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Due to advances in medicine and public health programs we 
are living longer than ever. Aging affects many biological processes, 
among them is the immune system ability to respond to vaccinations 
and fight infections, which declines as we age [1,2]. Strikingly, the 
aged population is extremely susceptible to influenza and 80-90% of 
influenza related mortalities occurs in patients of 65 years old or older 
[3]. Elderly may also suffers from autoimmunity [4], another indication 
for irregularities in the aged immune response. Sub-clinical anemia and 
increased frequencies of specific leukemia types further highlight the 
health impact of the hematopoietic system [2]. It is clear that there is a 
need to improve and rejuvenate an individual’s aged immune response 
but is it feasible and if so how? 

Hematopoietic stem cells (HSCs) are the continuous source of the 
various lymphocytes and myeloid cells from early development and 
through aging. HSC’s ability to self-renew and sustain multipotency 
underlay their potential as Adult Stem Cells, and requires adequate 
regulation of proliferation [2]. Numerous signals, intrinsic and 
extrinsic, are in place to maintain the balance between proliferation 
and quiescence – the state in which HSCs do not divide for prolonged 
time without losing their potential [5]. Adequate quiescence is thought 
to have an essential role in the life-long potential of HSCs, and in their 
aging. Both intrinsic and extrinsic mechanisms are known to regulate 
HSCs , for instance overexpressing of Hox genes can increase HSC’s 
self-renewal [6], and changes of the bone-marrow niche can affect 
the number and location of HSCs [7]. One of the most remarkable 
properties of HSCs is the shier potential for self–renewal that they hold, 
which greatly superposes ones lifespan as demonstrated using serial 
transplantation assay [8]. Importantly, HSCs function as individual 
cells, but are making a population of cells which differs in terms of 
self-renewal potential; when trying to assess an HSC lifespan in a 
clonal manner it has been demonstrated that certain clones in the HSC 
population can out live the original host but not all HSCs do so [9]. If 
HSCs have evidently the potential to generate normal hematopoiesis 
for longer than our lifespan it should be possible to make them work 
better within our life time. This raises the question: how can we treat 
our own HSCs to rejuvenate the immune system?

The term “aged stem cell” is somewhat paradoxical. One of the 
fundamental properties of a stem cell, is its ability to make more of 
itself while keeping original potency [10]. Even so, to date substantial 
evidences have accumulated for aged stem cells and several models 
have been proposed for the aging of HSCs, we present our simplified 
model in Figure 1, including the major features of self-renewal potency, 
differentiation potentials, and population vs. single-cell activities. The 
effect of aged stem cells on the corresponding tissue or organ varies 
much according to homeostasis rates of exchanging old cells with new 
ones. The aged immune response is well documented and sometimes 
referred to as “immuno-senescence”. It is considered to be a gradual 
process which leads to a decrease in the ability to effectively respond 
to infection and to create long term immune memory [11]. The 
HSCs of both aged mice and human show an increase tendency to 
differentiate to the myeloid lineage rather than the lymphoid lineage 
[12,13], a phenomenon referred to as the myeloid bias. Even earlier 

studies had pointed that while HSC’s population expands substantially 
with age, not all retain their balanced-differentiation -- but they rather 
demonstrate a strict myeloid-bias while retaining self-renewal potency 
[14]. Multiple studies had further elucidated potential mechanisms, 
which are beyond the scope of this paper and are better presented in 
a review [15]. The result of lineage- bias is a reduced number of new 
B-cells and naïve T-cells [16,17]. The ration of myeloid-lymphoid bias
is not the only parameter affected in the aged immune response. It
appears that aging impairs the T-cells response to dendritic cells [18]
and a decrease in antibody affinity in the affinity maturation process
[19]. Clearly, physiological processes such as thymic involution
may have independent impact, but might yet be connected with the
bone-marrow hematopoiesis. All this combined leads to a dramatic
decrease in the efficiency of the immune response as we age. From a
rejuvenation point of view, understanding the pillars of immune-aging 
provides potential targets when looking to avoid immune-aging. Yet, it 
is an open question whether we may reverse the situation after immune 
activity already declined?

Rejuvenation aims specifically to reverse aged-phenotype back into 
young state, in contrast with other approaches that aims to delay aging. 
Several anti-aging approaches are fairly known, perhaps most famous 
is the restriction of food which is better known as “caloric restriction”. 
While reducing food intake achieved significant delay of aging in many 
lower-organisms, its impact on mammals and humans is less simple, 
and importantly face the edge of malnutrition that tragically impairs 
the immune system activity [20,21]. Nevertheless, one recent study 
suggested that an acute severe food limitation, as prolonged fasting, 
may actually reverse aged state in mouse [22], with a focus on IGF-1 
pathway. Cdc42 was also reported to have a major role on HSCs aging, 
with potential rejuvenation for its targeting [23]. Immune rejuvenation 
of effector-cells function was demonstrated using cytokines, hormones 
and vitamins – but such studies mostly focused on differentiated rather 
than stem cells. Recently, the ablation of senescent cells using a novel 
compound reported rejuvenation of both HSCs and muscle-stem-
cells in normal aged mouse [24], further emphasizing that the potency 
of adult stem cells persist through aging. Taken together, multiple 
approaches suggest that we can not only postpone aging, but also revert 
it as rejuvenation literally means. Therefore, Next question is what are 
the molecular mechanisms by which HSCs can be directed from aged 
state into young functionality?
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HSCs generate all types of immune and blood cells, letting a 
rational for having a feedback signaling from the mature effector cells 
to sustain homeostasis. Indeed, it was reported that bleeding induced 
HSC’s activation that could be blocked with erythrocytes but not with 
leukocytes [25]. However, this might not correlate with lineage-bias, 
and aging of the immune system involves accumulation of lymphocytes 
not erythrocytes. The chronic deficiency of B-cells had been found to 
specifically prevent their aging [26], suggesting that immuno-senescence 
involves feedback mechanisms. This was elegantly demonstrated using 
specific depletion of B-cells in aged mice, which induced not only the 
generation of new B-cells but also their functional response to vaccine 
and the rejuvenation of the more primitive stem- and progenitors 
compartments [27]. These studies demonstrate that rejuvenation of 
the immune system, from stem cells through progenitors and effectors 
functions can be achieved via the regulation of cellular homeostasis. 
Identification of the mechanisms by which homeostasis is sustained, 
and by which stress-hematopoiesis is induced, are therefore essential 
for the development of new rejuvenation treatments.

HSCs are formed during mid-gestation, and persist throughout 
life as individual clones making a population, but keeping each 
cell separately. Individual HSC are known to differ functionally, in 
part due to their inherent history and in part due to technical and 
stochastic variability of experimental procedures. Importantly, several 
studies reported the isolation of distinct HSC’s subsets. It has also 
been suggested that the myeloid bias is not due to a change in the 
differentiation potential of single HSCs but rather by a gradual selection 
process leading to a preference of a certain subtype over the other [28]. 
Later studies prospectively isolated such HSC-subsets that differ in 
their myleo-lymphoid differentiation bias [29-31]. Nevertheless, even 
the most purified immuno-phenotype HSCs still differ individually. 
Therefore, it was suggested that aging might consist of changing 
frequencies of different HSC’s clones within the population, rather 
than individual change in each and every cell. If this scenario is true, 
then rejuvenation may aim not to change cells but rather to change the 
composition of stem cell’s population. However, there are additional 

studies that demonstrate further changes, elegantly reviewed recently 
[15], suggesting that in parallel to the shift in clonal-composition there 
is an intrinsic aging in the majority of HSCs, including DNA-damage 
accumulation and epigenetic changes over time. We may note that 
DNA-damage must be fixed during cell-division, and epigenetics marks 
are possible to remodeling. However, HSCs of old mice were reported 
to persist their “aged” function and profiles through transplantation, 
and erase it only with the extreme reprogramming to pluripotency 
[32]. This suggests that virtually all known aging mechanisms might 
be reversed, and there is no known hard limitation over the potency 
of aged HSCs, perhaps endogenously and not through transplantation. 
It is yet to be studied whether the population of aged stem cells might 
be fractionated into subgroups that bear different potency in terms 
of self-renewal. Such findings would impinge on any rejuvenation 
approach. Interestingly, the abovementioned successful rejuvenation 
may suggest that indeed the population of HSCs contains senescent 
cells [24] and their removal clear the space for the more potent ones. 
Recent studies using single-cell RNA-seq had discovered cell-cycle and 
differentiation priming clonal changes with aging [33], with further 
clonal bias towards myeloid- and even into platelets-restricted fate 
[34]. These molecular findings are in agreement with functional study 
of aged mouse and human HSCs [35]. 

HSCs do age, and their long-term potential as stem cells seems to 
be hindered both after intrinsic and extrinsic physiological processes. 
While the interest in rejuvenation has long history, recent discoveries 
show it is possible not only to improve immune-activity at the effector 
cell level, but more deeply to change the state of our HSCs pool and 
benefit the improved hematopoietic and immune system for prolonged 
time. With better understanding we might be able to carefully 
manipulate endogenous stem cell’s population and rejuvenate HSCs 
clones.

References

1.	 Effros RB (2007) Role of T lymphocyte replicative senescence in vaccine 
efficacy. Vaccine 25: 599-604.

rejuvenation

young old

Aging

DNA damage
senescence
environment

mostly quiescence
activation upon:
signal
stochastically

D
iffrentiation

balanced hemotopoiesis biased hematopoiesis

heterogeneity

or

population aging

Figure 1: Schematic model for HSCs aging and rejuvenation, representing the common concepts regarding normal hematopoiesis and the outcomes of aged 
HSCs with emphasis to myeloid bias and single-cell vs. population changes. Rejuvenation is including cell-intrinsic as well as extrinsic modifications.
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