm{n}}\right|: \mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \mathrm{x}_{\mathrm{n}}\right) \in \wedge, \mathrm{X} \neq o\right\}
$$

Proposition 1. Suppose that Minkowski Conjecture has been proved for dimensions $1,2, \ldots, n-1$: Then it holds for all lattices \wedge in Rn for which $\mathrm{MH}(\wedge)=0$.

Proposition 2. If \wedge is a lattice in Rn for $n \geq 3$ with $\operatorname{MH}(\wedge) \neq 0$ then there exists an ellipsoid having n linearly independent points of \wedge on its boundary and no point of \wedge other than O in its interior.

It is well known that using these results, Minkowski's Conjecture would follow from

[^0]| | Estimates by Mordell | Estimates by Il'in | Estimates by Hans-Gill et al | Our improved Estimates |
| :---: | :---: | :---: | :---: | :---: |
| n | V_{n} | V_{n} | V_{n} | V_{n} |
| 10 | 2.899061 | 3.47989 | 24.3627506 | 27.60348 |
| 11 | 2.973102 | 3.52291 | 29.2801145 | 33.47272 |
| 12 | 3.040525 | 3.55024 | 32.2801213 | 39.59199 |
| 13 | 3.102356 | 3.57856 | 34.8475153 | 45.40041 |
| 14 | 3.159373 | 3.60209 | 37.8038391 | 51.26239 |
| 15 | 3.21218 | 3.61116 | 40.905198 | 57.00375 |
| 16 | 3.261252 | 3.61908 | 44.3414913 | 57.4702 |
| 17 | 3.306972 | 3.63924 | 47.2339309 | 57.67598 |
| 18 | 3.349652 | 3.66176 | 46.7645724 | 57.38876 |
| 19 | 3.389556 | 3.66734 | 47.2575897 | 60.09339 |
| 20 | 3.426907 | 3.67236 | 46.8640155 | 58.48592 |
| 21 | 3.461897 | 3.67692 | 46.0522028 | 56.42571 |
| 22 | 3.494699 | 3.68408 | 43.6612034 | 53.94142 |
| 23 | 3.525464 | 3.68633 | 37.8802374 | 50.98842 |
| 24 | 3.55433 | 3.68978 | 32.5852958 | 47.74632 |
| 25 | 3.581421 | 3.69295 | 27.8149432 | 42.39088 |
| 26 | 3.606852 | 3.69589 | 23.0801951 | 38.8657 |
| 27 | 3.630729 | 3.70012 | 17.3895105 | 31.93316 |
| 28 | 3.653149 | 3.70263 | 12.9938763 | 26.10663 |
| 29 | 3.674203 | 3.70497 | 9.5796191 | 19.96254 |
| 30 | 3.693976 | 3.70867 | 6.7664335 | 16.06884 |
| 31 | 3.712547 | 3.72558 | 4.745972 | 11.23872 |
| 32 | 3.729989 | | | 8.325879 |
| 33 | 3.746371 | | | 5.411488 |

Table 1: The weaker result.

Conjecture II. If \wedge is a lattice in Rn of determinant 1 and there is a sphere $|\mathrm{X}|<\mathrm{R}$ which contains no point of \wedge other than O in its interior and has n linearly independent points of \wedge on its boundary then \wedge is a covering lattice for the closed sphere of radius $\sqrt{n / 4}$ Equivalently, every closed sphere of radius $\sqrt{n / 4}$ lying in Rn contains a point of \wedge.

They formulated a conjecture from which Conjecture-II follows immediately. To state Woods' conjecture, we need to introduce some terminology [17,18].

Let L be a lattice in Rn . By the reduction theory of quadratic forms introduced by a cartesian co-ordinate system may be chosen in Rn in such a way that L has a basis of the form [19-22],

$$
\left(\mathrm{A}_{1} ; 0 ; 0 ;::: ; 0\right) ;\left(\mathrm{a}_{2 ; 1} ; \mathrm{A}_{2} ; 0 ;::: ; 0\right) ;::: ;\left(\mathrm{a}_{\mathrm{n} ; 1} ; \mathrm{a}_{\mathrm{n}, 2} ;:: ; \mathrm{a}_{\mathrm{n} ; \mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}}\right)
$$

where A1;A2; : : : ;An are all positive and further for each $i=1 ; 2 ;::: ; n$ any two points of the lattice in $\mathrm{R}^{\mathrm{n}-i+1}$ with basis

$$
\left(\mathrm{A}_{\mathrm{i}} ; 0 ; 0 ;::: ; 0\right) ;\left(\mathrm{a}_{\mathrm{i}+1 ; \mathrm{i}} ; \mathrm{A}_{\mathrm{i}+1} ; 0 ;::: ; 0\right) ;::: ;\left(\mathrm{a}_{\mathrm{n} ; \mathrm{i}} ; \mathrm{a}_{\mathrm{n} ; \mathrm{i}+1} ;::: ; \mathrm{a}_{\mathrm{n} ; \mathrm{n}-1} ; \mathrm{A}_{\mathrm{n}}\right)
$$

are at a distance atleast Ai apart. Such a basis of L is called a reduced basis [23].

Conjecture III (Woods): If $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}=1$ and $A_{i} \leq A_{1}$ for each i then any closed sphere in Rn of radius $\sqrt{n / 2}$ contains a point of L .

Woods [10] proved this conjecture for $4 \leq n \leq 6$ Hans-Gill et al. [12] gave a unified proof of Woods' Conjecture for $n \leq 6$ Hans-Gill et al. [12,14] proved Woods' Conjecture for $n=7$ and $n=8$ and thus completed the proof of Minkowski's Conjecture for $\mathrm{n}=7$ and 8 Woods $[10,24]$ proved Conjecture and hence Minkowski's Conjecture for $n=9$. With the assumptions as in Conjecture III, a weaker result would be that

If $w_{n} \geq n$ any closed sphere in R^{n} of radius $\sqrt{w_{n} / 2}$ contains a point of $L[25,26]$.

Hans-Gill et al. [12,14] obtained the estimates w_{n} on Woods' Conjecture for $n^{3} \geq 9$ As $\mathrm{w}_{9}=9$ has been established by the authors [17] recently, we study w_{n} for $n^{3} \geq 10$ in a series of three papers. In this paper we obtain improved estimates w_{n} on Woods' Conjecture for $\mathrm{n}=10 ; 11$ and 12. In next papers $[18,19]$, we shall derive improved estimates w_{n} on Woods' Conjecture for $\mathrm{n}=13 ; 14 ; 15$ and for $16 \leq n \leq 33$ respectively. Together with the following result of Hans-Gill et al. [12], we get improvements of w_{n} for $n^{3} \geq 34$ also.

Proposition 3. Let L be a lattice in R^{n} with $A_{1} A_{2} \ldots A_{n}=1$ and $A_{i} \leq A_{1}$ for each i. Let $0<1_{\mathrm{n}} \leq A_{n}^{2} \leq m_{n}$ where l_{n} and m_{n} are real numbers. Then L is a covering lattice for the sphere $|\mathrm{x}| \leq \sqrt{w_{n}} / 2$ where Wn is defined inductively by

$$
w_{n}=\max \left\{\mathrm{w}_{\mathrm{n}-1} 1_{n}^{-1 / \mathrm{l}_{\mathrm{n}-1}}+\mathrm{l}_{\mathrm{n}}, \mathrm{w}_{\mathrm{n}-1} \mathrm{~m}_{n}^{-1 / m_{n-1}}+\mathrm{m}_{\mathrm{n}}\right\}
$$

Here we prove
Theorem 1. Let $\mathrm{n}=10 ; 11 ; 12$. If $\mathrm{d}(\mathrm{L})=\mathrm{A} 1::: \mathrm{An}=1$ and $A_{i} \leq A_{1}$ for $\mathrm{i}=2 ; \ldots ; \mathrm{n}$, then any closed sphere in Rn of radius $\sqrt{w_{n}} / 2$ contains a point of L, where $w_{10}=10.3, w_{11}=11.62$ and $w_{12}=13$.

The earlier best known values were $\mathrm{w}_{10}=10: 5605061, \mathrm{w}_{11}=11: 9061976$ and $\mathrm{w}_{12}=13: 4499927$.

To deduce the results on the estimates of Minkowski's Conjecture we also need the following generalization of Proposition 1

Proposition 4. Suppose that we know

$$
M_{j} \leq \frac{1}{v_{j} 2^{j / 2}|\Delta|} \text { for } 1 \leq j \leq n-1
$$

Let $\mathrm{V}_{\mathrm{n}}<\min \mathrm{V}_{\mathrm{k} 1} \mathrm{~V}_{\mathrm{k} 2} \ldots \mathrm{~V}_{\mathrm{ks}}$, where the minimum is taken over all $\left(\mathrm{k}_{\mathrm{1}} ; \mathrm{k}_{2} ; \quad ; \mathrm{k}_{\mathrm{s}}\right)$ such that $\mathrm{n}=\mathrm{k} 1+\mathrm{k} 2+:::+\mathrm{ks}$, ki positive integers for all i and $s^{3} \geq 2$. Then for all lattices in Rn with homogeneous minimum $\mathrm{MH}(<)=0$, the estimate V_{n} holds for Minkowski's Conjecture.

Since by arithmetic-geometric inequality the sphere $\left\{\mathrm{X} \in \mathrm{R}^{\mathrm{n}}:|\mathrm{X}| \leq \frac{\sqrt{w_{n}}}{2}\right\}$ is a subset of $\left\{\mathrm{X}:\left|\mathrm{x}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}\right| \leq \frac{1}{2^{n / 2}}\left(\frac{w_{n}}{2_{n}}\right)^{\mathrm{n} / 2}\right\}$ Propositions 2 and 4 immediately imply

Theorem 2: The values of Vn for the estimates of Minkowski's Conjecture can be taken as $\left(\frac{2 n}{w_{n}}\right)^{n / 2}$

For $10 \leq n \leq 33$ these values are listed in Table 1. In Section 2 we state some preliminary results and in Sections 3-5 we prove Theorem 1 for $\mathrm{n}=10 ; 11$ and 12 .

Preliminary Results and Plan of the Proof

Let L be a lattice in Rn reduced in the sense of Korkine and Zolotare. Let (Sn) denotes the critical determinant of the unit sphere $\Delta \mathrm{Sn}$ with centre O in R^{n} i.e.
$\Delta\left(\mathrm{S}_{\mathrm{n}}\right)=\operatorname{Inf}\left\{\mathrm{d}(\wedge): \wedge\right.$ has no point other than O in the interior of $\left.\mathrm{S}_{\mathrm{n}}\right\}$
Let γ_{n} be the Hermite's constant i.e. γ_{n} is the smallest real number such that for any positive de nite quadratic form Q in n variables of determinant D, there exist integers $u_{1} ; u_{2} ; \ldots ; u_{n}$ not all zero satisfying

$$
Q\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{n}}\right) \leq \gamma_{\mathrm{n}} D^{1 / n}
$$

It is well known that We write $\mathrm{A}_{\mathrm{i}}^{2}=\mathrm{Bi}$.
We state below some preliminary lemmas. Lemmas 1 and 2 are due to Woods [25], Lemma 3 is due to Korkine and Zolotare [21] and Lemma 4 is due to Pendavingh and Van Zwam [24]. In Lemma 5, the cases $\mathrm{n}=2$ and 3 are classical results of Lagrange and Gauss; $\mathrm{n}=4$ and 5 are due to Korkine and Zolotare [21] while $n=6 ; 7$ and 8 are due to Blichfeldt [3].

Lemma 1. If $2 \Delta\left(\mathrm{~S}_{\mathrm{n}+1}\right) \mathrm{A}_{1}^{n} \geq d(\mathrm{l})$ then any closed sphere of radius

$$
R=A_{1}\left(1-\left\{\mathrm{A}_{1}^{n} \Delta\left(\mathrm{~S}_{\mathrm{n}+1}\right) / \mathrm{d}(\mathrm{~L})\right\}^{2}\right)^{1 / 2}
$$

in R^{n} contains a point of L.
Lemma 2. For a Fixed integer i with $1 \leq i \leq n-1$ denote by L_{1} the lattice in R^{i} with reduced basis

$$
\left(\mathrm{A}_{1}, 0, \ldots, 0\right),\left(\mathrm{a}_{2,1}, \mathrm{~A}_{2}, 0, \ldots, 0\right), \ldots,\left(\mathrm{a}_{\mathrm{i}, 1}, \mathrm{a}_{\mathrm{i}, 2}, \ldots, \mathrm{a}_{\mathrm{i}, \mathrm{i}-1}, \mathrm{~A}_{\mathrm{i}}\right)
$$

and denote by L 2 the lattice in $\mathrm{R}^{\mathrm{n}-\mathrm{i}}$ with reduced basis

$$
\left(\mathrm{A}_{\mathrm{i}+1} ; 0 ; \quad ; 0\right) ;\left(\mathrm{a}_{\mathrm{i}+2 ; ;+1 ;} ; \mathrm{A}_{\mathrm{i}+2} ; 0 ; \quad ; 0\right) ; \quad ;\left(\mathrm{a}_{\mathrm{n}, \mathrm{i}+1} ; \mathrm{a}_{\mathrm{n}, i+2} ; \quad ; \mathrm{a}_{\mathrm{n} ; \mathrm{n}-1} ; \mathrm{A}_{\mathrm{n}}\right)
$$

If any closed sphere in R_{i} of radius $r 1$ contains a point of L_{1} and if any closed sphere in R_{n-i} of radius r_{2} contains a point of L_{2} then any closed sphere in $R n$ of radius $\left(r_{1}^{2}+r_{2}^{2}\right)^{1 / 2}$ contains a point of L :

Lemma 3. For all relevant i,

$$
\begin{equation*}
B_{i+1} \geq \frac{3}{4} B_{i} \text { and } B_{i+2} \geq \frac{2}{3} B_{i} \tag{2.1}
\end{equation*}
$$

Lemma 4. For all relevant i,

$$
\begin{equation*}
B_{i+4} \geq(0.46873) B_{i} \tag{2.2}
\end{equation*}
$$

Throughout the paper we shall denote 0.46873 by ε.

Lemma 5. $\Delta\left(\mathrm{S}_{\mathrm{n}}\right)=\sqrt{3 / 2}, 1 / \sqrt{2}, 1 / 2 \sqrt{2}, \sqrt{3 / 8}, 1 / 8$ and $1 / 16$ for $\mathrm{n}=2 ; 3 ; 4$; 5;6;7 and 8 respectively:

Lemma 6. For any integer $s ; 1 \leq s \leq n-1$

$$
\begin{align*}
& B_{1} B_{2} \ldots B_{s-1} B_{s}^{n-s+1} \leq \gamma_{n-s+1}^{n-s+1} \quad \text { and } \\
& B_{1} B_{2} \ldots B_{s} \leq\left(\gamma_{n}^{\frac{1}{n-1}} \gamma_{n-1}^{\frac{1}{n-2}} \ldots \gamma_{n-s+1}^{n-s}\right)^{\mathrm{n}-\mathrm{s}} \tag{2.4}
\end{align*}
$$

This is Lemma 4 of Hans-Gill et al. [12].
Lemma 7.

$$
\begin{equation*}
\left\{(8.5337)^{\frac{1}{5}} \gamma_{n}^{\frac{1}{n-1}} \gamma_{n-1}^{\frac{1}{n-2}} \ldots \gamma_{6}^{\frac{1}{5}}\right\}^{-1} \leq B_{n} \leq \gamma_{n-1}^{\frac{n-1}{n}} \tag{2.5}
\end{equation*}
$$

This is Lemma 6 of Hans-Gill et al. [14].
Remark 1. Let
$\delta_{n}=$ the best centre density of packings of unit spheres in R^{n};
$\delta_{n}^{*}=$ the best centre density of lattice packings of unit spheres in R^{n} :

Then it is known that

$$
\begin{equation*}
\gamma_{n}=4\left(\delta_{n}^{*}\right)^{\frac{2}{n}} \leq 4\left(\delta_{n}\right)^{\frac{2}{n}} \tag{2.6}
\end{equation*}
$$

δ_{n}^{*} and hence δ_{n} is known for $n \leq 8$ Also $\gamma_{24}=4$ has been proved by Cohn and Kumar [6]. For $9 \leq n \leq 12$ using the bounds on δ_{n} given by Cohn and Elkies [5] and inequality (2.6) we find that $\gamma_{9} \leq 2.1326324$, $\gamma_{10} \leq 2.2636302, \gamma_{11} \leq 2.3933470, \gamma_{12} \leq 2.5217871$

We assume that Theorem 1 is false and derive a contradiction. Let L be a lattice satisfying the hypothesis of the conjecture. Suppose that there exists a closed sphere of radius $\sqrt{w_{n} / 2}$ in R^{n} that contains no point of L in R^{n}.

Since $B_{i}=A^{2}$ and $d(L)=1$; we have $B_{1} B_{2}::: B_{n}=1$:
We give some examples of inequalities that arise. Let L 1 be a lattice in R 4 with basis $\left(\mathrm{A}_{1} ; 0 ; 0 ; 0\right),\left(\mathrm{a}_{2 ; 1} ; \mathrm{A}_{2} ; 0 ; 0\right) ;\left(\mathrm{a}_{3 ; 1} ; \mathrm{a}_{3,2} ; \mathrm{A}_{3} ; 0\right) ;\left(\mathrm{a}_{4 ; 1} ; \mathrm{a}_{4 ; 2} ; \mathrm{a}_{4 ; 3} ; \mathrm{A}_{4}\right)$; and L_{i} for $2 \leq i \leq n$ be lattices in R 1 with basis $(\mathrm{Ai}+3)$. Applying Lemma 2 repeatedly and using Lemma 1 we see that if $2 \Delta\left(\mathrm{~S}_{5}\right) \mathrm{A}_{1}^{4} \geq A_{1} A_{2} A_{3} A_{4}$ then any closed sphere of radius

$$
\left(\mathrm{A}_{1}^{2}-\frac{A_{1}^{10} \Delta\left(\mathrm{~S}_{5}\right)^{2}}{A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2}}+\frac{1}{4} \mathrm{~A}_{5}^{2}+\ldots+\frac{1}{4} \mathrm{~A}_{n}^{2}\right)^{1 / 2}
$$

contains a point of L : By the initial hypothesis this radius exceeds $\sqrt{w_{n}} / 2$ Since $\Delta\left(\mathrm{S}_{5}\right)=1 / 2 \sqrt{2}$ and $B_{1} B_{2} \ldots . B_{n}=1$ this results in the conditional inequality : if $B_{1}^{4} B_{5} B_{6} \ldots \mathrm{~B}_{n} \geq 2$ then

$$
\begin{equation*}
4 B_{1}-\frac{1}{2} B_{1}^{5} B_{5} B_{6} \ldots B_{n}+B_{5}+B_{6}+\ldots+B_{n}>w_{n} \tag{2.7}
\end{equation*}
$$

We call this inequality $(4 ; 1 ; \ldots ; 1)$; since it corresponds to the ordered partition $(4 ; 1 ; \ldots ; 1)$ of n for the purpose of applying Lemma 2. Similarly the conditional inequality $(1 ; \ldots ; 1 ; 2 ; 1 ; \ldots ; 1)$ corresponding to the ordered partition $(1 ; \ldots ; 1 ; 2 ; 1 ; \ldots ; 1)$ is : if $2 B_{i} \geq B_{i+1}$ then

$$
\begin{equation*}
B_{1}+\ldots+B_{i-1}+4 B_{i}-\frac{2 B_{i}^{2}}{B_{i+1}}+B_{i+2}+\ldots+B_{n}>w_{n} \tag{2.8}
\end{equation*}
$$

Since $4 B_{i}-\frac{2 B_{i}^{2}}{B_{i+1}} \leq 2 B_{i+1}$, (2.8) gives
$B_{1}+\ldots+B_{i-1}+2 B_{i+1}+B_{i+2}+\ldots+B_{n}>W_{n}:$

One may remark here that the condition $2 B_{i} \geq B_{i+1}$ is necessary only if we want to use inequality (2.8), but it is not necessary if we want to use the weaker inequality (2.9). This is so because if $2 B_{i}<B_{i+1}$, using the partition $(1 ; 1)$ in place of (2) for the relevant part, we get the upper bound $2 \mathrm{Bi}+\mathrm{B}_{\mathrm{i}+1}$ which is clearly less than $2 \mathrm{~B}_{\mathrm{i}+1}$. We shall call inequalities of type (2.9) as weak inequalities and denote it by $(1 ; \ldots ; 1$; $2 ; 1 ; \ldots ; 1)_{\text {w }}$.

If $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ is an ordered partition of n , then the conditional inequality arising from it, by using Lemmas 1 and 2, is also denoted by $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ If the conditions in an inequality $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ are satisfied then we say that $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}\right)$ holds. Sometimes, instead of Lemma 2, we are able to use induction. The use of this is indicated by putting $\left(^{*}\right)$ on the corresponding part of the partition. For example, if for $\mathrm{n}=10, \mathrm{~B} 5$ is larger than each of $\mathrm{B} 6 ; \mathrm{B} 7 ; \ldots ; \mathrm{B} 10$, and if $\frac{B_{1}^{3}}{B_{1} B_{3} B_{4}}>2$ the inequality $\left(4 ; 6^{*}\right)$ gives

$$
\begin{equation*}
4 B_{1}-\frac{1}{2} \frac{B_{1}^{3}}{B_{1} B_{3} B_{4}}+6\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}\right)^{-1 / 6}>w_{10} \tag{2.10}
\end{equation*}
$$

In particular the inequality $\left((\mathrm{n}-1)^{\star} ; 1\right)$ always holds. This can be written as

$$
\begin{equation*}
w_{n-1}\left(\mathrm{~B}_{\mathrm{n}}\right) \frac{-1}{(\mathrm{n}-1)}+B_{n}>W_{n} \tag{2.11}
\end{equation*}
$$

Also we have $B_{1} \geq 1$ because if $\mathrm{B}_{1}<1$, then $B_{i} \leq B_{1}<1$ for each I contradicting $\mathrm{B} 1 \mathrm{~B} 2::: \mathrm{Bn}=1$.

Using the upper bounds on and the inequality (2.5), we obtain numerical lower and upper bounds on Bn , which we denote by \ln and mn respectively. We use the approach of Hans-Gill et al. [14], but our method of dealing with

Is somewhat different. In Sections 3-5 we give proof of Theorem 1 for $\mathrm{n}=10 ; 11$ and 12 respectively. The proof of these cases is based on the truncation of the interval [$\ln ; \mathrm{mn}]$ from both the sides.

In this paper we need to maximize or minimize frequently functions of several variables. When we say that a given function of several variables in $\mathrm{x} ; \mathrm{y}$; is an increasing/decreasing function of $\mathrm{x} ; \mathrm{y} ; \ldots$, , it means that the concerned property holds when function is considered as a function of one variable at a time, all other variables being fixed.

Proof of Theorem 1 for $\mathbf{n}=\mathbf{1 0}$

Here we have $\mathrm{W}_{10}=10: 3, \mathrm{~B}_{1}<\gamma_{10}<2: 2636302$. Using (2.5), we have $110=0: 4007<\mathrm{B} 10<1: 9770808=\mathrm{m}_{10}$.

The inequality $\left(9^{*} ; 1\right)$ gives $9(\mathrm{~B} 10)^{\frac{-1}{9}}+\mathrm{B} 10<10: 3$. But for 0:4398 B10 1:9378, this inequality is not true. Hence we must have either $\mathrm{B} 10<0: 4398$ or $\mathrm{B} 10>1: 9378$. We will deal with the two cases $0: 4007<$ B10<0:4398 and 1:9378<B10<1:9770808 separately:

$0: 4007<\mathrm{B}_{10}<0: 4398$

Using the Lemmas 3 \& 4 we have:

$$
\left\{\begin{array}{lll}
B_{9} \leq \frac{4}{3} B_{10}<0.5864 & B_{8} \leq \frac{3}{2} B_{10}<0.6597 & B_{7} \leq 2 B_{10}<0.8796 \\
B_{6} \leq \frac{B_{10}}{\varepsilon}<0.9383 & B_{5} \leq \frac{4}{3} \frac{B_{10}}{\varepsilon}<1.2511 & B_{4} \leq \frac{3}{2} \frac{B_{10}}{\varepsilon}<1.4075 \\
B_{3} \leq \frac{2 B_{10}}{\varepsilon}<1.8766 & B_{2} \leq \frac{B_{10}}{(\varepsilon)^{2}}<2.0018 &
\end{array}\right.
$$

Claim(i) $\mathrm{B}_{2}>1: 7046$

The inequality (2;2;2;2;2)w gives $2 \mathrm{~B}_{2}+2 \mathrm{~B}_{4}+2 \mathrm{~B}_{6}+2 \mathrm{~B}_{8}+2 \mathrm{~B}_{10}>10: 3$. Using (3.1), we find that this inequality is not true for $\mathrm{B}_{2} \leq 1: 7046$. Hence we must have $B_{2}>1: 7046$.

Claim(ii) $\mathrm{B}_{2}<1: 8815$
Suppose $B_{2} \geq 1.8815$ then using (3.1) and that $B_{6} \geq \varepsilon B_{2}$ we find that $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ and $\frac{B_{6}^{3}}{B_{7} B_{8} B_{9}}>2$ So the inequality $(1,4,4,1)$ holds, i.e. $\mathrm{B}_{1}+4 \mathrm{~B}_{2}-$
$\frac{1}{2} \frac{B_{2}^{4}}{B_{3} B_{4} B_{5}}+4 B_{6}-\frac{1}{2} \frac{B_{2}^{4}}{B_{7} B_{8} B_{9}}+B_{10}>10.3$ Applying AM-GM inequality we get
$B_{1}+4 B_{2}+4 B_{6}+B_{10}-\sqrt{B_{2}^{5} B_{6}^{5} B_{1} B_{10}}>10.3$ Now since
$\varepsilon^{2} B_{2} \leq B_{10}<0.4398 \quad B_{6} \geq \varepsilon B_{2}, B_{1} \geq B_{2}$ and $B_{2} \geq 1.8815$ we find that the left side is a decreasing function of B_{10} and B_{6}. So replacing B_{10} by $\varepsilon^{2} B_{2}$ and by εB_{2} we get $\varnothing_{1}=B_{1}+\left(4+4 \varepsilon+\varepsilon^{2}\right) B_{2}-\sqrt{(\varepsilon)^{7} B_{2}^{11} B_{1}}>10.3$ Now the left side is a decreasing function of B2, so replacing B2 by 1.8815 we find that $\varnothing_{1}<10.3$ for $1<\mathrm{B}_{1}<2: 2636302$, a contradiction. Hence we must have $\mathrm{B}_{2}<1: 8815$.

Claim (iii) $\mathrm{B}_{3}<1: 5652$
Suppose $B_{3} \geq 1.5652$ From (3.1) we have $\mathrm{B}_{4} \mathrm{~B}_{5} \mathrm{~B}_{6}<1: 6524$ and $\mathrm{B}_{8} \mathrm{~B}_{9} \mathrm{~B}_{10}$ $<0: 1702$, so we find that $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ and $\frac{B_{7}^{3}}{B_{8} B_{9} B_{10}} \geq \frac{\left(\varepsilon B_{3}\right)^{3}}{B_{8} B_{9} B_{10}}>2$ for $\mathrm{B}_{3}>1: 49$.

Applying AM-GM to inequality $(2,4,4)$ we get $4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+4 B_{3}+4 B_{7}-\sqrt{B_{3}^{5} B_{7}^{5} B_{1} B_{2}}>10.3 \quad$ Since $\quad B_{1} \geq B_{2}>1.7046, B_{7} \geq \varepsilon B_{3}$ and $B_{3} \geq 1.5652$ we find that left side is a decreasing function of B_{1} and B_{7}. So we replace B_{1} by B_{2}, B_{7} by εB_{3} and get that $\varnothing_{2}=2 B_{2}+4(1+\varepsilon) \mathrm{B}_{3}-\sqrt{(\varepsilon)^{5} B_{3}^{10} B_{2}^{2}}>10.3$.

But left side is a decreasing function of B3, so replacing B3 by 1.5652 we find that $\varnothing_{2}<10.3$ for $1: 7046<\mathrm{B}_{2}<1: 8815$, a contradiction. Hence we must have $\mathrm{B}_{3}<1: 5652$.

Claim (iv) $\mathrm{B} 1>1: 9378$

Suppose $B_{1} \leq 1.9378$ Using (3.1) and that $\mathrm{B} 3<1: 5652, \mathrm{~B} 2>1: 7046$, we find that B_{2} is larger than each of $B_{3} ; B 4 ; \ldots ; B 10$. So the inequality $\left(1 ; 9,{ }^{*}\right)$ holds. This gives $B_{1}+9\left(B_{1}\right)^{-1 / 9}>10.3$ which is not true for $B_{1} \leq 1.9378$ So we must have $\mathrm{B}_{1}>1: 9378$.

Claim (v) B3<1:5485

Suppose $B_{3} \geq 1.5485$ We proceed as in Claim(iii) and replace B_{1} by 1.9378 and B_{7} by εB_{3} to get that

$$
\varnothing_{3}=4(1.9378)-\frac{2(1.9378)^{2}}{B_{2}}+4(1+\varepsilon) \mathrm{B}_{3}-\sqrt{(\varepsilon)^{5}(1.9378) \mathrm{B}_{3}^{10} B_{2}}>10.3 \quad \text { One }
$$

easily checks that $\varnothing_{3}<10.3$ for $1.5485 \leq B_{3}<1: 5652$ and 1:7046< $\mathrm{B}_{2}<1: 8815$. Hence we have $\mathrm{B}_{3}<1: 5485$.

Claim (vi) $\mathrm{B}_{1}<2: 0187$
Suppose $B_{1} \geq 2.0187$ Using (3.1) and Claims (ii), (v) we have $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}<4$:11. Therefore $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ As $B_{5} \geq \varepsilon B_{1}>0.9462$ we see
using (3.1) that B_{5} is larger than each of $\mathrm{B}_{6} ; \mathrm{B}_{7}, \ldots ; \mathrm{B}_{10}$. Hence the inequality $\left(4 ; 6,{ }^{*}\right)$ holds. This gives $\varnothing_{4}=4 B_{1}-\frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+6\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}\right)^{-1 / 6}>10.3$ Left side is an increasing function of $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ and decreasing function of B1. So we can replace $B_{2} B_{3} B_{4}$ by $4: 11$ and $B 1$ by 2.0187 to find $\varnothing_{4}<10.3$ a contradiction. Hence we have $\mathrm{B}_{1}<2: 0187$.

Claim (vii) $\mathrm{B}_{4}<1: 337$

Suppose $B_{4} \geq 1.337$ then using (3.1) we get $\frac{B_{4}^{3}}{B_{5} B_{6} B_{7}}>2$ Applying
IGM to inequality $(1,2,4,2,1)$ we have

$$
B_{1}+4 B_{2}-\frac{2 B_{2}^{2}}{B_{3}}+4 B_{4}+4 B_{8}+B_{10}-2 \sqrt{B_{4}^{5} B_{8}^{5} B_{1} B_{2} B_{3} B_{10}}>10.3
$$

Since $B_{2}>1: 7046 \quad B_{3} \geq \frac{3}{4} B_{2}, B_{4} \geq 1.337 B_{8} \geq \varepsilon B_{4}$ and $B_{10} \geq \frac{2 \varepsilon}{3} B_{4}$ we find that left side is a decreasing function of B_{2}, B_{8} and B_{10}. So we can replace B_{2} by $1.7046 ; \mathrm{B}_{8}$ by εB_{4} and B_{10} by $\frac{2 \varepsilon}{3} B_{4}$ to get

$$
\varnothing_{\mathrm{s}}=B_{1}+4(1.7046)-\frac{2(1.7046)^{2}}{B_{3}}+\left(4+4 \varepsilon+\frac{2 \varepsilon}{3}\right) \mathrm{B}_{4}-2 \sqrt{\frac{2}{3}(\varepsilon)^{4}(1.7046) \mathrm{B}_{4}^{9} B_{1} B_{3}}>10.3
$$

Now left side is a decreasing function of B4, replacing B4 by 1:337, we find that $\varnothing_{5}<10.3$ for $1<\mathrm{B}_{1}<2: 0187$ and $1<\mathrm{B}_{3}<1: 5485$, a contradiction. Hence we have $\mathrm{B}_{4}<1: 337$.

Claim (viii) $\mathrm{B}_{5}<1: 1492$
Suppose $B_{5} \geq 1.1492$ Using (3.1), we get $\mathrm{B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}<0: 5445$: Therefore $\frac{B_{2}^{3}}{B_{6} B_{7} B_{8}}>2$ Also using Lemma $3 \& 4,2 B_{9} \geq 2\left(\varepsilon \mathrm{~B}_{5}\right)$ $>1: 077>\mathrm{B}_{10}$. So the inequality $\left(4^{*} ; 4 ; 2\right)$ holds, i.e. 4 $\left(\frac{1}{B_{5} B_{6} B_{7} B_{8} B_{9} B_{10}}\right)^{1 / 4}+4 B_{5}-\frac{1}{2} \frac{B_{5}^{4}}{B_{6} B_{7} B_{8}}+4 B_{9}-\frac{2 B_{9}^{2}}{B_{10}}>10.3$ Now left side is a decreasing function of B_{5} and B_{9}. So we replace B_{5} by 1.1492 and B_{9} by 1.1492ε and get that $\varnothing_{6}\left(\mathrm{x}, \mathrm{B}_{10}\right)=4\left(\frac{1}{(\varepsilon)(1.1492)^{2} X b_{10}}\right)^{1 / 4}+4(1+\varepsilon)$ (1.1492) $-\frac{1}{2} \frac{(1.1492)^{4}}{x}-\frac{2(1.1492 \varepsilon)^{2}}{B_{10}}>10.3$ where $\mathrm{x}=\mathrm{B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$. Using Lemma $3 \& 4$ we have $\mathrm{x}=\mathrm{B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8} \geq \frac{B_{5}^{3}}{4} \geq \frac{(1.1492)^{3}}{4}$ and $B_{10} \geq \frac{3 \varepsilon}{4} B_{5} \geq \frac{3 \varepsilon}{4}(1.1492)$ It can be verified that $\varnothing_{6}\left(\mathrm{x}, \mathrm{B}_{10}\right)<10.3$ for $\frac{(1.1492)^{3}}{4} \leq x<0.5445$ and $\frac{3 \varepsilon}{4}(1.1492) \leq \mathrm{B}_{10}<0.4398$ giving thereby a contradiction. Hence we must have $B_{5}<1: 1492$.

Claim (ix) $\mathrm{B}_{2}<1: 766$.
Suppose $B_{2} \geq 1.766$ We have $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}<2: 3793$. So $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ Also $B_{6} \geq \varepsilon B_{2}>0.8277$ Therefore B 6 is larger than ${ }^{B_{3}}$ each of $B_{7}, B_{8}, B_{9} B_{10}$ Hence the inequality ($1 ; 4 ; 5, *$) holds. This gives $B_{1}+4 B_{2}-\frac{1}{2} \frac{B_{2}^{4}}{B_{3} B_{4} B_{5}}+5\left(\frac{1}{B_{1} B_{2} B_{3} B_{4} B_{5}}\right)^{\frac{1}{5}}>10.3 \quad$ Left side is an increasing function of $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}$, a decreasing function of B_{2} and an increasing function of B_{1}. One easily checks that this inequality is not true for $\mathrm{B}_{1}<2: 0187$;
$B_{2} \geq 1.766$ and $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}<2: 3793$: Hence we have $\mathrm{B}_{2}<1: 766$.
Final contradiction
As $\quad 2\left(\mathrm{~B}_{2}+\mathrm{B}_{4}+\mathrm{B}_{6}+\mathrm{B}_{8}+\mathrm{B}_{10}\right)<2(1: 766+1: 337+0: 9383+0: 6597+0: 4398)<10: 3$,
the weak inequality $(2 ; 2 ; 2 ; 2 ; 2) \mathrm{w}$ gives a contradiction.

9378< $\mathrm{B}_{10}<1: 9770808$

Here $B_{1} \geq B_{10}>1.9378$ and $\mathrm{B}_{2}=\left(\mathrm{B}_{1} \mathrm{~B}_{3} \ldots \mathrm{~B}_{10}\right)^{-1}$

$$
\leq\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{4} \ldots \mathrm{~B}_{10}\right)^{-1} \leq\left(\frac{3}{32} \varepsilon^{3} \mathrm{~B}_{3}^{6} \mathrm{~B}_{1}^{2} \mathrm{~B}_{10}\right)^{-1}=\left(\frac{1}{16} \varepsilon^{4} \mathrm{~B}_{2}^{7} \mathrm{~B}_{1} \mathrm{~B}_{10}\right)^{-1}
$$

Which implies $\left(\mathrm{B}_{2}\right)^{8} \leq\left(\frac{1}{16} \varepsilon^{4}(1.9378)^{2}\right)^{-1}$ i.e. B2<1:75076.
Similarly

$$
\begin{aligned}
& B_{3}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{4} \ldots \mathrm{~B}_{10}\right)^{-1} \leq\left(\frac{3}{32} \varepsilon^{3} \mathrm{~B}_{3}^{6} \mathrm{~B}_{1}^{2} \mathrm{~B}_{10}\right)^{-1} \\
& B_{4}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{5} \ldots \mathrm{~B}_{10}\right)^{-1} \leq\left(\frac{3}{32} \varepsilon^{2} \mathrm{~B}_{4}^{5} \mathrm{~B}_{1}^{3} \mathrm{~B}_{10}\right)^{-1} \\
& B_{6}=\left(\mathrm{B}_{1} \ldots \mathrm{~B}_{5} \mathrm{~B}_{7} \mathrm{~B}_{8} \mathrm{~B}_{9} \mathrm{~B}_{10}\right)^{-1} \leq\left(\frac{1}{16} \varepsilon \mathrm{~B}_{6}^{3} \mathrm{~B}_{1}^{3} \mathrm{~B}_{10}\right)^{-1} \\
& B_{8}=\left(\mathrm{B}_{1} \ldots \mathrm{~B}_{7} \mathrm{~B}_{9} \mathrm{~B}_{10}\right)^{-1} \leq\left(\frac{3}{32} \varepsilon^{3} \mathrm{~B}_{8} \mathrm{~B}_{1}^{7} \mathrm{~B}_{10}\right)^{-1}
\end{aligned}
$$

These respectively give $\mathrm{B}_{3}<1: 46138, \mathrm{~B}_{4}<1: 22883, \mathrm{~B}_{6}<0: 896058$ and $\mathrm{B}_{8}<0: 721763$. So we have $B_{1}^{4} B_{5} B_{6} B_{7} B_{8} B_{9} B_{10}=\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ Also $2 B_{5} \geq 2\left(\varepsilon \mathrm{~B}_{1}\right)>1.8166>\mathrm{B}_{6}$ and $2 B_{7} \geq 2\left(\frac{2 \varepsilon}{3} \mathrm{~B}_{1}\right)>\mathrm{B}_{8}$ Applying AMGM to inequality $(4,2,2,1,1)$ we have $4 \mathrm{~B}_{1}+4 \mathrm{~B}_{5}+4 \mathrm{~B}_{7}+\mathrm{B}_{9}+\mathrm{B}_{10}$ $-3\left(2 \mathrm{~B}_{1}^{5} \mathrm{~B}_{5}^{3} \mathrm{~B}_{7}^{3} \mathrm{~B}_{9} \mathrm{~B}_{10}\right)^{\frac{1}{3}}>10.3$ We find that left side is a decreasing function of B_{7} and B_{5}, so can replace B_{7} by $\frac{2}{3} \varepsilon B_{1}$ and B_{5} by εB_{1} then it is a decreasing function of B_{1}, so replacing B_{1} by B_{10} we have $4\left(1+\varepsilon+\frac{2}{3} \varepsilon\right) \mathrm{B}_{10}+\mathrm{B}_{9}+\mathrm{B}_{10}-2^{\frac{4}{3}}(\varepsilon)^{2}\left(\mathrm{~B}_{10}\right) 4\left(\mathrm{~B}_{9}\right)^{\frac{1}{3}}>10.3$ which is not true for $(1.9378) \varepsilon^{2}<B_{9} \leq B_{1}<2.2636302$ and 1:9378< $\mathrm{B} 10<1: 9770808$. Hence we get a contradiction.

Proof of Theorem 1 for $\mathbf{n}=11$

Here we have $\mathrm{w}_{11}=11.62, B_{1} \leq \gamma_{11}<2.393347$ Using (2.5), we have $1_{11}=0: 3673<\mathrm{B}_{11}<2: 1016019=\mathrm{m}_{11}$.

The inequality $\left(10^{*} ; 1\right)$ gives 10:3 $\left(\mathrm{B}_{11}\right)^{\frac{-1}{10}}+B_{11}>11.62$ But for $0.4409 \leq B_{11} \leq 2.018$ this inequality is not true. So we must have either $B_{11}<0.4409$ or $\mathrm{B}_{11}>2: 018$.

0:3673<B11<0:4409

Claim (i) B10<0:4692
Suppose $B_{10} \geq 0.4692$ then $2 \mathrm{~B}_{10}>\mathrm{B}_{11}$, so $\left(9^{*} ; 2\right)$ holds, i.e. 9 $\left(\frac{1}{B_{10} B_{11}}\right)^{\frac{1}{9}}+4 B_{10}-\frac{2 B_{10}^{2}}{B_{11}}>11.62$ As left side is a decreasing function of B_{10}, we can replace B_{10} by 0.4692 and find that it is not true for $0: 3673<\mathrm{B}_{11}<0: 4409$.

Hence we must have $\mathrm{B}_{10<} 0: 4692$.
Using Lemmas 3 and 4 we have:
$B_{9} \leq \frac{4}{3} B_{10}<0.6256, B_{8} \leq \frac{3}{2} B_{10}<0.7038, B_{7} \leq \frac{B_{11}}{\varepsilon}<0.94063$
$B_{6} \leq \frac{B_{10}}{\varepsilon}<1.00 . ., B_{5} \leq \frac{4}{3} \frac{B_{10}}{\varepsilon}<1.3347, B_{4} \leq \frac{3}{2} \frac{B_{10}}{\varepsilon}<1.50151$
$B_{3} \leq \frac{B_{11}}{\varepsilon^{2}}<2.0068, B_{2} \leq \frac{B_{10}}{\varepsilon^{2}}<2.13557$

Claim (ii) B2 $>1: 913$

The inequality $(2 ; 2 ; 2 ; 2 ; 2 ; 1)_{w}$ gives $2 \mathrm{~B}_{2}+2 \mathrm{~B}_{4}+2 \mathrm{~B}_{6}+2 \mathrm{~B}_{8}+2 \mathrm{~B}_{10}+\mathrm{B}_{11}>$
11:62. Using (4.1) we find that this inequality is not true for $B_{2} \leq 1.913$ so we must have $\mathrm{B}_{2}>1: 913$.

Claim(iii) B3<1:761
Suppose $B_{3} \geq 1.761$ thenwehave $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ and $\frac{B_{7}^{3}}{B_{8} B_{9} B_{10}}>\frac{\left(\varepsilon \mathrm{B}_{3}\right)^{3}}{B_{8} B_{9} B_{10}}>$
2. Applying $A M-G M$ to the inequality $(2,4,4,1)$ we get $4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+4 B_{3}+4 B_{7}+B_{11}-\sqrt{B_{3}^{5} B_{7}^{5} B_{1} B_{2} B_{11}}>11.62$ One easily finds that it is not true for $B_{1} \geq B_{2}>1.913, B_{3} \geq 1.761, B_{7} \geq \varepsilon B_{3}, B_{11} \geq \varepsilon^{2} B_{3}, 1.913<B_{2}<2.13557$ and $1.761 \leq B_{3}<2.0068$ Hence we must have $\mathrm{B}_{3}<1: 761$:

Claim (iv) B1<2:2436
Suppose $B_{1} \geq 2.2436$ As $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4<} 2: 13557 \times 1: 761 \times 1: 50151<5: 6468$, we have $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ Also $B_{5} \geq \varepsilon B_{1}>1.051$ so B 5 is larger than each of $\mathrm{B} 6 ; \mathrm{B} 7 \ldots ; \mathrm{B} 11$. Hence the inequality ($4 ; 7,{ }^{*}$) holds. This gives $4 B_{1}-\frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+7\left(\frac{1}{B_{1} B_{2} B_{3}}\right)^{\frac{1}{7}}>11.62$ Left side is an increasing function of $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ and decreasing function of B_{1}. One easily checks that the inequality is not true for $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}<5: 6468$ and $\mathrm{B} 1 \geq 2: 2436$. Hence we have $\mathrm{B}_{1}<2: 2436$.

Claim (v) B4<1.4465 and B2>1:9686

Suppose $B_{4} \geq 1.4465$ We have B5B6B7 $<1: 2569$ and $B_{9} B_{10} B_{11}<0: 1295$. Therefore for $\mathrm{B}_{4}>1: 36$, we have $\frac{B_{4}^{3}}{B_{5} B_{6} B_{7}}>2$ and $\frac{B_{8}^{3}}{B_{9} B_{10} B_{11}}>\frac{\left(\varepsilon \mathrm{B}_{4}\right)^{3}}{B_{9} B_{10} B_{11}}>2$ So the inequality $(1,2,4,4)$ holds. Applying AM-GM to inequality $(1,2,4,4)$, we get $B_{1}+4 B_{2}-\frac{2 B_{2}^{2}}{B_{3}}+4 B_{8}-\sqrt{B_{4}^{5} B_{8}^{5} B_{1} B_{2} B_{3}}>11.62$ A simple calculation shows that this is not true for $B_{1} \geq B_{2}>1.913$, $B_{4} \geq 1.4465, B_{8} \geq \varepsilon B_{4} \geq 1.4465, B_{1}<2.2436$ and $B_{3}<1.761$ Hence we have $\mathrm{B} 4<1: 4465$.

Further if $B_{2} \leq 1.9686$ then $2 \mathrm{~B}_{2}+2 \mathrm{~B}_{4}+2 \mathrm{~B}_{6}+2 \mathrm{~B}_{8}+2 \mathrm{~B}_{10}+\mathrm{B}_{11}<11: 62$. So the inequality $(2 ; 2 ; 2 ; 2 ; 2 ; 1)_{w}$ gives a contradiction.

Claim (vi) B4<1:4265 and B2>1:9888

Suppose $B_{4} \geq 1.4265$ We proceed as in Claim (v) and get a contradiction with improved bounds on B_{2} and B_{4}.

Claim (vii) B1<2:2056

Suppose $B_{1} \geq 2.2056$ As B3B4B5<1:761 $\times 1: 4265 \times 1: 3347<3: 3529$, we have $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ Also $B_{6} \geq \varepsilon B_{2}>0.9491$ so B 6 is larger than each of B7;B8, ..,B11. Hence the inequality $\left(1 ; 4 ; 6^{*}\right)$ holds, i.e. $\mathrm{B} 1+4 \mathrm{~B} 2-$ $\frac{1}{2} \frac{B_{2}^{4}}{B_{3} B_{4} B_{5}}+6\left(\frac{1}{B_{1} B_{2} B_{3} B_{4} B_{5}}\right)^{\frac{1}{6}}>11.62$

Claim (ix) B1<2:1669

Suppose $B_{1} \geq 2.1669$ We proceed as in Claim(iv) and get a
contradiction with improved bounds on B_{1}, B_{2} and B_{4}.

Claim (x) B4<1:403 and B2>2:012

Suppose $B_{4} \geq 1.403$ We proceed as in Claim(v) and get a contradiction with improved bounds on B2 and B4.

Final Contradiction:

As now B3B4B5<1:761 1: $: 403$ 1:3347<3:2977, we have $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ for $\mathrm{B} 2>2: 012$. Also $B_{6} \geq \varepsilon B_{2}>0.943>$ each of $\mathrm{B} 7 ; \mathrm{B} 8 ; \mathrm{B} 11$. Hence the inequality $(1 ; 4 ; 6)$ holds. Proceeding as in Claim (viii) we find that this inequality is not true for $\mathrm{B}_{1}<2: 1669 ; \mathrm{B}_{2}>2: 012$ and $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}<3: 2977$; giving thereby a contradiction.

2:018<B11<2:1016019

Here $B_{1} \geq B_{11}>2.018$ Therefore using Lemmas $3 \& 4$ we have B10 $=(\text { B1 B9B11 })^{-1}$

$$
\begin{aligned}
& \leq\left(\mathrm{B}_{1} \cdot \frac{3}{4} \mathrm{~B}_{1} \cdot \frac{2}{3} \mathrm{~B}_{1} \frac{1}{2} \mathrm{~B}_{1} \varepsilon \mathrm{~B}_{1} \frac{3}{4} \varepsilon \mathrm{~B}_{1} \frac{2}{3} \varepsilon \mathrm{~B}_{1} \frac{1}{2} \varepsilon \mathrm{~B}_{1} \varepsilon^{2} \mathrm{~B}_{1} \cdot \mathrm{~B}_{1}\right)^{-1} \\
& =\left(\frac{1}{16} \varepsilon^{6} \mathrm{~B}_{1}^{9} \mathrm{~B}_{11}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{6}(2.018)^{10}\right)^{-1}<1.34702
\end{aligned}
$$

Similarly

$B_{4}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \ldots \mathrm{~B}_{11}\right)^{-1} \leq\left(\frac{1}{16} \varepsilon^{3} \mathrm{~B}_{1}^{3} \mathrm{~B}_{11}\right)^{-1}$ which gives $\mathrm{B} 4<1: 37661$.

Claim (i) B10<0:4402

The inequality $\left(9^{*} ; 1 ; 1\right)$ gives $9\left(\frac{1}{B_{10} B_{11}}\right)^{\frac{1}{9}}+B_{10}+B_{11}>11.62$ But this inequality is not true for $0.4402 \leq B_{10}<1: 34702$ and $2: 018<\mathrm{B} 11<2: 1016019$. Hence we must have $\mathrm{B} 10<0: 4402$.

Now we have $B_{9} \leq \frac{4}{3} B_{10}<0: 58694, B_{8} \leq \frac{3}{2} B_{10}<0.6603, B_{7} \leq 2 B_{10}<0.8804$ and $B_{6} \leq \frac{B_{10}}{\varepsilon}<0.93914$

Claim (ii) B7<0:768
Suppose $B_{7} \geq 0.768$ Then $\frac{B_{7}^{3}}{B_{8} B_{9} B_{10}}>2$ so $\left(6^{*} ; 4 ; 1\right)$ holds. This gives $\quad \varnothing_{7}(\mathrm{x})=6(\mathrm{x})^{1 / 6}+4 B_{7}-\frac{1}{2} B_{7}^{5} B_{11} x+B_{11}>11.62$ where $\mathrm{x}=\mathrm{B}_{1} \mathrm{~B}_{2}:$: $: \mathrm{B}_{6}$. The function $\varnothing_{7}(\mathrm{x})$ has its maximum value at $x=\left(\frac{2}{B_{7}^{5} B_{11}}\right)^{6 / 5}$ Therefore $\varnothing_{7}(\mathrm{x}) \leq \varnothing_{7}\left(\left(\frac{2}{B_{7}^{5} B_{11}}\right)^{6 / 5}\right)$ which is less than 11:62 for $0.768 \leq B_{7}<0.8804$ 2:018< $\mathrm{B} 11<2: 1016019$. This gives a contradiction.

Now $B_{5} \leq \frac{3}{2} B_{7}<1.1521$ and $B_{3} \leq \frac{B_{7}}{\varepsilon}<1.6385$
Claim (iii) B2<1:795
Suppose $B_{2} \geq 1.795$ then $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ and $\frac{B_{6}^{3}}{B_{7} B_{8} B_{9}}>2$ Applying AMGM to the inequality $(1,4,4,1,1)$ p we get $\mathrm{B} 1+4 \mathrm{~B} 2+4 \mathrm{~B} 6+\mathrm{B} 10$ $+\mathrm{B} 11-\sqrt{B_{2}^{5} B_{6}^{5} B_{1} B_{10} B_{11}}>11.62 \mathrm{We}$ find that left side is a decreasing function of B_{6}, so we first replace B_{6} by εB_{2} then it is a decreasing function of B_{2}, so we replace B_{2} by 1.795 and get that

$$
\varnothing_{8}\left(\mathrm{~B}_{11}\right)=\mathrm{B}_{1}+4(1+\varepsilon)(1.795)+\mathrm{B}_{10}+B_{11}-\sqrt{(\varepsilon)^{5}(1.795)^{10} B_{1} B_{10} B_{11}}>11.62
$$

Now $\varnothing_{8}\left(\mathrm{~B}_{11}\right)>0$ so $\varnothing_{8}\left(\mathrm{~B}_{11}\right)<\max \left\{\varnothing_{8}(2.018), \varnothing_{8}(2.1016019)\right\}$ which can be verified to be at most 11.62 for $(\varepsilon)^{2}(1.795) \leq \mathrm{B}_{10}<0.4402$ and 2:018<B1<2:393347, giving thereby a contradiction.

Claim (iv) B5<0:98392
Suppose $B_{5} \geq 0.98392$ We have $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ and $\frac{B_{5}^{3}}{B_{6} B_{7} B_{8}}>2$ Also $2 B_{9} \geq 2\left(\varepsilon \mathrm{~B}_{5}\right)>\mathrm{B}_{10}$ Applying AM-GM to the inequality $(4 ; 4 ; 2 ; 1)$ we get $4 B_{1}+4 B_{5}+4 B_{9}-\frac{2 B_{9}^{2}}{B_{10}}+B_{11}-\sqrt{B_{1}^{5} B_{5}^{5} B_{9} B_{10} B_{11}}>11.62$ One can easily check that left side is a decreasing function of B_{9} and B_{1} so we can replace B_{9} by εB_{5} and B 1 byB11 toget $\varnothing_{9}=5 B_{11}+4(1+\varepsilon) \mathrm{B}_{5}-\frac{2\left(\varepsilon \mathrm{~B}_{5}\right)^{2}}{B_{10}}-\sqrt{\varepsilon B_{11}^{6} B_{5}^{6} B_{10}}>11.62$ Now the left side is a decreasing function of B5, so replacing B5 by 0.98392 we see that $\varnothing_{9}<11.62$ for $\frac{3 \varepsilon}{4}(0.98392)<\mathrm{B}_{10}<0.4409$ and 2:018<B11<2:1016019, a contradiction.

Final Contradiction:

As in Claim(iv), we have $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ Also $B_{5} \geq \varepsilon B_{1}>0.9458$ each of $B_{6} ; \mathrm{B}_{7}, \ldots, \mathrm{~B}_{10}$. Therefore the inequality $\left(4 ; 6^{*} ; 1\right)$ holds, i.e. $\varnothing_{10}=4 B_{1} \frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+6\left(\frac{1}{B_{1} B_{2} B_{3} B_{4} B_{11}}\right)^{\frac{1}{6}}+B_{11}>11.62$ Left side is an increasing function of $B_{2} B_{3} B_{4}$ and B_{11} and decreasing function of B_{1}. Using $\mathrm{B}_{5}<0: 98392$, we have $B_{3} \leq \frac{3}{2} B_{5}<1.47588$ and $B_{4} \leq \frac{4}{3} B_{5}<1.311894$ One easily checks that $\varnothing_{10}<11.62$ for $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}<1: 795 \times 1: 47588 \times 1: 311894$, $\mathrm{B} 11<2: 1016019$ and $B_{1} \geq 2.018$ Hence we have a contradiction.

Proof of Theorem 1 for $\mathbf{n}=\mathbf{1 2}$

Here we have $\mathrm{w}_{12}=13, B_{1} \leq \gamma_{12}<2.5217871$ Using (2.5), we have 112 $=0: 3376<\mathrm{B}_{12}<2: 2254706=\mathrm{m}_{12}$ and using (2.3) we have $B_{1} B_{2}^{11} \leq \gamma_{11}^{11}$ i.e $B_{2} \leq \gamma_{11}^{\frac{11}{12}}<2.2254706$

The inequality $\left(11^{\star} ; 1\right)$ gives $11: 62\left(\mathrm{~B}_{12}\right)^{-1 / 11}+\mathrm{B} 12>13$. But this is not true for $0.4165 \leq B_{12} \leq 2.17$ So we must have either $\mathrm{B} 12<0: 4165$ or B12>2:17.

0:3376<B12<0:4165

Claim (i) B11<0:459
Suppose $\quad B_{11} \geq 0.459$ then $B_{12} \geq \frac{3}{4} B_{11}>0.34425$ and $2 \mathrm{~B} 11>\mathrm{B}_{12}$, so $\left(10^{\star}\right.$; 2) holds, i.e. $\phi_{11}=10.3\left(\frac{1}{B_{11} B_{12}}\right)^{\frac{1}{10}}+4 B_{11}-\frac{2 B_{11}^{2}}{B_{12}}>13$ Left side is a decyeasing function of B11, so we can replace B11 by .459 to find that $\phi_{11}<13$ for 0:34425<B12<0:4165, a contradiction. Hence we have $\mathrm{B}_{11}<0: 459$.

Claim (ii) B10<0:5432

Suppose $B_{10} \geq 0.5432$ From Lemma 3, $B_{11} B_{12} \geq \frac{1}{2} B_{10}^{2}$ and $B_{10} \leq \frac{3}{2} B_{12}$. Therefore $\frac{1}{2}(0.5432)^{2} \leq B_{11} B_{12}<0.1912$ and $B_{10}^{2}>B_{11} B_{12}$ so the inequality $\left(9^{*}\right.$; 3) holds, i.e. $9\left(\frac{1}{B_{10} B_{11} B_{12}}\right)^{\frac{1}{9}}+4 B_{10}-\frac{B_{10}^{3}}{B_{11} B_{12}}>13$ One easily checks that it is not true noting that left side is a decreasing function of B_{10}. Hence we must have $\mathrm{B}_{10}<0: 5432$.

Claim (iii) B9<0:6655

Suppose $B_{9} \geq 0.6655$ then $\frac{B_{9}^{3}}{B_{10} B_{11} B_{12}}>2$ So the inequality (8^{*}; 4) holds. This gives $\phi_{12}(x)^{1 / 8}+4 B_{9}-\frac{1}{2} B_{9}^{5} x>13$ where $x=B_{1} B_{2} \ldots$ B_{8}. The function $\phi_{12}(\mathrm{x})$ has its maximum value at $x=\left(\frac{2^{\frac{8}{5}}}{B_{9}^{5}}\right)^{\frac{8}{7}}$ so $\phi_{12}(\mathrm{x})<\phi_{12}\left(\left(\frac{2}{B_{9}^{5}}\right)^{\frac{8}{7}}\right)<13$ for $0.6655 \leq B_{9}-\frac{1}{2} B_{9}^{5} x>13$ where $\mathrm{x}=\mathrm{B}_{1} \mathrm{~B}_{2 \ldots}$ B8. The function $\phi_{12}(\mathrm{x})$ has its maximum value at $x=\left(\frac{2}{B_{9}^{5}}\right)^{\frac{8}{7}}$ so $\phi_{12}(\mathrm{x})<x=\left(\frac{2}{B_{9}^{5}}\right)^{\frac{8}{7}}<13$ for 0:6655 $\leq B_{9} \leq \frac{3}{2} B_{11}<0.6885$ This gives a contradiction.

Using Lemmas 3 \& 4 we have:
$B_{8} \leq \frac{3}{2} B_{10}<0.8148, B_{7} \leq \frac{B_{11}}{\varepsilon}<0.9793, B_{6} \leq \frac{B_{10}}{\varepsilon}<1.1589$
$B_{5} \leq \frac{B_{9}}{\varepsilon}<1.4198, B_{4} \leq \frac{3}{2} \frac{B_{10}}{\varepsilon}<1.7384, B_{3} \leq \frac{B_{11}^{\varepsilon}}{\varepsilon^{2}}<2.0892$
Claim (iv) $\mathrm{B} 2>1: 828, \mathrm{~B} 4>1: 426, \mathrm{~B} 6>1: 019$ and $\mathrm{B} 8>0: 715$
Suppose $B_{2} \leq 1.828$ Then $2(\mathrm{~B} 2+\mathrm{B} 4+\mathrm{B} 6+\mathrm{B} 8+\mathrm{B} 10+\mathrm{B} 12)<2(1: 828+$ $1: 7384+1: 1589+0: 8148+0: 5432+0: 4165)<13$, giving thereby a contradiction to the weak inequality $(2 ; 2 ; 2 ; 2 ; 2 ; 2) \mathrm{w}$.

Similarly we obtain lower bounds on $\mathrm{B}_{4} ; \mathrm{B}_{6}$ and B_{8} using $(2 ; 2 ; 2 ; 2 ; 2 ; 2) \mathrm{w}$.
Claim(v) B2>2:0299
Suppose $B_{2} \leq 2.0299$ Consider following two cases:
Case (i) B3>B4
We have $\mathrm{B} 3>\mathrm{B} 4>1: 426>$ each of $\mathrm{B} 5, \ldots, \mathrm{~B} 12$. So the inequality (2 ; $\left.10^{*}\right)$ holds, i.e. $4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+10.3\left(\frac{1}{B_{1} B_{2}}\right)^{\frac{1}{10}}>13$ The left side is a decreasing function of B_{1}, so replacing B_{1} by B_{2} we get $2 B 2+10: 3\left(\frac{1}{B_{2}^{2}}\right)^{\frac{1}{10}}>13$ which is not true for $B_{2} \leq 2.0299$

Case (ii) $B_{3} \leq B_{4}$
As $\mathrm{B} 4>1: 426>$ each of $\mathrm{B} 5, \ldots, \mathrm{~B} 12$, the inequality $\left(3 ; 9^{*}\right)$ holds, i.e. $\quad \phi_{13}(\mathrm{X})=4 \mathrm{~B}_{1}-\frac{B_{1}^{3}}{x}+9\left(\frac{1}{B_{1} x}\right)^{\frac{1}{9}}>13$ where $\mathrm{X}=\mathrm{B} 2 \mathrm{~B} 3<\mathrm{min}$ $\left\{\mathrm{B}_{1}^{2},(2.0299)(1.7384)\right\}=\alpha$ say. Now $\phi_{13}(\mathrm{X})$ is an increasing function of X for $B_{1} \geq B_{2}>1.828$ and So $\phi_{13}(\mathrm{x})<\phi_{13}(\mathrm{X})$ which can be seen to be less than 13. Hence we have $\mathrm{B} 2>2: 0299$.

Claim (vi) $\mathrm{B} 1>2: 17$ and $\mathrm{B} 3<1: 9517$
Using (2.3) we have $B_{3} \leq\left(\frac{\gamma_{10}^{10}}{B_{1} B_{2}}\right)^{\frac{1}{10}}<1.9648$ Therefore $\mathrm{B}_{2}>2: 0299>$ each of $\mathrm{B}_{3}, \ldots, \mathrm{~B}_{12}$. So the inequality $\left(1 ; 11^{*}\right)$ holds, i.e. $\mathrm{B}_{1}+11: 62\left(\frac{1}{B_{1}}\right)^{\frac{1}{11}}>13$ But this is not true for $B_{1} \leq 2.17$ So we must have B1>2:17: Again using (2.3) we have $B_{3}<\left(\frac{2.2636302}{2.17 \times 2.0299}\right)^{\frac{1}{10}}<1.9517$

Claim (vii) B4<1:646

Suppose $B_{4} \geq 1.646$ From(5.1) andClaims(i)-(iii), we have $\frac{B_{4}^{3}}{B_{5} B_{6} B_{7}}>2$ and $\frac{B_{8}^{3}}{B_{9} B_{10} B_{11}}>\frac{\left(\varepsilon \mathrm{B}_{4}\right)^{3}}{B_{9} B_{10} B_{11}}>2$ Applying AM-GM to the inequality $(1,2,4,4,1)$ we get $\quad \phi_{14}=B_{1}+4 B_{2}-\frac{2 B_{2}^{2}}{B_{3}}+4 B_{4}+4 B_{8}+B_{12}-\sqrt{B_{4}^{5} B_{8}^{5} B_{1} B_{2} B_{3} B_{12}}>13$

We find that left side is a decreasing function of B2, B8 and B12. So we
can replace B 2 by $2: 0299, \mathrm{~B} 8$ by " B 4 and B 12 by $\varepsilon^{2} \mathrm{~B}_{4}$. Then it turns a decreasing function of $\varepsilon^{2} \mathrm{~B}_{4}$, so can replace B 4 by 1.646 to find that $\phi_{14}<13$ for $B_{1}<2: 52178703$ and $B_{3}<1: 9517$, a contradiction. Hence we have $\mathrm{B}_{4}<1: 646$.

Claim (viii) B1<2:4273
Suppose B1 $\geq 2: 4273$. Consider following two cases:
Case (i) $B_{5}>B_{6}$
Here $B_{5}>$ each of $B_{6, \ldots,} B_{12}$ as $B_{5} \geq \varepsilon B_{1}>1.137>$ each of $B 7, \ldots, B 12$. Also $\mathrm{B} 2 \mathrm{~B} 3 \mathrm{~B} 4<2: 2254706 \times 1: 9517 \times 1: 646<7: 15$. So $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ Hence the inequality $\left(4 ; 8^{*}\right)$ holds. This gives $4 B_{1}-\frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+8\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}\right)^{-1 / 8}>13$ Left side is an increasing function of $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ and decreasing function of B_{1}. So we can replace $B_{2} B_{3} B_{4}$ by 7.15 and B_{1} by 2.4273 to get a contradiction.

Case (ii) $B_{5} \leq B_{6}$
Using (5.1) we have $B_{5} \leq B_{6}<1: 1589$ and so $B_{4} \leq \frac{4}{3} B_{5}<1.5452$ Therefore $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ as $\mathrm{B} 2>2: 0299$ and $\mathrm{B}_{3}<1: 9517$. Also from Claim (iv), $\mathrm{B}_{6}>1: 019>$ each of $\mathrm{B}_{7}, \ldots, \mathrm{~B}_{12}$. Hence the inequality $\left(1 ; 4 ; 7^{*}\right)$ holds. This gives $B_{1}+4 B_{2}-\frac{1}{2} \frac{B_{2}^{4}}{B_{4} B_{5} B_{6}}+7 \quad 7\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}\right)^{-1 / 7}>13$: Left side is an increasing function of $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}$ and B_{1} and a decreasing function of B_{2}. One can check that inequality is not true for $\mathrm{B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}<1: 9517 \times 1: 5452 \times 1: 1589$, $\mathrm{B}_{1}<2: 5217871$ and for $\mathrm{B}_{2}>2: 0299$: Hence we must have $\mathrm{B}_{1}<2: 4273$:

Claim (ix) B5<1:396
Suppose $B_{5} \geq 1.396$ From (5.1), $\mathrm{B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}<0: 925$ and $\mathrm{B}_{10} \mathrm{~B}_{11} \mathrm{~B}_{12}<0: 104$, so we have $\frac{B_{5}^{3}}{B_{6} B_{7} B_{8}}>2$ and $\frac{B_{9}^{3}}{B_{10} B_{11} B_{12}}>\frac{\left(\varepsilon \mathrm{B}_{5}\right)^{3}}{B_{10} B_{11} B_{12}}>2$ Applying AMGM to the inequality $(1,2,1,4,4)$ we get $\mathrm{B}_{1}+4 \mathrm{~B}_{2}-\frac{2 B_{2}^{2}}{B_{3}}+\mathrm{B}_{4}+4 \mathrm{~B}_{5}+4 \mathrm{~B}_{9}$ $\sqrt{B_{5}^{5} B_{9}^{5} B_{1} B_{2} B_{3} B_{4}}>13 \mathrm{We}$ find that left side is a decreasing function of B 2 and B9. So we replace $B 2$ by 2:0299 and B_{9} by $\varepsilon_{B_{5}}$. Now it becomes a decreasing function of B_{5} and an increasing function of B_{1} so replacing
B_{5} by 1.396 and B_{1} by 2.4273 , we find that above inequality is not true for $1: 522<B_{3}<1: 9517$ and $1: 426<B_{4}<1: 646$, giving thereby a contradiction. Hence we must have $\mathrm{B}_{5}<1: 396$.

Claim (x) B3>1:7855
Suppose $B_{3} \leq 1.7855$ We have $B 4>1: 426>$ each of $\mathrm{B}_{5} ; \mathrm{B}_{6}, \ldots, \mathrm{~B}_{12}$, hence the inequality $\left(1 ; 2 ; 9^{*}\right)$ holds. It gives $\phi_{15}=B_{1}+4 B_{2}-\frac{2 B_{2}^{2}}{B_{3}}+9\left(\frac{1}{B_{1} B_{2} B_{3}}\right)^{\frac{1}{9}}>13$ It is easy to check that left side of above inequality is a decreasing function of B 2 and an increasing function of B1 and B3. So replacing B_{1} by $2.4273, B_{3}$ by 1.7855 and B_{2} by 2.0299 we get $-15<13$; a contradiction. Hence we have $B_{3}>1: 7855$.

Claim (xi) $B_{2}>2.0733$
Suppose $B_{2} \leq 2.0733$ We have $B 3>1: 7855>$ each of $B_{4} ; B_{5}, \ldots, B_{12}$, hence the inequality $\left(2 ; 10^{*}\right)$ holds. It gives $\phi_{16}=4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+10.3\left(\frac{1}{B_{1} B_{2}}\right)^{\frac{1}{10}}>13$ The left side is a decreasing function of B_{1} and an increasing function of B_{2}, so replacing B_{1} by $2: 17$ and B_{2} by 2.0733 we get $\phi_{16}<13$ a contradiction.

Claim (xii) B7<0:92 and B5<1:38
Suppose $B_{7} \geq 0.92$ Here we have $B_{4} B_{5} B_{6}<2: 67$ and $\mathrm{B}_{8} \mathrm{~B}_{9} \mathrm{~B}_{10}<0: 295$, so $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ and $\frac{B_{7}^{3}}{B_{8} B_{9} B_{10}}>2$ Also $2 B_{11} \geq 2 \varepsilon B_{7}>B_{12}$ Applying AM-GM to the inequality $(2,4,4,2)$ we get $\phi_{17}=4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+4 B_{3}+4 B_{7}-\sqrt{B_{3}^{5} B_{7}^{5} B_{1} B_{2} B_{11} B_{12}}+4 B_{11}-\frac{2 B_{11}^{2}}{B_{12}}>13$ We find that left side is a decreasing function of B1 and B11. So we can replace B1 by 2:17 and B11 by εB_{7}. Then left side becomes a decreasing function of B_{7} and an increasing function of B_{2}, so can replace B_{7} by 0.92 and B_{2} by 2.2254706 to see that $\phi_{17}<13$ for $1: 7855<\mathrm{B}_{3}<1: 9517$ and $0: 3376<\mathrm{B}_{12}<0: 4156$, a contradiction. Hence $B_{7}<0: 92$. Further $B_{5} \leq \frac{3}{2} B_{7}$ gives $B_{5}<1: 38$.

Claim (xiii) B6<1:097

Suppose $B_{6} \geq 1.097$ Here we have B3B4B5<4:44 and $\mathrm{B} 7 \mathrm{~B} 8 \mathrm{~B} 9<0: 5$, so $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>\frac{(2.0733)^{3}}{4.44}>2$ and $\frac{B_{6}^{3}}{B_{7} B_{8} B_{9}}>2$ Also $2 B_{10} \geq 2 \varepsilon B_{6}>B_{11}$ Applying AM-GM to the inequality (1,4,4,2,1) we get $\phi_{18}=B_{1}+4 B_{2}+4 B_{6}-\sqrt{B_{2}^{5} B_{6}^{5} B_{1} B_{10} B_{11} B_{12}}+4 B_{10}-\frac{2 B_{10}^{2}}{B_{11}}+B_{12}>13$ We find that left side is a decreasing function of B_{10}, B_{12} and B_{11}. So we can replace B_{10} by $\varepsilon_{B_{6}}$ and B_{12} by 0.3376 and B_{11} by $\frac{3 \varepsilon}{4} B_{6}$. Then left side becomes a decreasing function of B_{6}, so we can replace B_{6} by 1.097 to find that ϕ ${ }_{18}<13$, for $2: 17<\mathrm{B}_{1}<2: 4273$ and $2: 0733<\mathrm{B}_{2}<2: 2254706$, a contradiction. Hence we must have $\mathrm{B}_{6}<1: 097$.

Claim (xiv) $\mathrm{B}_{5}>\mathrm{B}_{6}$ and $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}<2$
First suppose $\mathrm{B} 5 \leq$ B6, then $\mathrm{B} 4 \mathrm{~B} 5 \mathrm{~B} 6<1: 646 \times 1: 0972<1: 981$ and $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ Also $B_{7} \geq \varepsilon B_{3}>0.83>$ eachofB $_{8}, \ldots, \mathrm{~B}_{12}$. Hencetheinequality (2; 4; 6^{*}) holds, i.e. $4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+4 B_{3}-\frac{1}{2} \frac{B_{3}^{4}}{B_{4} B_{5} B_{6}}+6\left(\frac{1}{B l B_{2} B_{3} B_{4} B_{5} B_{6}}\right)^{\frac{1}{6}}>13$ Now the left side is a decreasing function of B1 and B3 as well; also it is an increasing function of B_{2} and $B_{4} B_{5} B_{6}$. But one can check that this inequality is not true for $\mathrm{B}_{1}>2: 17, \mathrm{~B}_{3}>1: 7855, \mathrm{~B}_{2}<2: 2254706$ and $B_{4} B_{5} B_{6}<1: 981$, giving thereby a contradiction. Further suppose $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}} \geq 2$ then as $\mathrm{B} 5>\mathrm{B} 6>1: 019>$ each of $\mathrm{B} 7, \ldots, \mathrm{~B} 12$, the inequality (4 ; 8^{*}) holds. Now working as in Case (i) of Claim (viii) we get contradiction for $\mathrm{B} 1>2: 17$ and $\mathrm{B} 2 \mathrm{~B} 3 \mathrm{~B} 4<2: 2254706 \times 1: 9517 \times 1: 646<7: 14934$.

Claim (xv) B3<1:9 and B1<2:4056
Suppose $B_{3} \geq 1.9$, then for $B_{4} B_{5} \mathrm{~B}_{6}<1: 646 \times 1: 38 \times 1: 097<2: 492$, $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ Also $\mathrm{B} 7 \geq \varepsilon \quad \mathrm{B} 3>0: 89>$ each of $\mathrm{B}_{8}, \ldots, \mathrm{~B}_{12}$. Hence the inequality ($2 ; 4 ; 6^{*}$) holds. Now working as in Claim (xiv) we get contradiction for $\mathrm{B}_{1}>2: 17, \mathrm{~B}_{2}<2: 2254706, \mathrm{~B}_{3}>1: 9$ and $\mathrm{B}_{4} \mathrm{~B}_{5} \mathrm{~B}_{6}<2: 492$. So $\mathrm{B}_{3}<1: 9$. Further if $\mathrm{B}_{1} \geq 2: 4056$, then $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>\frac{(2.4056)^{3}}{2.2254706 \times 1.9 \times 1.646}>2$ contradicting Claim (xiv).

Claim (xvi) $\mathrm{B}_{4}<1: 58$ and $\mathrm{B}_{1}<2: 373$
Suppose $B_{4} \geq 1.58$ thenforB $B_{5} \mathrm{~B}_{6} \mathrm{~B}<1: 38 \times 1: 097 \times 0: 92<1: 393, \frac{B_{4}^{3}}{B_{5} B_{6} B_{7}}>2$ Also $\mathrm{B}_{8} \geq \varepsilon \mathrm{B}_{4}>0: 74>$ each of $\mathrm{B}_{9}, \ldots, \mathrm{~B}_{12}$. Hence the inequality $\left(1 ; 2 ; 4 ; 5^{*}\right)$
holds, i.e. $-19=\mathrm{B}_{1}+4 \mathrm{~B}_{2}-\frac{2 B_{2}^{2}}{B_{3}}+4 B_{4}-\frac{1}{2} \frac{B_{4}^{4}}{B_{5} B_{6} B_{7}}+5\left(\frac{1}{B_{1} B_{2} B_{3} B_{4} B_{5} B_{6} B_{7}}\right)^{\frac{1}{5}}>13$ Left side is a decreasing function of B_{2} and B_{4}.

So we replace B_{2} by 2.0733 and B_{4} by 1.58 . Then it becomes an increasing function of B_{1}, B_{3} and $B_{5} B_{6} B_{7}$. So we replace B_{1} by $2.4056, B_{3}$ by 1.9 and $B_{5} B_{6} B_{7}$ by 1.393 to find that $-19<13$, a contradiction. Further if $\mathrm{B}_{1} \geq 2: 373$, then $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ contradicting Claim (xiv).

Final Contradiction:

We have $B_{3} B_{4} \mathrm{~B}<1: 9 \times 1: 58 \times 1: 38<4: 15$. Therefore $\frac{B_{2}^{3}}{B_{3} B_{4} B_{5}}>2$ Also B6>1:019>each of B_{7}, \ldots, B_{12}. Hence the inequality $\left(1 ; 4 ; 7^{*}\right)$ holds. Now we get contradiction working as in Case (ii) of Claim (viii).

5.2 2:17<B12<2:2254706

Here $B_{1} \geq B_{12}>2.17$ Using Lemma 3 and 4, we have
$\mathrm{B}^{11}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{10} \mathrm{~B}_{12}\right)^{-1}<\left(\frac{3}{64} \varepsilon^{8} \mathrm{~B}_{1}^{10} \mathrm{~B}_{12}\right)^{-1}<1.8223$
Claim (i) Either B11<0:4307 or B11 $>1: 818$
Suppose $0: 4307 \leq \mathrm{B}_{11} \leq 1.818$ The inequality $\left(10^{*} ; 1 ; 1\right)$ gives $10: 3$ $\left(\frac{1}{B_{11} B_{12}}\right)^{\frac{1}{10}}+B_{11}+B_{12}>13$ which is not true for $0: 4307 \leq \mathrm{B}_{11} \leq 1.818$ and $2: 17<\mathrm{B} 12<2: 2254706$. So we must have either $\mathrm{B}_{11}<0: 4307$ or $\mathrm{B}_{11}>1: 818$.

Claim (ii) B11<0:4307
Suppose $B_{11} \geq 0.4307$ then using Claim(i) we have B11>1:818. Now we have using Lemmas $3 \& 4$,
$B_{2}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{12}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{6} \mathrm{~B}_{2}^{8} \mathrm{~B}_{1} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 2<1: 777$.
$B_{3}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{4} \ldots \mathrm{~B}_{12}\right)^{-1}<\left(\frac{3}{64} \varepsilon^{4} \mathrm{~B}_{3}^{7} \mathrm{~B}_{1}^{2} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 3<1: 487$
$B_{4}=\left(\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{4} \ldots \mathrm{~B}_{12}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{3} \mathrm{~B}_{4}^{6} \mathrm{~B}_{1}^{3} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 4<1: 213$.
$B_{6}=\left(\mathrm{B}_{1} . . \mathrm{B}_{5} \mathrm{~B}_{7} \ldots \mathrm{~B}_{12}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{2} \mathrm{~B}_{6}^{4} \mathrm{~B}_{1}^{5} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 6<0: 826$.
$B_{7}=\left(\mathrm{B}_{1} . . \mathrm{B}_{6} \mathrm{~B}_{8} \ldots \mathrm{~B}_{12}\right)^{-1}<\left(\frac{3}{64} \varepsilon^{2} \mathrm{~B}_{7}^{3} \mathrm{~B}_{1}^{6} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 7<0: 697$.
$B_{8}=\left(B_{1} . . B_{7} B_{9} \ldots B_{12}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{3} B_{8}^{2} B_{1}^{7} B_{11} B_{12}\right)^{-1}$ This gives $\mathrm{B} 8<0: 559$.
$B_{9}=\left(\mathrm{B}_{1} . . \mathrm{B}_{8} \mathrm{~B}_{10} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}<\left(\frac{3}{64} \varepsilon^{3} \mathrm{~B}_{9} \mathrm{~B}_{1}^{7} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}$ This gives $\mathrm{B} 9<0: 478$.
$B_{10}=\left(\mathrm{B}_{1} . . \mathrm{B}_{9} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}<\left(\frac{1}{16} \varepsilon^{6} \mathrm{~B}_{1}^{9} \mathrm{~B}_{11} \mathrm{~B}_{12}\right)^{-1}<0.359$
Therefore we have $\frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ and $B_{5} \geq \varepsilon B_{1}>1.01>$ each of $\mathrm{B}_{6}, \ldots, \mathrm{~B}_{10}$. So the inequality $\left(4 ; 6^{*} ; 1 ; 1\right)$ holds, i.e. $4 \mathrm{~B}_{1}-\frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+6$ $\left(B_{1} B_{2} B_{3} B_{4} B_{11} B_{12}\right)^{-1 / 6}+B_{11}+B_{12}>13$ Now the left side is an increasing function of B2B3B4, B11 and of B12 as well. Also it is a decreasing function of $B 1$. So we replace $B_{2} B_{3} B_{4}$ by $1: 777 \times 1: 487 \times 1: 213, B_{11}$ by $1.8223, \mathrm{~B}_{12}$ by 2.2254706 and B_{1} by 2.17 to arrive at a contradiction. Hence we must have $B_{11}<0: 4307$.

Claim (iii) B10<0:445

Suppose $B_{10} \geq 0.445$ then $2 \mathrm{~B}_{10}>\mathrm{B}_{11}$. So the inequality $\left(9^{*} ; 2 ; 1\right)$ holds, i.e. $\quad \phi_{20}=9\left(\frac{1}{B_{10} B_{11} B_{12}}\right)^{\frac{1}{9}}+4 B_{10}-\frac{2 B_{10}^{2}}{B_{11}}+B_{12}>13 \quad B_{11} \geq \frac{3}{4} \quad \mathrm{~B} 10 \quad$ and B12>2:2254706, the left side is an increasing function of B12 and a decreasing function of B_{10}, so replacing B_{12} by 2.2254706 and B_{10} by 0.445 we find that $\phi_{20}<13$, for $34(0: 445)<\mathrm{B}_{11}<0: 4307$, a contradiction. Hence we must have $\mathrm{B}_{10}<0: 445$.

Using Lemmas 3 and 4 we have:
$B_{9} \leq \frac{4}{3} B_{10}<0.594, B_{8} \leq \frac{3}{2} B_{10}<0.67, B_{7} \leq 0.89$
$B_{6} \leq \frac{B_{10}}{\varepsilon}<0.9494, B_{5} \leq \frac{4}{3} \frac{B_{10}}{\varepsilon}<1.266, B_{4} \leq \frac{3}{2} \frac{B_{10}}{\varepsilon}<1.4242$
$B_{3} \leq \frac{2 B_{10}}{\varepsilon}<1.899, B_{2} \leq \frac{B_{10}}{(\varepsilon)^{2}}<2.0255$
Claim (iv) B3<1:62
Suppose $\quad B_{3} \geq 1.62$ From (5.2), we have B4B5B6<1:712 and $\quad \mathrm{B} 8 \mathrm{~B} 9 \mathrm{~B} 10<0: 178$, so $\frac{B_{3}^{3}}{B_{4} B_{5} B_{6}}>2$ and $\frac{B_{7}^{3}}{B_{8} B_{9} B_{10}}>2$ Applying AM-GM to the inequality $(2,4,4,1,1)$ we get $\phi_{21}=4 B_{1}-\frac{2 B_{1}^{2}}{B_{2}}+4 B_{3}+4 B_{7}-\sqrt{B_{3}^{5} B_{7}^{5} B_{1} B_{2} B_{11} B_{12}}+B_{11}+B_{12}>13$ We find that left side is a decreasing function of B_{1}, B_{7} and B_{11}. So we can replace B_{1} by B_{12}, B_{7} by $\varepsilon \mathrm{B}_{3}$ and B_{11} by $\varepsilon^{2} \mathrm{~B}_{3}$. Then it becomes a decreasing function of B_{3}, so replacing B_{3} by 1.62 we find that $\phi 21<13$; for 1:6275 $<B_{2}<2: 0255$ and $2: 17<\mathrm{B}_{12}<2: 2254706$, a contradiction. Hence we must have $\mathrm{B}_{3}<1: 62$.

Claim (v) B12>2:196
Suppose $B_{12} \leq 2.196$ From (5.2), we have $B_{2} B_{3} B_{4}<4: 674$ and $\quad \frac{B_{1}^{3}}{B_{2} B_{3} B_{4}}>2$ Also $B_{5} \geq \varepsilon B_{1}>1.01>\quad$ each of $\quad \mathrm{B} 6, \ldots$, B11. Therefore the inequality $\left(4 ; 7^{*} ; 1\right)$ holds, i.e. ϕ_{22} $\phi_{22}=4 B_{1}-\frac{1}{2} \frac{B_{1}^{4}}{B_{2} B_{3} B_{4}}+7\left(\mathrm{~B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{12}\right)^{-1 / 7}+B_{12}>13$ Left side is an increasing function of B 2 B 3 B 4 and of B_{12} as well. Also it is a decreasing function of B_{1}. So we can replace $B_{2} B_{3} B_{4}$ by $4.674, B_{12}$ by 2.196 and B_{1} by 2.17 to get $\phi \quad 22<13$, a contradiction. Hence we must have $B_{12}>2: 196$.

Final Contradiction

Now we have $\mathrm{B}_{1} \geq \mathrm{B}_{12}>2: 196$. We proceed as in Claim(v) and use $\left(4 ; 7^{*} ; 1\right)$. Here we replace $B_{2} B_{3} B_{4}$ by $4.674, B_{12}$ by 2.2254706 and B_{1} by 2.196 to get $\phi_{22}<13$, a contradiction.

References

1. Bambah RP, Dumir VC, Hans-Gill RJ (2000) Non-homogeneous prob-lems: Conjectures of Minkowski and Watson, Number Theory, Trends in Mathematics, Birkhauser Verlag, Basel 15-41.
2. Birch BJ, Swinnerton-Dyer HPF (1956) On the inhomogeneous min-imum of the product of n linear forms, Mathematika 3: 25-39.
3. Blichfeldt HF (1934) The minimum values of positive quadratic forms in six, seven and eight variables, Math Z 39: 1-15.
4. Cebotarev N (1940) Beweis des Minkowski'schen Satzes uber lineare inhomogene Formen, Vierteljschr. Naturforsch. Ges. Zurich, 85 Beiblatt 27-30.
5. Cohn H, Elkies N (2003) New upper bounds on sphere packings, I. Ann of Math 157: 689-714.
6. Cohn H, Kumar A (2004) The densest lattice in twenty-four dimensions, Electron. Res Announc Amer Math Soc 10: 58-67.

Citation: Kathuria L, Raka M (2015) Refined Estimates on Conjectures of Woods and Minkowski-I. J Appl Computat Math 4: 209. doi:10.4172/21689679.1000209
7. Conway JH, Sloane NJA (1993) Sphere packings, Lattices and groups, Springer-Verlag, Second edition, New York.
8. Gruber P (2007) Convex and discrete geometry, Springer Grundlehren Series 336.
9. Gruber P, Lekkerkerker CG (1987) Geometry of Numbers, Second Edi-tion, North Holland, 37.
10. Hans-Gill RJ, Raka M, Sehmi R, Sucheta (2009) A uni ed simple proof of Woods' conjecture for n 6, J Number Theory 129: 1000-1010.
11. Hans-Gill RJ, Raka M, Sehmi R (2009) On conjectures of Minkowski and Woods for $\mathrm{n}=7$, J Number Theory 129: 1011-1033.
12. Hans-Gill RJ, Raka M, Sehmi R (2010) Estimates On Con-jectures of Minkowski and Woods, Indian JI Pure Appl Math 41: 595-606.
13. Hans-Gill RJ, Raka M, Sehmi R (2011) On Conjectures of Minkowski and Woods for $\mathrm{n}=8$, Acta Arithmetica 147: 337-385.
14. Hans-Gill RJ, Raka M, Sehmi R (2011) Estimates On Con-jectures of Minkowski and Woods II, Indian JI. Pure Appl. Math. 42: 307-333.
15. Illin IV (1986) A remark on an estimate in the inhomogeneous Minkowski conjecture for small dimensions,) 90, Petrozavodsk. Gos. Univ., Petrozavodsk 24-30.
16. IV (1991) Chebotarev estimates in the inhomogeneous Minkowski con-jecture
for small dimensions, Algebraic systems, Ivanov. Gos. Univ, Ivanovo 115-125.
17. Kathuria L, Raka M (2014) On Conjectures of Minkowski and Woods for $n=9$.
18. Kathuria L, Raka M (2011) Refined Estimates on Conjectures of Woods and Minkowski-II, To be Submitted.
19. Kathuria L, Raka M (2014) Generalization of a result of Birch and SwinnertonDyer, To be Submitted.
20. Korkine A, Zolotare G (1877) Sur les formes quadratiques, Math. Ann. 366389; Sur les formes quadratiques positives. Math Ann 11: 242-292.
21. McMullen CT (2005) Minkowski's conjecture, well rounded lattices and topological dimension. J Amer Math Soc 18: 711-734.
22. Mordell LJ (1960) Tschebotare's Theorem on the product of Non-homogeneous Linear Forms (II). J London Math Soc 35: 91-97.
23. Pendavingh RA, Van Zwam SHM (2007) New Korkine-Zolotarev in-equalities. SIAM J Optim 18: 364-378.
24. Woods AC (1965) The densest double lattice packing of four spheres. Mathematika 12: 138-142.
25. Woods AC (1965) Lattice coverings of ve space by spheres. Mathematika 12: 143-150.
26. Woods AC (1972) Covering six space with spheres. J Number Theory 4: 157180.

[^0]: *Corresponding author: Kathuria L, Centre for Advanced Study in Mathematics, Panjab University, Chandigarh-160014, India, Tel: 08754216121; E-mail: kathurialeetika@gmail.com

 Received February 10, 2015; Accepted March 23, 2015; Published April 15, 2015
 Citation: Kathuria L, Raka M (2015) Refined Estimates on Conjectures of Woods and Minkowski-I. J Appl Computat Math 4: 209. doi:10.4172/2168-9679.1000209
 Copyright: © 2015 Kathuria L, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

