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Introduction
“Likelihood” is arguably the most pronounced terminology in 

the statistical realm and was defined and popularized by the eminent 
geneticist and statistician  Fisher (1922) [1-4]. The likelihood function 
is a function of model parameter(s) based on a given set of data and a 
pre-defined probability density function (pdf). The likelihood function 
can be formally defined as follows:

If ( | )θf x  is the joint pdf (pmf) of the sample ( )1, ,= … nX X X
based on the random variables 'iX s  iid, then the likelihood function 
of θ is given by:

( ) ( ) ( )
1  

| | |θ θ θ
=

= = ∏ i
i to n

L x f x c f x

where c is a constant with respect to 𝜃.

A key point often reiterated in textbooks is that the likelihood 
function is a function of 𝜃 and not to be viewed as a probability density 
itself [5]. However, the shape of the likelihood function relative to its 
mode is often of interest in estimating 𝜃. Likelihood functions can 
be mathematically constructed for most statistical distributions; but 
maximum likelihood estimators may not always have closed form [6]. 
Nevertheless most of the distributions commonly used allow for the 
computation of maximum likelihood estimators either analytically, 
numerically or graphically. Several properties of maximum likelihood 
estimators such as asymptotic normality, invariance, and ease of 
computation have made maximum likelihood estimators popular [7]. 
In this paper we assume 𝜃 is a scalar throughout.

The large sample distribution of the maximum likelihood 
estimators is often used for inferential purposes. If θ



 is the mle 

of 𝜃, then 1,θ θ θ−  ∼     

 

N I  where ( )
2

log ( | )θ̂ θ
θ

 ∂ =    ∂  
I E f X

is the Fisher Information evaluated at θ


. In situations where the 
computation of the expectation for the Hessian of the log-likelihood 

is analytically tractable, ( )
2

|
θ θ

θ θ
θ

=

 ∂   =      ∂     



J logf X , the observed 

Fisher Information, has been used as an approximation in the 

computation of θ 
 
 



I  [8].

A common question that often arises in statistics is in regard to 
sample size. In the framework of the large sample distribution of the 
mle, we are interested in knowing for what sample size the mle behaves 
satisfactorily, attaining the asymptotic normal distribution. Put a 
different way, does the existing sample size allow us to use the large 
sample properties of the mle with confidence? If not, what would be an 
ideal sample size?

Sprott et al (1969) discussed some of the undesirable impacts of 
using large sample approximation of the mle when such approximations 
do not seem to hold [9] and suggested examining likelihood functions 
before making inferences based on mle. They demonstrate via an 
example from Bartholomew [10] that drawing inferences from the mle 
without first examining the likelihood functions can be misleading. 
Figure 1 gives the plot of the observed relative likelihood (likelihood 
functions scaled by its mode) as obtained from Bartholomew’s data 
and relative normal likelihood based on the large sample theory of mle. 
The plot shows that for a pre-specified value of the relative likelihood, 
the range of 𝜃 s can be in complete disagreement between the two 
likelihood functions. A relative likelihood of 10 % or higher, the ranges 
are roughly(20,110) and (7.81) for the relative and relative normal 
likelihood function [9], approximately a 17% drop in coverage. Sprott 
(1969) also demonstrated that transformation of the mle can help 
achieve the asymptotic normality with smaller sample sizes. However 
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Abstract
Maximum likelihood estimators (mle) and their large sample properties are extensively used in descriptive as 

well as inferential statistics. In the framework of the large sample distribution of the mle, it is important to know the 
relationship between the sample size and asymptotic convergence i.e. for what sample size does the mle behave 
satisfactorily "attaining asymptotic normality." Previous work has discussed the undesirable impact of using large sample 
approximations of the mles when such approximations do not hold. It has been argued that relative likelihood functions 
should be examined before making inferences based on the mle. Little has been explored regarding the appropriate 
sample size that would allow the mle achieve asymptotic normality from a relative likelihood perspective directly. Our 
work proposes a bootstrap/simulation based approach in examining the relationship between sample size and the 
asymptotic behaviors of the mle. We propose two measures of the convergence of observed relative likelihood function 
to the asymptotic relative likelihood function namely: differences in areas and dissimilarity in shape between the two 
relative likelihood functions. These two measures were applied to datasets from the literature as well as simulated 
datasets.
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little has been explored regarding the appropriate sample size that 
would allow the mle to achieve asymptotic normality from a relative 
likelihood perspective directly. However little has been explored 
regarding the appropriate sample size that would allow the mle to 
achieve asymptotic normality from a relative likelihood perspective 
directly. This work proposes a bootstrap/simulation based approach 
to the above question via the behavior and properties of the relative 
likelihood function. This work proposes a bootstrap/simulation based 
approach to the above question via the behavior and properties of the 
relative likelihood function. In particular we measure the proximity of 
the observed likelihood function to the likelihood function based on 
large sample properties, both of which are scaled here by their modes 
to have a maximum at one. The convergence measures proposed by 
the authors are(i)difference in area under the two relative likelihood 
functions and (ii) dissimilarity in the shape of the two likelihood 
functions (dissimilarity index). We propose that, for a given sample 
size, if the difference in the area under the two relative likelihood 
functions and the dissimilarity index between them are both close to 0, 
the asymptotic approximation of mle is satisfactorily achieved. To study 
the properties of these measures and related likelihood convergence, 
we use the bootstrap to generate samples of varying size based on initial 
samples for examples in literature.

The paper is laid out as follows. Section 2 provides a review of the 
bootstrap method and the proposed measures of distance between 
distributions. In section 3, we provide the mathematical details of the 
two measures of convergence. In section 4 we provide examples by 
simulating data from exponential families of distribution and apply our 
method to data available in the literature and textbook.

Review of Bootstrap and Distances Between 
Distributions
Bootstrap

The Bootstrap is a re sampling technique introduced by Efron 

(1979) with a related long history [11] and has attracted much attention 
in the past three decades primarily due to its conceptual simplicity and 
the computational empowerment of statisticians due to advances in 
computer science [12]. The past three decades have witnessed much 
works dedicated to developing bootstrap methods [13-19]. Bootstrap 
at its core, is a re sampling technique that treats the data at hand as a 
“surrogate population” and allows for sampling with replacement with 
a goal of re-computing the statistic of interest many times. This allows 
us to examine its bootstrap distribution. Efron has demonstrated that 
the bootstrap method outperforms other methods such as jackknifing 
and cross-validation [12]. Despite the simplicity of the bootstrap 
algorithm, the large sample properties of bootstrap distributions are 
surprisingly elegant. Singh (1981), for example has demonstrated that 

the sampling distribution of θ θ − 
 



, where θ


 is an estimate of 𝜃, is 

approximated well approximated by its bootstrap distribution [20]. 
Bickel and Freedman have also made substantial contributions in 
developing bootstrap theory [21-23]. The most common applications of 
the bootstrap in its basic form involve approximating the standard error 
of sample estimatorse, correcting the bias in the sample estimate, and 
in constructing confidence intervals. However in situations involving 
bootstrapping dependent data, modified bootstrap approaches such as 
moving-block bootstrap are recommended [24]. Romano (1992) has 
also discussed extensively applications of the bootstrap [18]. Here we 
use the bootstrap as an approach to simulating samples based on the 
observed data. The sampling properties of the bootstrap are not used 
directly as we observe convergence behavior on the likelihood scale.

4.2 Distance between distributions

Kullback-Leibler distance is a commonly used measure of the 
difference between two statistical distributions [25]. If p(x) and q(x) are 
two continuous distributions the KL distance between p(x) and q(x) is 
defined as follows:.

) ( ) ( )
( ) ( ) ( ) ( ) ( )

Ù Ù Ù

( log log log .
∈ ∈ ∈

= = −∫ ∫ ∫
x x x

p x
KL p q p x dx p x p x dx p x q x dx

q x

Kullback-Leibler distance has been applied in areas such as 
functional linear models, Markovian processes, model selection, and 
classification analysis [26-29]. It should be noted that the Kullback-
Leibler distance is not symmetric, ( )( | | ) ,≠KL p q KL q p , but can be 
expressed in a symmetric form [30].

Bhattacharya distance is another popular measure of difference 
between two distributions [31]. If p(x) and q(x) are two continuous 
distributions the Bhattacharya distance between p(x) and q(x) is 
defined as follows:

( ) ( ) ( )
Ù

,
∈

= ∫
x

B p q p x q x dx

Bhattacharya distance has also found extensive applications in 
several fields [32-35]. Bhattacharya distance assumes the product p(x) 
q(x) to be non-negative. 

In lieu of the above two distance measures, we could simply 

use ( ) ( )( )1 2
Ùθ

θ θ θ
∈

−∫ f f d  as a measure of proximity between the 

two functions ( )1 θf  and ( )2 θf . Geometrically this measure is the 
difference in the area under the two curves ( )1 θf  and ( )2 θf .

In this paper we make use of the bootstrap approach to resample 
from the actual sample (or simulate data from known distributions) to 
obtain a “bootstrap sample”. For each “bootstrap sample”, the observed 
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Red curve (solid line) represents observed relative likelihood function and 
green curve (dashed line) represents asymptotic relative likelihood function.
Figure 1: Observed Relative and Asymptotic Relative Likelihood Functions 
for Bartholomew’s Data.
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relative likelihood function and corresponding asymptotic (normal) 
relative likelihood function are constructed and the area under the 
two relative likelihood functions computed. As the size of “bootstrap 
sample” increases we measure the convergence of the observed relative 
likelihood function to the asymptotic relative likelihood function. The 
convergence is measured by the difference in area under the curves 
and a dot product based measure of curve similarity. We note that 
simulated data is not a real world. 

Method
Background

Let 1, , nX X…  be iid random variables from a specified distribution 
 ( | )θf X  with observed values 1, ,… nx x . The observed relative 
likelihood function of 𝜃 i.e. ( )θR is defined as follows:

( ) ( ) .
θ

θ
θ

=
 
 
 



L
R

L

Since 1,θ θ θ−  ∼     

 

N I , the asymptotic relative likelihood 

function of 𝜃 can be defined as follows:

 
( ) ( )θθ

θ
=

 
 
 



N
N

N

L
R

L .

For exponential families, the density function can be expressed in 
the following form:

( ) ( ) ( ) ( ) ( )( )| exp ,θ θ θ= − +f x h x c a b x

and the related likelihood function expressed as:

( ) ( ) ( ) ( ) ( )| expθ θ θ 
= − + 

 
∑ ∑i i

i i

L X c h x na b x

If θ


 is the mle of 𝜃, then the likelihood function evaluated at θ


 is:

( ) ( )| expθ θ θ      = − +            
∑ ∑

  

i i
i i

L X c h x na b x

Thus the observed relative likelihood function ( )θR is:

( )
( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )

( )

expexp( | )

( | ) exp exp

θ θθ θθθ
θ θ θ θ θ

   −   − +    = = =
         − + −                

∑∑ ∑
∑ ∑





 



iii ii i

i ii i

h x c cc h x na b xL XR
L X c h x na b x n a a

The asymptotic relative likelihood function for θ


 assumes the 
following form:

( )

2
21 1| exp exp

2 . 2
θ θθ θ θ θ θ

θ

    − − −       = = × × −                    



  

NR I
std err

 

where

( ) 1. θ θ−  =  
 



std err I  and

( )( ) ( ) ( )( ) ( )
2

'' ''
2 log |θ θ θ θ

θ
 ∂  = − = − +   ∂   

∑


i
i

I E L X c E h x na  evaluated 
atθ



 .

In situations where computation of expectations is not analytically 

tractable, θ 
 
 



I can be estimated by ( ) ( )2
ˆ

2

log |
θ θ

θ θ
θ

=

 ∂
= − ∂ 

J f X  

Here both ( ) θR and ( )θNR  are positive since both are exponential 

functions. 

Measure of distance between ( ) θR  and ( )θNR .

If ( ) θR  and ( )θNR  are defined over the interval ( )θ θL U , the 
difference in area under the two likelihood curves will serve as the 
measure of discrepancy between ( ) θR  and ( )θNR  and can be 
computed as follows:

( ) ( ) ( ) ( )( )R
θ θ θ

θ θ θ

θ θ θ θ θ θ θ∆ = − = −∫ ∫ ∫
U U U

L L L

N NR d R d R R d 	                 (1).

If the expression does not have a closed form solution, numerical 
methods such as Simpson’s rule [36] can be applied:

( ) ( )( ) ( ) ( )( )1 1
1  

R θ θ δθ θ θ δ− −
=

∆ = − − −∑ i i N i N i
i to n

R R R R

( ) ( )( ) ( ) ( )( )1 1
1  

θ θ θ θ δθ− −
=

 = − − − ∑ i N i i N i
i to n

R R R R . 

Where n is the number of intervals.

For similar curves we would expect ∆R to be very small. A 
tolerance level may set: 

1 2 1 2;∆ − ∆ < <n nR R n n  Typically 0.01=  will 
be acceptable.

Property of ∆R:

1. On a log scale, ( | )θR X can be approximated by ( | )θNR X  up 
to a second term [37].

Proof:

The general expression for Taylor expansion of a function ( )f x
around ‘a’ is as follows:

( ) ( ) ( ) ( )
0  != ∞

−
= ∑

k
k

k to

x a
f x f a

k
where ( ) ( ) ( )∂

=
∂

k
k

kf x f x
x

Using Taylor expansion on log( ( | ))θR X around θ


we have:

( )( ) ( )( ) ( )( ) ( )( )

2

2

2log | log log log     
2θ θ θ

θ θ
θ θ θ θ θ θ

θ θ

 − ∂ ∂   = + − + +  ∂ ∂ 
  





R X R R R higher order powers of k

Now:

( )( ) ( ) ( )
||

log log log log 1 0
| |

θ

θ

θθ
θ

θ θ

    
        = = = =

      
            







 

L XL X
R

L X L X

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )log log log 0 log log log 0
θ θ θ θ

θ θ

θ θ θ θ θ θ θ θ
θ θ θ θ θ θ
∂ ∂ ∂ ∂ ∂ ∂      = − = = = − = =      ∂ ∂ ∂ ∂ ∂ ∂      

   

 

 

R L L L R L L L  

This is the derivative of the score function evaluated at mle.

( )( ) ( )( )
2 2

2 2log log
θ θ θ

θ θ
θ θ
∂ ∂

= = −
∂ ∂

 



R L J .

Thus ( )( )log |θR X  can be approximated as:

( )( ) ( )
2

log | log( ( | ))
2 θ

θ θ
θ θ

 − 
 ≈ − ≈





NR X J R X

The k! in the higher order terms of the Taylor expansion shrinks 
it to 0.

 For exponential families:

( )( )
( ) ( )

( )
( ) ( ) ( )

exp
log log

exp

θ θ
θ θ θ θ θ

θ θ

    −                = = − − −                   −        

∑
∑



 



ii

i
i

h x c c
R h x c c n a a

n a a
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1≤id .

1=id  if 1iS  and 2iS are parallel. This is the case for perfect 
similarity.

1.= −id  if 1iS  and 2iS  are in opposite direction. This is the case for 
perfect dissimilarity.

Ideally if the two curves were exactly same, we would expect

1 =
=∑ i

n d ni
.	 				                   (3)

A Dissimilarity Index

Equation (3) can be used to express disagreement between the two 
curves (a dissimilarity index). If D is the dissimilarity index between 
the two curves then,

.
−

= ∑ ii
n d

D
n

Note that: 0 1≤ ≤D .

The proposed simulation based approach can be summarized in 
the following steps.

For a given sample ( )1, ,… nX X , compute ( )θR and ( )θNR .

Choose alerance level for ∆R  and D.

Compute ∆R  and D for the given sample.

If ∆R  and D are not sufficiently close to 0, bootstrap from the 
original sample and compute ∆R  and D again for the bootstrap sample.

Repeat step 3 until satisfactory convergence in achieved i.e. 
  ∆D and R is less than chosen tolerance level.

The next section contains several simulated examples to 
demonstrate the application of the above method.

Results
In this section, we examine the convergence of likelihood functions 

for some of the common distributions, using simulated data as well as 
for data obtained from the literature. Expression for ( )θR and ( )θNR  
for some common distributions are tabulated in Table 1. ( )θR  and 

( )θNR  are the observed and large sample normal likelihood functions 
scaled by their modes.

Simulation studies

The convergence of the observed relative likelihood function to 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
2 2

'' '' '' ''1 1log log exp
2 2

θ θ θ θ θ θ θ θ θ
        = − − − + = − − − +                  

∑ ∑
 

N i i
i i

R c E h x na c E h x na

So,

( ) ( ) ( ) ( ) ( )( ) ( )
2

'' ''1
2

θ θ θ θ θ θ θ θ         − − − ≈ − − − +                    
∑ ∑

  

i i
i i

h x c c n a a c E h x na

This implies that higher order terms in the Taylor expansion are 
converging to zero. Our method here graphically demonstrates this as 
a function of n.

Curve dissimilarity index

Let ( )1 θL  and ( )2 θL  be two different functions of θ with the 
same domain Ù . Graphically ( )1 θL  and ( )2 θL can be visualized as 
two curves constructed on the same support. The two curves need not 
necessarily have closed functional form. Here we propose a simple 
and computationally efficient algorithm that uses the dot product to 
measure the similarity of the two curves in terms of their curvature.

The idea is to divide the support of the two curves into sufficiently 
small segments so that each of them can be approximated by a line 
segment (Figure 2). Each of these segments is equivalent to a vector 
in two dimensions and hence we can compute the dot product for the 
two vectors in each of these segments. If in general the two vectors are 
parallel in each of these segments, this would imply that the two curves 
have similar local curvature and hence the curves are locally similar. 
In other words, for similar curves, the dot product between the two 
vectors is equal to the product of their individual L2 norms over each 
segment Figure 2.

Let i=1,…,n+1, be the number of points over which the two curves 
are segmented i.e. there are n segments of the two curves in total. 

( )1 θiS and ( )2 θiS be any segment of the two curves.

Let ( ) 1 2

2
1 2

1 2 2|| |
.,
| || ||

= i i
i i i

i i

S Sd S S
S S

	 		               (2)

Properties of di:

Distribution R(θ) RN(θ) Note
Poisson

( ) n( )λ λ−n x xe
x

2ˆexp( ( ) )
2

λ λ− −
n
x

ˆ xλ =
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Figure 3: Poisson Distribution-Change in values of Difference in Area and Dissimilarity Index.
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Figure 4: Poisson Distribution-Observes and asymptotic relative likelihood functions.

asymptotic relative likelihood function was examined using simulated 
dataset. For different families of exponential distributions, data 
were simulated for a given sample size. For the given data, the two 
convergence measures namely ∆R  and D were computed. This process 
was repeated for different sample sizes and the values of ∆R  and D 
thus obtained were recorded. The examples of some of the distributions 
from exponential families and the required sample sizes that makes 
the large sample approximation of the mle reasonable are presented 
in Tables 1 and 2 and in Figures 3-6. Additional examples for more 
distributions from exponential families are provided in supplementary 

n ∆R:Difference in Area D:Dissimilarity Index
1 0.0691 0.01968
3 0.01318 0.01183
5 0.00604 0.00767
7 0.00359 0.005752

10 0.00201 0.00374
15 0.00114 0.00303

Table 2: Poisson Distribution: Values of difference in area and dissimilarity index 
for data of different sample sizes simulated from Poisson distribution.
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Figure 5: Wei bull Distribution-Change in values of Difference in Area and Dissimilarity Index.
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Figure 6: Weibull Distribution-Observed and asymptotic relativelikelihood functions.

n ∆R:Difference in Area D:Dissimilarity Index
10 0.35706 0.34744
15 0.20736 0.23947
30 0.08872 0.16687
50 0.04498 0.10846
75 0.02406 0.07855
100 0.0158 0.0615

Table 3: Weibull Distribution Values of difference in area and dissimilarity index for 
data of different sample sizes simulated from Weibull distribution.

Number of days
untill death

Mean Variance

control 5,6,7,7,8,8,8,9,12 7.778 3.944

drug 7,8,8,8,9,12,1,3,14,17 10.5 10.944

Table 4: Data from Gibbon’s et al.Values represent number of days each mice 
survived when exposed to control or drug.

materials.

Example 1: Poisson distribution ( )10λ =
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Example2: Wei bull Distribution ( )2, 6γ β= =

ExamplesUsing Data from Literature

a) Data from Gibbons et al’s book “Nonparametric Statistical 
Inference” [38].

A group of 20 mice are allocated to individual cages randomly. The 
cages are then assigned randomly to two treatments namely control A 
and drug B. All animals were infected with tuberculosis. The number of 
days until the mice die is recorded (Table 4).

For mice assigned to drug the mean and variance are roughly 
equal and the data is count data. So a Poisson model is a reasonable 
choice. Based on the proposed methods, the values of difference in area 
under curves ∆A and dissimilarity index were found to be D:0.00204 
and 0.0066 respectively. It indicates that the asymptotic normality 
approximation of the mles holds for the data (Drug) above Figure 7.

b) Data from Williams et al. (1995).

The following data was obtained from Williams et al. [39,40]. The 
data is the weight (in grams) of dry seed in the stomach of each spinifex 
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Figure 7: Gibbons et al. Data: Observed and asymptotic relative likelihood functions.
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Figure 8: Williams et al. Data-Observed and asymptotic relative likelihood 
functions.

n R:Difference in Area D:Dissimilarity Index
16 0.006219 0.98564
20 0.0508 0.80232
30 0.0269 0.58368
50 0.01266 0.38409
70 0.00702 0.29476
85 0.00508 0.25017

Table 5: Data from Williams et al. Values of difference in area and dissimilarity 
index for bootstrapped data of different sample sizes.

Dose Of Quinoline (mg per plate)
0 33 100 333 1000

15 16 27 33 20
21 26 41 38 27
29 33 69 41 42

Table 6: Data from Breslow. Values in bold represent dose of quinolone. The (non-
bold) values below represent colonies of TA98 Salmonella measured.
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Figure 9: Change in values of Difference in Area and Dissimilarity Index.
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Figure 10: Williams et al Data Bootstrapped-Observed and asymptotic relative likelihood functions.

pigeon captured in desert. The data is as follows:

0.457,3.751,0.238,2.967,2.509,1.384,1.454,0.818,0.335,1.436,1.603,
1.309,0.201,0.530,2.144,0.834.

The plot of relative and relative normal likelihood functions 
together with the values of∆A and D is in figure 8:

While the difference in area is small enough, the value of 
dissimilarity index seems fairly high. It was seen that that with larger 

samples (bootstrap) the dissimilarity index and difference in area both 
decrease (Table 5, Figure 9 and 10).

c) Data from Breslow (1984)

The data set is taken from a paper by Breslow who proposed 
an iterative algorithm for fitting over-dispersed Poisson log-linear 
model. The dataset provides the number of revertant colonies of TA98 
Salmonella observed on each of plates processed at 6 dose levels of 
quinoline [39].
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Figure 11: Breslow et al. Data-Relative and relative normal likelihood functions.

The two convergence measures (Table 6 and Figure 11) suggest 
that the data at each dose level is large enough for the mle to satisfy 
asymptotic normality.

Discussion
Our work discusses the issue of appropriateness of sample size 

required for asymptotic normality of mles to hold true. We essentially 
proposed two different diagnostic measures for this purpose viz. 
∆ −R difference in the area under the relative observed likelihood 
and relative asymptotic likelihood curves and −D dissimilarity index 
which measures the shape of the curves. The simulated results show 
that different distributions have different threshold of  ∆R  and D. It 
gives an informal measure of convergence in real world. For example 
if we believe that the data at hand follows ( )10λ =Poi  distribution we 
could compute  ∆R and D and compare it with the tabulated values in 
table 2. If the ∆ computedR and computedD  are close to the tabulated values 
for the given sample size, assumption of asymptotic normality of mles 
is reasonable.

The two measures of convergence were also applied to data 
from the literature and bootstrap techniques were used in assessing 
the convergence of relative likelihood functions as the sample size 
increased. As seen from the simulated examples as well as the example 
from literature, a “sample size of 30” can be far more than what is 
actually needed and the sample size requirements for satisfactory 
asymptotic convergence differs for different distributions. For example 
with Poisson ( )10λ =  distribution, it was seen that samples of sizes 
less than 10 show convincing convergence.Our future work is directed 
at generalizing these diagnostic measures to distributions taking into 
account parameters within more than one dimension.
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