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Introduction
The choice of a particular prior for a model can be thought as 

a science in itself or even as an art. When we want to use Bayesian 
modeling but fail to gather useful information about the prior 
distribution, the solution is to resort to some statistical distributions 
named noninformative priors. This choice may be purely mathematical 
and used as such, even though the posterior distribution is proper and 
hence a correct density function, it is nonetheless open to criticism. In 
particular, and this will be the focus of this note, Seaman et al. [1] claimed 
that using a particular noninformative distribution is a problem in itself, 
often ignored by users of these priors. The argument goes as follows: if 
parameters with diffuse proper priors are subsequently transformed, 
the resulting induced priors can, of course, be far from diffuse, possibly 
resulting in unintended influence on the posterior of the transformed 
parameters". Also applications typically employ Markov chain Monte 
Carlo (MCMC) methods to obtain posterior features, resulting in the 
need for proper priors, even when the modeler prefers that priors be 
relatively noninformative", which confuses proper priors with proper 
posteriors and is used to restrict the focus solely (and inappropriately 
in our opinion) on proper priors.

More precisely, Seaman et al. [1] investigated side effects of some 
particular prior choices through examples. This note aims at re-
examining this investigation and giving a brief discussion on these 
topics in the following sections. First, note that a prior is considered 
as informative by Seaman et al. [1] to the degree it renders some 
values of the quantity of interest more likely than others", and with 
this definition, when comparing two priors, the prior more informative 
is deemed preferable. In contrast to this definition, we stress that an 
informative prior expresses specific, definite information about the 
parameter, providing quantitative numerical information that is crucial 
to the estimation of a model. As pointed out by Robert [2], if there is 
information about the parameters, the prior distributions need to include 
this information in. However in most practical cases, the parameter 
has no reality of its own but rather corresponds to a parameterization 
of the law describing the random phenomenon observed therein. 
The prior is a tool employed to summarize the information available 
on this phenomenon, as well as the uncertainty within the Bayesian 
structure. There are many discussions of how insight and guidance into 
appropriate choices between the prior distributions might be obtained. 

In this case, robustness considerations also have an interesting role to 
play [3,4]. This point of view will be obvious in this paper through our 
Bayesian processing a logistic model for three different noninformative 
priors. Bayesian robustness modeling distributions provide a flexible 
approach to resolving problems and conflicts between the data and 
prior distributions [5]. Also, we can model uncertainty in the prior by 
specifying a class of possible prior distributions to the parameters [6,7]. 
For the examples processed in Seaman et al. [1], we exhibit stability in 
the posterior distributions through various noninformative priors. We 
first provide a brief review of noninformative priors in Section 2. In 
Section 3, we will thus run a Bayesian analysis on a logistic model [1] by 
choosing the normal distribution N (0,σ2) as the regression coefficient 
prior. We then compare it with a g-prior, as well as at and Jeffreys' 
priors, concluding to the stability of our results. The next sections 
cover the second to fourth examples of Seaman et al. [1], modeling 
covariance matrices, treatment effect in biomedical studies, and a 
multinomial distribution index. When modeling covariance matrices, 
we compare two default priors for the standard deviations of the model 
coefficients. In the multinomial setting, we discuss the hyperparameters 
of a Dirichlet prior. Finally, we conclude with the argument that the use 
of noninformative priors is reasonable within a fair range and that they 
provide efficient Bayesian estimations when the information about the 
parameter is vague or very poor. 

Noninformative Priors
As mentioned above, if prior information is not available and if 

we stick to Bayesian modeling, we need to resort to the so-called 
noninformative priors. Since we want a prior with minimal impact 
on the final inference, we define a noninformative prior as a statistical 
distribution that expresses vague or general information about 
the parameter in which we are interested. In constructive terms, 
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Abstract
Following the critical review of Seaman et al., we react on an essential aspect of Bayesian statistics, namely 

the selection of a prior density. In some cases, Bayesian data analysis remains stable under different choices 
of noninformative prior distributions. However, as discussed by Seaman et al., there may also be unintended 
consequences of a choice of noninformative prior and, according to these authors, this is a problem often ignored 
in applications of Bayesian inference". They focused on four examples, analyzing each for several choices of prior. 
Here, we reassess these examples and their Bayesian processing via different prior choices for fixed data sets. The 
conclusion is to infer the overall stability of the posterior distributions and to consider that the effect of reasonable 
noninformative priors is mostly negligible.
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historically, the first rule for determining a noninformative prior is 
the principle of indifference, using uniform distributions which assign 
equal probabilities to all possibilities [8]. This distribution however is 
not invariant under reparametrization and invariant non informative 
priors were later defined [2,9]. If the problem does not have an invariance 
structure, Jeffreys' priors, then reference priors, exploit the structure of 
the problem under study in a more formalized way. Other methods are 
available, like the little-known data-translated likelihood of Box et al., 
[10], maxent priors and probability matching priors [11]. Bernardo et 
al., [12] regard the noninformative prior as a mathematical tool and 
that these priors are introduced as a category of priors that minimize 
the impact of the prior selection on inference: Put bluntly, data cannot 
ever speak entirely for themselves, every prior specification has some 
informative posterior or predictive implications and vague is itself 
much too vague an idea to be useful. There is no\objective" prior that 
represents ignorance". It is obvious that prior distributions can never 
be quantified or elicited exactly, especially when there is no information 
on those parameters. So, the concept of true prior is meaningless and 
quantification of prior beliefs is done with uncertainty. As Berger et al, 
[7] has noted, noninformative priors have the advantage that they can 
be considered to provide robust solutions to problems and the user of 
these priors should be concerned with robustness with respect to the 
class of reasonable noninformative priors".

Example 1: Bayesian Analysis of the Logistic Model
The first example in Seaman et al [1] is a simple logistic regression 

with probability of coronary heart disease depending on the age x by

exp( x)(x)
1 exp( x)

p α β
α β
+

=
+ +

                    (1)

First we review the original analysis of Seaman et al. (2012) [1] and 
then run our own analyze by selecting normal distribution as well as 
the g-prior, the flat prior and Jeffreys' prior.

The original analysis

For both parameters of the model (1), Seaman et al. [1] chose a 
normal prior N (0,σ2). The first surprising feature in this choice is to 
see an identical prior on both intercept and slope coefficients, instead 
of, e.g., a g-prior (discussed in the following) that would rescale the 
coefficients according to the variation of the corresponding covariate. 
Since x corresponds to age, the second term βx in the regression varies 
50 times more when compared with the intercept. When plotting the 
resulting logistic cdf across a few thousands simulations from the 
prior, the cumulative functions mostly end up as constant functions 
with values 0 or 1. This is obviously not particularly realistic since the 
predicted phenomenon is the occurrence of coronary heart disease. 
The prior is thus using the wrong scale: the simulated cdfs should have 
a reasonable behavior over the range (20,100) of the covariate x. For 
instance, it should be focusing on a -5 log-odds ratio at age 20 and a+5 
log-odds ratio at 100, leading to the comparison pictured in Figure 1 
(left versus right). Furthermore, the fact that the coefficient of x may be 
negative is also ignoring a basic issue about the model and answers the 
later self-criticism in Seaman et al. [1] that the prior probability that the 
ED50 is negative is 0:5. Using instead a flat prior here would answer the 
authors' criticisms about the prior behavior, as we now demonstrate. 
We stress that Seaman et al. [1] advance no explanation for the choice 
of the prior variance σ2=252, other than there is no information about 
the model parameters. This is a completely arbitrary choice of prior, 
which does have a considerable impact on the inference that follows, 
as shown in Figure 1 (left). Seaman et al. [1] further criticized the 

chosen prior by comparing both posterior mode and posterior mean 
derived from the normal prior assumption with the MLE. If the MLE 
is the golden standard there then one may wonder about the reference 
of a Bayesian analysis! We recall that, when the sample size N gets 
large, many simple Bayesian analyses based on noninformative prior 
distributions give results similar to standard non-Bayesian approaches 
[13]. From a Bayesian data analysis perspective, we can often interpret 
classical point estimates as exact or approximate posterior summaries 
based on some implicit full probability model. For example, Lopes et al, 
[3] have shown that a Bayesian posterior mean under a conjugate prior 
and the frequentist MLE are asymptotically equivalent for exponential 
families. Therefore, as the sample size increases, the influence of the 
prior on posterior inferences decreases and when N tends to infinity, 
most priors lead to exactly the same inference. However, for smaller 
sample sizes, it is inappropriate to summarize inference about the 
parameter by one value like the mode or the mean, especially when 
the posterior distribution of the parameter is more variable or even 
asymmetric. The data set used here to infer on (α,β) is the Swiss 
banknote benchmark (available in the R language). The response 
variable y indicates the states of the banknote, whether the banks note 
is genuine or counterfeit. The explanatory variable is the bill length. 
This data yields the maximum likelihood estimations α =233:26 and 
β =-1:09. To check the impact of the normal prior variance, we used a 

random walk Metropolis-Hastings algorithm as in Marin et al, [14] and 
derived the estimators reproduced in Table 1. We can spot definitive 
changes in the results that are caused by changes in the coefficient σ, 
hence concluding to the clear sensitivity of the posterior to the choice 
of hyperparameter σ (Figure 2).

Larger classes of priors

Picking normal priors being far from robust [7], we can limit 
variations in the posteriors, using the g-priors of [15],

T 1
2, (0,g(X X) )X Nα β −

                       (2)

where the prior variance-covariane matrix is a scalar multiple of the 
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Figure 1: Logistic cdfs across a few thousands simulations from the normal 
prior, when using the prior selected by Seaman et al. [1] (left) and the prior 
defined as the G-prior (right).



Citation: Kamary K, Robert CP (2014) Reflecting About Selecting Noninformative Priors. J Appl Computat Math 3: 175 doi:10.4172/2168-9679.1000175

Page 3 of 7

Volume 3 • Issue 5 • 1000175
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

information matrix for the linear regression. This coefficient g plays 
a decisive role in the analysis, however large values of g imply a more 
diffuse prior and, as shown e.g. in Marin et al., [14] if the value of g is 
large enough, the Bayes estimate stabilizes. We will select g as equal 
to the sample size 200, following Liang et al., [16] as it means that the 
amount of information about the parameter is equal to the amount of 
information contained in one single observation. Our second proposed 
prior is the flat prior π (α, β)=1. And Jeffreys' prior constitutes our third 
prior as in Marin et al., [14]. In the logistic case, Fisher's information 
matrix is 

I (α, β, X)=XTWX, 

where X={xir} is the design matrix, W=diag {mi πi (1- πi)} and mi is the 
binomial index for the ith count [17]. This leads to Jeffreys' prior {det(I 
α, β, X))}1/2 proportional to

1
2 2

2i i i i
2 2 2

1 1 1i i i

exp( ) x exp( ) x exp( ){ }
(1 exp( )) (1 exp( )) (1 exp( ))

n n n
i

i i i

x x x
x x x

α β α β α β
α β α β α β= = =

 + + +
− + + + + + + 

∑ ∑ ∑     (3)

This is a nonstandard distribution on (α, β) but it can easily 
approximated by a Metropolis-Hastings algorithm whose proposal is 
the normal Fisher approximation of the likelihood, as in Marin et al., 
[14]. All point estimates in Table 2 are averages of posterior samples of 
104 simulations.

Range of estimates

Bayesian estimates of the regression coefficients associated with the 
three noninformative priors above are summarized in Table 2. Those 
estimates vary quite moderately from one choice to the next, as well as 
relatively to the MLEs and to the results shown in Table 1 when σ=900. 
Figure 3 is even more definitive about this. There is no significant 
difference between those and we conclude at the stability of Bayesian 
inferences under these different prior choices.

Example 2: Modeling Covariance Matrices
The second choice of prior criticized by Seaman et al. [1], was 

proposed by Barnard et al. [18] for the modeling of covariance matrices. 
However the paper falls short of demonstrating a clear impact of this 
prior modeling on posterior inference. Furthermore the solution of 
using another proper prior resulting in a \wider" dispersion requires a 
prior knowledge of how wide is wide enough. We thus assess here the 
evaluated regression model and then run Bayesian analyses considering 
both prior beliefs specified by Seaman et al. and Barnard et al. [1,18].

Setting

The multivariate regression model of interest is

j

2
j j n, , (X , I ), 1,2...,mj j j j jY X N jβ τ β τ =                                (4)

where Yj is a vector of nj dependent variables, Xj is an nj×k matrix of 
covariate variables, and βj is a k-dimensional parameter vector. For 
this model, Barnard et al. [18] considered an iid normal distribution 
as the prior ( , )j Nβ β ∑

 conditional on β  , Σ where β , 2
jτ for j=1, 2, 

…, m are independent and follow a normal and inverse-gamma priors, 
respectively. Assuming that β , and 2

jτ  are a priori independent. 
Barnard et al. [18] firstly provide a full discussion on how to choose 
a prior for Σ because the nature of the shrinkage of the posterior of 

σ=10
α β

ean s.d mean s.d
3.482 11.6554 -0.0161 0.0541

σ=25
18.969 24.119 -0.0882 0.1127

σ=100
137.63 4.87 -0.6404 0.3019

σ=900
37.2 6.12 -1.106 0.401

Table 1: Posterior estimates using a normal prior when σ=10, 25, 100, 900.
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Figure 2: Posterior distributions of α when priors are N (0, σ) for σ=10, 25, 100, 
900, based on 104 MCMC simulations.
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Figure 3: Posterior distributions of the parameters of the logistic model when 
the prior is N (0, 9002), g-prior, at prior and Jeffreys' prior, respectively. The 
estimated posterior distributions are based on 104 MCMC iterations.

g-prior
α β

mean s.d mean s.d
237.63 88.0377 -1.1058 0.4097

Flat prior
236.44 I 85.1049 I -1.1003 I 0.3960

Jeffreys' prior
237.24 87.0597 -1.104 0.4051

Table 2: Posterior estimates under a g-prior, a flat prior and Jeffreys' prior for 
the banknote benchmark. Posterior means and standard deviations remain quite 
similar under all priors.
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the individual βj is determined by it towards a common target. The 
covariance matrix Σ is defined as a diagonal matrix with diagonal 
elements S, multiplied by a k×k correlation matrix R, “Σ=diag (S) R 
diag (S)". Note that S is the k×1 vector of standard deviations of βjs, (S1, 
…, Sk). Barnard et al. [18] propose lognormal distributions as priors 
on Sj and while the correlation matrix could have (1) a joint uniform 
prior which means p (R) α 1, or (2) a marginal prior obtained from the 
inverse-Wishart distribution for Σ which means p (R) is derived from 
the integral over S1,…, Sk of a standard inverse-Wishart distribution. 
In the second case, all the marginal densities for rij are uniform when 
i≠j, (see Barnard et al. [18]. Seaman et al. [1] chose a different prior 
structure, with a prior on the correlations and a lognormal prior with 
means 1, -1 and standard deviations 1, 0.5 on the standard deviations 
of the intercept and slope, respectively. Simulating from this prior, they 
concluded at a high concentration near zero. They then concluded that 
the lognormal distribution should be replaced by a gamma distribution 
G (4, 1) as it implied a more diffuse prior. The main question here is 
whether or not the induced prior is more diffuse should make us prefer 
gamma to lognormal as a prior for Sj, as discussed below.

Prior beliefs

First, Barnard et al., [18] basic modeling intuition is “that each 
regression is a particular instance of the same type of relationship". This 
means an exchangeability prior belief on the regression parameters. 
As an example, they suppose that m regressions are similar models 
where each regression corresponds to a different firm in the same 
industry. Exploiting this assumption, when βj has a normal prior like 

2( , )iij iN∼β β σ , j=1, 2,…,m, the standard deviation of βij (Si=σi) should 
be small as well so\that the coefficient for the ith explanatory variable 
is similar in the different regressions". In other words, Si concentrated 
on small values implies little variation in the ith coefficient. Toward 
this goal, Barnard et al. [18] chose a prior concentrated close to zero 
for the standard deviation of the slope so that the posterior of this 
coefficient would be shrunken together across the regressions. Based 
on this basic idea and taking tight priors on Σ for βj, j=1,…, m, they 
investigated the shrinkage of the posterior on βj as well as the degree of 
similarity of the slopes. Their analysis showed that a standard deviation 
prior that is more concentrated on small values results in substantial 

shrinkage in the coefficients relative to other prior choices. Consider 
for instance the variation between the choices of lognormal and 
gamma distributions as prior of S2, standard deviation of the regression 
slopes. Figure 4 compares the lognormal prior with normal mean and 
standard deviation -1, 0.5 and the gamma distribution G (4, 1). In this 
case, most of the mass of the lognormal prior is concentrated on values 
close to zero whereas the gamma prior is more diffuse. The 10, 50, 90 
percentiles of LN (-1, 0.5) and G (4, 1) are 0.19, 0.37, 0.7 and 1.74, 
3.67, 6.68, respectively. Thus, choosing LN (-1, 0.5) as the prior of S2 
is equivalent to believe that values of β2 in the m regressions are much 
closer together than the situation where we assume S2 ~ G (4, 1). To 
assess the difference between these two prior choices on S2 and their 
impact on the degree of similarity of the regression coefficients, we 
resort to a simulated example. In short, our example is similar to that 
defined in Barnard et al. [18], except for different values of k=1, number 
of the regression coefficients, m=4, number of normal regressions, and 
nj=36, number of observations. The explanatory variables are simulated 
from the standard normal distribution. We also take τj ~ I G (3, 1) and 

(0, 1000 )N I∼β . The prior for Σ is such that π (R) α 1 and we run 
Seaman et al.'s [1] analyses under S2 ~ LN (-1, 0.5) and S2 ~ G (4, 1).

Comparison of posterior outputs

Using 104 Gibbs sampling simulations, we produce the estimates 
and standard deviations of Tables 3 and 4, respectively. The difference 
between the regression estimates is quite limited from one prior to the 
next, while the estimates of the standard deviations vary much more. In 
the lognormal case, the posterior of Si is concentrated on smaller values 
relative to the gamma prior. Figure 5 displays the posterior estimations 
of the regression intercept, slope and Si, i=1, 2 simulated from a Gibbs 
sampler based on 104  iterations. The impact of the prior choice is quite 
clear on the standard deviations. Since of intercepts and slopes for all 
four regressions are centered in (16, 5, 17) and (-10, -9), respectively, 
we can conclude at the stability of Bayesian inferences on βj when 
selecting two different prior distributions on Sj.

 

Comparing Priors
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Figure 4: Lognormal and gamma priors for the standard deviation of the 
regression slope.

Si ~ LN (-1, 0.5)
Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean sd mean sd mean sd mean sd
Intercept 16.74 0.17 16.72 0.17 16.79 1.09 16.82 0.69

Slope -9.27 0.42 -9.47 0.25 -9.66 0.98 -9.63 0.45
Si ~ G (-4, 1)

Regression 1 Regression 2 Regression 3 Regression 4
Estimate mean sd mean sd mean sd mean sd
Intercept 16.73 0.23 16.73 0.22 16.85 0.37 16.76 0.32

Slope -9.3 0.3 -9.47 0.34 -9.73 0.23 -9.64 0.8

Table: 3: Posterior estimations of regression coefficients when their standard 
deviations are distributed as LN (-1, 0.5) versus G (4, 1).

Si ~ LN (-1, 0.5)
Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean sd mean sd mean sd mean sd
S1 0.43 0.27 0.44 0.26 0.42 0.26 0.41 0.24
S2 0.42 0.27 0.43 0.25 0.42 0.25 0.43 0.32

Si ~ G (-4, 1)
Regression 1 Regression 2 Regression 3 Regression 4

Estimate mean sd mean sd mean sd mean sd
S1 2.31 1.28 2.33 1.29 2.29 1.29 2.29 1.26
S2 2.32 1.29 2.23 1.28 2.25 1.23 2.3 1.26

Table 4: Posterior estimations standard deviations of the regression coefficients 
when their priors are distributed as LN (-1, 0.5) versus G (4, 1).



Citation: Kamary K, Robert CP (2014) Reflecting About Selecting Noninformative Priors. J Appl Computat Math 3: 175 doi:10.4172/2168-9679.1000175

Page 5 of 7

Volume 3 • Issue 5 • 1000175
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Examples 3 and 4: Prior Choices for a Proportion and 
the Multinomial Coefficients

This section considers more briefly the third and fourth examples 
of Seaman et al. [1]. The third example relates to a treatment effect 
analyzed by Cowles [19] and the fourth one covers a standard 
multinomial setting. 5.1 proportion of treatment effect captured In 
Cowles [19] two models are compared for surrogate endpoints, using 
a link function g that either includes the surrogate marker or not. The 
quantity of interest is a proportion of treatment effect captured which 
is defined as

 1 ,11 / RPTE β β≡ −

where β1, βR,1 are the coefficients of an indicator variable for treatment 

in the first and second regression models, respectively. Seaman et 
al. [1] restricted this proportion to the interval (0, 1) and under 
this assumption they proposed to use a kind of beta distribution 
(conditional beta distribution) on β1, βR,1 so that PTE stayed within (0; 
1).We find this example intriguing in that, even if PTE could be turned 
into a meaningful quantity (given that it depends on parameters from 
different models), the criticism that it may take values outside (0, 1) is 
rather dead-born since it suffices to impose a joint prior that ensures 
the ratio stays within (0, 1). This actually is the solution eventually 
proposed by the authors. If we have prior beliefs about the parameter 
space (which depends on β1, βR,1 in this example) the prior specified on 
the quantity of interest should integrate these beliefs. In the current, 
there is seemingly no prior information about (β1, βR,1) and hence 
imposing a prior restriction to (0; 1) is not a logical specification. For 
instance, using normal priors on β1, and βR,1 lead to a Cauchy prior on 
β1/βR,1, which support is not limited to (0, 1). We will not discuss this 
example any further.

Multinomial model and evenness index

The final example in Seaman et al [1] and in this paper deals with a 
measure called evenness index

 
ln ( )

( )
ln (K)

i i

H
θ θ

θ −∑
=

that is a function of a vector ϴ of proportions ϴi, i=1, … , K. The 
authors assume that these are associated with a Dirichlet prior with 
parameters first equal to 1 then to 0.25. For the selection function 
H, the first prior concentrates on (0, 5, 1) whereas the second does 
not. Since there is nothing special about the uniform, re-running the 
evaluation with a Jeffreys prior reduces this feature, which anyway is a 
characteristic of the prior distribution, not of the posterior distribution 
which accounts for the data. The authors actually propose to use the 
Dir (1/4, 1/4,…,1/4) prior, presumably on the basis that the induced 
prior on the evenness is then centered close to 0.5. 
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If we consider the more generic Dir (Ɣ1,…,ƔK) prior, we can 
investigate the impact of the Ɣi’

s when they move from 0:1 to 1. 
Discussion: We compare the values 0.1, 0.25, 0.5, 1 for the Ɣi’

s..  Figure 
6 shows the corresponding priors on H(ϴ): the concentration of the 
density of the evenness index on (0.5, 1) decreases by reducing Ɣi. 
For Ɣi=0.1, it is concentrated on (0, 0.7) while for Ɣi=0.1 most of the 
mass is on values between 0 and 0.5. To further the comparison, we 
generated datasets each of sizes N=50, 100, 250, 1000, 10, 000. Figure 
7 shows the posteriors associated with each of the four Dirichlet 
priors for these sample sizes, including their mode which are all 
close to 0.4 when N=104. Even for moderate sample sizes like 50, 
the induced posteriors are almost similar. The posterior means on 
H(ϴ), are reproduced in Table 5. When the sample size is 50, there 
is a substantial variation, however, between the posterior means such 
that the as the sample size increases this difference decreases to zero. 
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Sample size 50 100 250 1000 10,000
Dirichlet prior when - Ɣi=0.1

Posterior mean 0.04 0.34 0.4 0.38 0.395
Dirichlet prior when - Ɣi=0.25

Posterior mean 0.32 0.44 0.42 0.39 0.396
Dirichlet prior when  Ɣi=0.5

Posterior mean 0.38 0.37 0.42 0.39 0.397
Dirichlet prior when Ɣi=1

Posterior mean 0.45 0.43 0.44 0.39 0.396
Jeffreys' prior: Ɣi=0.125

Posterior mean 0.41 0.41 0.41 0.39 0.396
Posterior s.d 0.06 0.06 0.04 0.02 0.006

Table 5: Posterior means of H(ϴ) for the priors shown in Figure 6 and Jeffreys' 
prior on ϴ for sample sizes 50, 100, 250, 1000, 10, 000.

Since the Dirichlet distributions are conjugate priors, hence possibly 
lacking in robustness, we propose to set Ɣi=1/K (here K is equal to 8) 
which transforms Dirichlet distribution to a Jeffreys' prior. This non 
informative prior works well and could minimize the influence of the 
prior input on the inferential output for small sample sizes [2]. Figure 8 
reproduces the transform of Jeffreys' prior for the evenness index (left) 
and the induced posterior densities for N=50, 100, 250, 1000, 10, 000 
(right). Once again, the posteriors concentrate around 0.4 even though 
Jeffreys' prior is more diffuse than the other proposal priors of 6. The 
last two rows of Table 5 displays means and standard deviations of 
simulated posterior distributions on H(ϴ)for Jeffreys' prior. The same 
stability occurs.

Conclusion
In this note, we reassessed the examples of the critical review 

of Seaman et al. [1]. Our own Bayesian modeling was based on non 
informative priors such as g-priors, at and Jeffreys' priors, as well as 
weakly informative priors [13]. According to the outcomes produced 
therein, the use of non informative distributions as priors result 
in stable posterior inferences and also give reasonable Bayesian 
estimations for the parameters at hand. We thus consider the level of 
criticism found in the original paper rather superficial, as it either relies 
on a highly specific choice of a proper prior distribution or on ignoring 
basic prior information. The paper of Seaman et al. [1] concludes 
with recommendations for prior checks. The recommendations are 
mostly sensible if expressing the fact that some prior information is 
almost always available on some quantities of interest. Our only point 
of contention is the repeated and recommended reference to MLE, 
since it implies assessing or building the prior from the data. The most 
specific (if related to the above) recommendation is to use conditional 
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mean priors as exposed by Christensen et al. [20]. For instance, in the 
first (logistic) example, this meant putting a prior on the cdfs at age 40 
and age 60. The authors picked a uniform in both cases, which sounds 
inconsistent with the presupposed shape of the probability function. In 
conclusion, we find there is nothing pathologically wrong with either 
the paper of Seaman et al, [1] or the use of “non informative" priors! 
Looking at induced priors on more intuitive transforms of the original 
parameters is a commendable suggestion, provided some intuition or 
prior information is already available on those. Using a collection of 
priors including reference or invariant priors helps as well to build a 
feeling about the appropriate choice or range of priors and looking at 
the induced dataset by simulating from the corresponding predictive 
cannot hurt.
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