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Background
Epidemiological studies have linked air pollution exposure to 

increased respiratory and cardiovascular morbidity and mortality [1-
3]. The World Health Organization has reported that 7 million deaths 
world-wide in 2012 were attributed to air pollution exposure, with 31% 
of these deaths from respiratory disease [4]. The three main air pollutants 
are particulate matter, ozone and nitrogen dioxide [3]. Research has 
shown a strong association between particulate matter exposure and 
adverse respiratory health effects [5-7]. Diesel emissions are one of the 
major contributors to particulate matter [3]. Diesel particulate matter 
(DPM) consists of partially combusted carbon particles, which have 
organic content absorbed to the particle surface [3]. DPM can vary in 
composition and size depending on the emissions source [3]. Inhaled 
diesel particles of smaller size display higher deposition in the lower 
airways, higher percentage of organic content and increased surface 
area to mass ratio, making smaller particles more biologically active 
and toxic within the lungs [8]. 

The first line of defence against inhaled DPM is the bronchial 
epithelium, a cellular structural barrier lining the airways [9]. The 
main mechanisms of defence mediated by the bronchial epithelium 
are mucociliary clearance, initiation of inflammatory response and 
degradation of inhaled agents [9]. When DPM are inhaled into the 
airways, the ultrafine DPM can penetrate the mucus layer, then 
internalise and aggregate in the epithelium [10,11]. In vitro studies 

have shown this DPM aggregation triggers cellular responses including 
the secretion of pro-inflammatory cytokines TNF-α, IL-8 and IL-6 
[10-15], as well as triggering xenobiotic metabolism [16,17], oxidative 
stress [18] and ultimately loss of cell viability [19,20]. Xenobiotic 
metabolism is the degradation of foreign agents within an epithelial 
cell by a xenobiotic metabolising enzyme, cytochrome P450 1A1 
(CYP1A1). CYP1A1 expression is triggered by the activation of the 
aryl hydrocarbon receptor (AhR) by diesel particulate organic content. 
These defence mechanisms of bronchial epithelial cells are critical for 
normal functioning of the lungs; however, very little is known about 
how exposure to DPM alters these defensive cellular responses.

A major challenge in aerosol toxicity research is finding an accurate 
in vitro representation of diesel exposure to the airways in vitro. Previous 
studies have used a conventional, submerged cell exposure model, in 
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apical surface of the cell layer was washed with 150 μL of PBS. 100 μL 
of Alcian blue dye was pipetted onto the cell layer and incubated for 
30 seconds at room temperature. The dye was removed and the apical 
surface was photographed at 10x magnification. 

Immunofluorescence staining for β-tubulin: The presence of 
ciliated HBECs was confirmed using immunofluorescence staining 
targeting β-tubulin. The Transwell® membrane was fixed with cold 
methanol and incubated with an anti-β-tubulin antibody conjugated to 
fluorescein isothiocyanate (FITC) and 4',6-diamidino-2-phenylindole 
(DAPI). The membrane was incubated with each stain separately for 5 
minutes at 37°C and washed in between stains with 150 μL of PBS. The 
Transwell® membrane was then cut away from the insert and mounted 
onto a glass slide. The apical surface of the cell layer was observed 
under fluorescent microscopy (Axio Imager Z1, Zeiss, Jena, Germany) 
and photographed using AxioVision LE microscopy software (Zeiss).

Diesel emissions generation and characterization

Diesel emissions were generated on a Euro III common rail 
Cummins diesel engine, coupled to a dynamometer. Fuel used in this 
study was commercial diesel purchased from Caltex. Running mode 
was at 25% load at 1500 rpm. The specifications of the engine and 
dynamometer are shown in Table 1, and the diesel emission set-up is 
shown in Figure 1.  

The raw exhaust was subjected to one stage dilution through 
partial flow dilution. A centrifugal pump drew HEPA-filtered ambient 
air into the dilution tunnel. Gas analysers, which consisted of a NDIR 
(Non-destructive infra-red) CAI 600 series CO2 and CO analyser and 
a CAI 600 series CLD (Chemiluminescence detector) NOx analyser, 
measured CO, CO2 and NOx concentrations before the dilution 
system. To determine the dilution ratio, a SABLE CA-10 CO2 analyser 
was used to measure CO2 concentrations after the dilution. A Scanning 
Mobility Particle Sizer (SMPS; TSI 3080 Electrostatic classifier, with 
a 3025 Condensation Particle counter measured the size distribution 
and number concentration of DPM. The semi-volatile organic fraction 
was removed by passing the polydisperse aerosol stream through a TSI 
3065 thermodenuder. To take into account particle losses inside the 
thermodenuder [26], all the tests were done with the thermodenuder 
in the system. Neat (nDE) and gas-phase (gDE) diesel emissions were 
sampled through the thermodenuder at room temperature, while 
residual diesel emissions (rDE) were generated by sampling through 
the thermodenuder set to 300°C [27]. Dustrak (model TSI 8520) was 
used for PM2.5 measurements (particulate matter measuring ≤2.5 
μm in diameter). Dustrak mass concentration data were converted to 
gravimetric mass concentrations as measured by the tapered element 
oscillating microbalance based on the equation provided in ref. [17].

which DPM are dissolved in cell culture media and administered to a 
monolayer of immortalised epithelial cells [21]. However, this model 
lacks the physiological relevance needed for diesel toxicity studies, 
as the diesel composition is potentially altered by the suspension in 
media [20] and the interaction between the diesel and the cell layer is 
not occurring directly at an air-liquid interface (ALI). Additionally, the 
use of immortalised bronchial epithelial cells is a limitation, as these 
cells may not accurately represent the mucociliary phenotype of the in 
vivo cell population [9]. The use of primary human bronchial epithelial 
cells (HBECs) cultured at ALI, and differentiated into a mucociliary 
epithelial cell layer, effectively mimics the in vivo environment of 
the bronchial epithelium [22-24]. This more physiologically relevant 
platform models the inhalation of pollutants in vivo, and enables the 
composition of diesel emissions to be modified experimentally, in 
order to accurately assess the effects of different DPM components on 
bronchial epithelial cell responses. 

The aim of this study was to investigate the effect of removing 
organic content from diesel emissions, on the cellular responses of 
primary HBECs cultured at (ALI). It was hypothesised that exposure 
to residual diesel emissions (without organic content) would result in 
attenuated HBECs responses, when compared to neat (unmodified) 
diesel emission exposure.

Methods
Cell culture

Primary HBECs were isolated and cultured from surgical resection 
tissue (left lower lobe) donated, with written informed consent, by a 
57 year old male patient with lung adenocarcinoma who was a current 
smoker with a 70 pack-year history of smoking and forced expiratory 
volume (FEV1) of 83% predicted. This study was approved by the 
Human Research Ethics Committees of The Prince Charles Hospital 
and The University of Queensland. Briefly, a bronchial ring was isolated 
from the lung resection specimen and incubated in a dissociation mix 
containing Pronase (Roche, Penzberg, Germany), Minimal Essentials 
Media-alpha (MEMα, Invitrogen, USA), amphotericin B (Invitrogen), 
penicillin, streptomycin and L-glutamine (PSG, Invitrogen) for 24 
hours at 4°C, based on a published method [25]. Briefly, the epithelial 
cell layer was then harvested from the bronchial ring, and centrifuged 
for 5 min at 1500 rpm. The cell pellet was resuspended in 4 mL of 
Keratinocyte Serum-Free Media (KSFM, Invitrogen), expanded in 
submerged culture until confluent and stored in liquid nitrogen until 
needed. 

Primary HBECs were grown and differentiated using a Bronchial-
Air Liquid Interface (B-ALI) BulletKit (Lonza, Basel, Switzerland), 
according to the manufacturer’s instructions. Briefly, the HBECs were 
seeded onto a porous collagen-coated membrane on a 6.5 mm Corning 
Transwell® (Corning®, Corning, USA) insert at a density of 50,000 cells 
per insert. The cells were grown until confluent in B-ALI growth media 
on the apical and basal surfaces. The apical media was then removed to 
achieve air lift, and the basal media was replaced with supplemented 
B-ALI differentiation media. The cells were maintained at ALI for at 
least 28 days before exposure to diesel exhaust. The basal media was 
changed 3 times per week, and the apical surface of the cell layer was 
washed at least once a week with 150 μL of phosphate buffered saline 
(PBS) solution. 

HBEC characterization

Mucus secretion: Alcian blue staining was used to qualitatively 
assess the presence of mucus-secreting HBECs. Prior to staining, the 

Particle 
concentration

Mass 
concentration

NO 
(ppm)

NO2 
(ppm)

CO 
(ppm)

CO2 
(ppm)

(number/cm3) (μg/m3)
30 minutes

FA - - - - - -
nDE 1.1×106 232 247 16.8 279 7.3
rDE 7.6×105 210 205 14.2 322 6.8

60 minutes
FA - - - - -
nDE 1.05×106 222 238 12.4 273 7.3
rDE 7.8×105 192 224 15.0 266 6.9

Table 1: Average particle concentration, mass concentration and gas concentration 
(NO, NO2, CO and CO2) during 30 and 60 minute e×posures of primary HBECs to 
nDE and rDE at ALI.
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Central flow of 1 L/min was used to avoid agglomeration and loss 
of small particles. The tubing was kept as short as possible to further 
minimize diffusion losses. Three processes influence the deposition 
efficiency of the CULTEX: sedimentation, diffusion and electrical 
forces. Deposition of nanoparticles (diameter <0.1 µm), is mainly 
controlled by electrical forces. The deposition efficiency calculated was 
0.81. Detailed discussion on the theoretical and practical aspect of the 
efficiency of the CULTEX® RFS system is provided in ref. [23].

Cell exposure

Primary HBECs were cultured at ALI and exposed to diesel 
emissions through the CULTEX® Radial Flow System (CULTEX® 
Laboratories GmbH, Hannover, Germany), which contains three cell 
exposure chambers allowing simultaneous exposure in triplicate. The 
apical module directs air flow at 0.025 L/min directly over the cell layer 
using an external vacuum pump. The Transwell® insert containing 
the cell layer sits on the basal module, which is filled with 25 mL of 
PBS solution heated to 37°C by an external water bath. HBECs were 
exposed in triplicate with neat diesel emissions (nDE) or residual diesel 
emissions (rDE) with organics removed for 30 and 60 minutes. The 
negative control samples were HBECs exposed to filtered laboratory air 
(FA) for 30 minutes and 60 minutes. The positive control samples were 
exposed to cigarette smoke condensate (CSC) diluted in apical media 
at 4 mg/µL and incubated for 3 hours at 37°C. The CSC was purchased 
from Murty Pharmaceuticals Inc. (Lexington, KY). Baseline readings 
of cell responses were measured from unchallenged incubated HBECs 
that underwent none of the experimental handling.

Cytokine secretion

Enzyme-linked immunosorbent assays (ELISA) were used to 
measure the level of IL-8, TNF-α and IL-6 secretion from primary 
HBECs in response to diesel emission exposure at ALI. After 
completion of exposure, 250 μL of B-ALI differentiation media was 
added to the apical surface of the cell layer and incubated at 37°C in 
5% CO2 for 24 hours. The supernatants were then removed from the 
cell layer and stored at -80°C until ELISA analysis. The concentrations 
(pg/mL) of IL-8, TNF-α and IL-6 were determined using Quantikine 
ELISA assay kits (R&D systems, Minneapolis MN, USA), according 
to the manufacturer’s instructions. Colour intensity was measured 
and quantified using a microplate reader (FLUOstar Omega, BMG 
LABTECH, Ortenberg, Germany) with software for quantification 
(Omega v1.2). The standard curves were generated using a 4-parameter 

logarithmic curve fit in Prism6.0c. For accurate comparison between 
experimental groups, the cytokine concentrations were corrected for 
cell viability to show data representative of a 100% viable cell layer. 

Cell viability

After removal of the supernatant, a water-soluble tetrazolium-1 
(WST-1) cell proliferation assay (Roche Applied Sciences, Penzberg, 
Germany) was performed as a measure of cell viability. WST-1 is a 
salt solution that is metabolised by mitochondrial dehydrogenase to 
produce formazan, causing a measurable colour change. Reagent stock 
was diluted 1:10 with B-ALI differentiation media, added to the surface 
of the cell layer in the Transwell®, and incubated at 37°C in 5% CO2. 
After 3 hours, WST-1 sample solution was transferred to 96-well plate 
alongside incubated control wells containing 10 μL of WST-1 plus 90 
μL of B-ALI differentiation media. Absorbance was measured and 
quantified using a microplate reader (FLUOstar Omega) with software 
(Omega v1.2), at wavelength 450 nm against background control 
(blank) and corrected for interference at 620 nm. Cell viability was 
expressed as percentage relative to the baseline samples, which were 
deemed to be 100% viable.

Gene expression

RNA extraction: Total RNA was extracted from cells using the 
Qiagen AllPrep kit (Qiagen, Limburg, Netherlands). The cell layer was 
homogenised by adding 200 μL of RLT buffer to the apical surface of 
the cell layer, placed on a shaker and incubated at room temperature 
for 20 minutes. The homogenised lysate samples were collected into 
Eppendorf tubes and an additional 150 μL of RLT buffer was added to 
make up the 350 μL needed for RNA extraction. The samples were stored 
at -80°C until RNA extraction. During the RNA extraction protocol, 
the RNA samples were cleaned of genomic DNA using an RNase-free 
DNase kit (Qiagen) as per the manufacturer’s instructions. RNA was 
quantified using a NanoDrop Spectrophotometer (Thermo Scientific, 
DE, USA). Quality assessment was performed by measurement of 
A260/A280 (>1.75 indicating good quality) and A260/A230 ratios 
(>1.75 indicating good quality), representing RNA/protein and RNA/
contaminant absorbance, respectively. 

Quantitative real-time PCR (qRT-PCR): QRT-PCR was used to 
assess the changes in HO-1, CYP1A1, IL-8 and TNF-α gene expression 
after diesel exposure. cDNA was prepared by reverse transcribing 
extracted RNA samples using Superscript III First Strand Synthesis 
kits (Qiagen) as per the manufacturer’s instructions. TaqMan Gene 
expression assays targeting HO-1 (Hs01110250_m1), CYP1A1 
(Hs01054797_g1), TNFα (Hs01113624_g1) and IL-8 (Hs00174103_
m1) were performed, and compared to the expression of a housekeeper 
gene, GAPDH (Hs02758991_g1). RT-PCR was performed using the 
ViiA 7 Real-time PCR system (Applied Biosciences, Foster City, CA, 
USA) with the following PCR cycling conditions: 50°C for 2 minutes, 
95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 
60°C for 1 minute. The change in gene expression was expressed as fold 
change relative to baseline levels using the comparative quantification 
algorithm, -ΔΔCt.

Statistical analysis

A one-way ANOVA (two tailed) with Tukey’s multiple comparisons 
post-test between all experimental groups was used to assess the effects 
of the experimental challenge on the measured cellular responses 
(cytokine secretion, cell viability or gene expression). In the graphs, 
an asterisk (*) directly above the bar indicates a statistically significant 
difference when compared to the filtered air control. A connecting 

Figure 1: Set-up for diesel emissions generation and analysis. Exhaust 
gas is first sampled from the exhaust line, and exhaust gas is then mixed 
with HEPA (High-Efficiency Particulate Air Filter) air. After dilution stage, 
it passes through a thermo-denuder where the volatile organic fraction of 
DPM is stripped off. A Scanning Mobility Particle Sizer (SMPS) gives the 
size distribution of the exhaust gas. Dustrak measures particulate mass. The 
CULTEX system is used for cell exposure. CO2 analysers are used before 
and after dilution system to calculate the dilution ratio. 
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line between two bars and an asterisk above indicates a significant 
difference between the highlighted aerosol exposures. As positive 
control, exposure to CSC was compared with the baseline control 
for significance difference. Statistical analysis was performed using 
Prism v6.0c. P values <0.05 (two-tailed) were considered statistically 
significant.

Results
HBEC differentiation

ALI cultures of primary human bronchial epithelial cells were used 
to generate a mucociliary epithelial cell layer that is representative of the 
in vivo situation. Figure 2 shows immunofluorescence stains of the cell 
layer after 0 and 28 days at ALI at 20X magnification. DAPI is a nucleic 
acid stain used to show the overall cell population by highlighting the 
nuclei. The cilia were stained using a β-tubulin antibody conjugated 
to the green fluorescent compound FITC. Comparison between day 
0 and day 28 confirmed the presence of cilia after differentiation at 
ALI, shown by the positive β-tubulin stain at day 28 and not day 0. 
Figure 3 shows Alcian blue stains of the apical surface of the cell layer 
at 10X magnification. Alcian blue targets mucopolysaccharides and 
the increase in blue colour intensity between day 0 and day 28 at ALI 
confirmed the mucosecretory phenotype of the cell layer. 

Diesel exhaust generation and characterization of particles

Size distribution and particle number concentrations (#/
cm3) of emitted particles can be seen in Figure 4. Emitted mass of 
particles corrected for the losses inside the thermodenuder as well as 
concentration of NO, NO2, CO and CO2 in the raw gas are presented 
in the Table 1. The particle number concentration, mass concentration 
and gas concentration remained consistent between the 30 and 60 
minute exposures for both nDE and rDE. There was a notable loss in the 
concentration of particles when comparing between the nDE and rDE 
exposures, which is due to thermophoretic losses. Mass concentration 
dropped as well, but the decrease in the mass was not as large, since 
the carriers of the mass are mainly larger particles whose number was 
reduced by only 10-20%.

Cell viability

The percentage of viable cells was assessed using a WST-1 cell 
proliferation assay for primary HBECs exposed to nDE and rDE for 
30 and 60 minutes. A 30 minute exposure to nDE caused a significant 
reduction in HBEC viability when compared to the filtered air negative 
control (P=0.01), whereas exposure to rDE resulted in no change in 
viability (Figure 5). A 60 minute exposure to nDE resulted in a similar 
magnitude of reduction in cell viability as the 30 minute exposure; 
however this did not reach statistical significance (P=0.08). Exposure 
to the rDE for 60 minutes resulted in a statistically significant reduction 
in HBEC viability when compared to filtered air (P=0.0001) and 30 
minutes rDE exposure (P<0.0001). As a positive control, high dose CSC 
exposure showed the largest decrease in cell viability when compared 
to baseline and filtered air controls (P=0.0001).

Cytokine secretion

Figure 6 shows the cytokine secretion levels for IL-8, TNF-α and 
IL-6 quantified using ELISA analysis of supernatant collected 24 hours 
after exposure and corrected for the percentage of viable cells. 30 
minute exposure to nDE or rDE did not significantly alter IL-8, TNF-α 
and IL-6 secretion when compared to the filtered air control. Similarly, 
there was no significant change in IL-8, TNF-α and IL-6 secretion after 
a 60 minute exposure to nDE, compared to the filtered air control 

(P>0.05). In contrast, there were statistically significant increases in IL-
8, TNF-α and IL-6 secretion after 60-minute exposure to rDE when 
compared to filtered air (P=0.007, P=0.01 and P<0.0001, respectively). 
In the 60 minute exposures, TNF-α and IL-6 concentrations were also 
significantly higher after exposure to rDE, compared to nDE (P=0.008 
and P=0.0002, respectively). High dose CSC exposure resulted in 
statistically significant increases in IL-8 and TNF-α secretion, when 
compared to filtered air (P<0.0001). For accurate comparison between 
experimental groups, the cytokine concentrations were corrected for 
cell viability to show data representative of a 100% viable cell layer. 
Uncorrected data is shown in supplementary Figure 1.

Figure 2: Immunofluorescence staining of primary HBECs for cilia using 
an anti-β-tubulin antibody conjugated with FITC, co-stained with DAPI on 
HBECs at day 0 (a-c) and day 28 (d-f). From top to bottom: DAPI, β-tubulin 
and merged, respectively.

Figure 3: Alcian blue stain for mucus secretion from primary HBECs at day 
0 and day 28. a-b) Apical surface of the cell layer prior to staining; c-d) Apical 
surface of the HBEC layer after Alcian blue stain.
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Gene expression

Gene expression analysis was performed using quantitative 
real-time PCR targeting CYP1A1, HO-1, TNFα and IL-8 mRNA. 
The data were normalised to the housekeeper gene glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) and expression levels 
were calculated relative to the baseline control group.  Figure 7a 
shows the relative gene expression levels of CYP1A1, which is 
a xenobiotic metabolizing enzyme responsible for metabolizing 
polycyclic aromatic hydrocarbons (PAHs). Whilst exposure to rDE 
for 30 or 60 minutes tended to increase CYP1A1 gene expression, 
there were no significant changes in gene expression after 30 or 60 
minute exposure to nDE or rDE (P>0.05). For the positive control, 
high dose CSC exposure resulted in a marked increase in CYP1A1 
expression (P<0.0001). 

For gene expression of HO-1 (Figure 7b), an antioxidant protein 
expressed in response to oxidative stress, 30 minute exposure to nDE 
or rDE did not significantly change HO-1 expression (P>0.99 and 
P=0.99, respectively). In the 60 minute exposures, HO-1 expression 
increased with nDE and to a lesser extent rDE; however these did not 
reach statistical significance when compared to filtered air (P=0.3 and 

P=0.95, respectively). Furthermore, high dose CSC did not alter HO-1 
expression in these experiments (P>0.99). 

The gene expression of inflammatory cytokines TNF-α and IL-8 
were measured in conjunction with levels of protein secretion. 30 
minute exposure to nDE did not change significantly in TNF-α and 
IL-8 mRNA expression, compared to the filtered air control (P=0.87 
and P=0.91, respectively). Exposure to rDE for 30 minutes did not alter 
TNF-α or IL-8 expression (P>0.99 and P=0.99, respectively). 60 minute 
exposure to nDE and rDE did not change in the relative expression 
of TNF-α and IL-8 (P>0.05). High dose CSC caused minor changes 
in TNF-α and IL-8 mRNA expression, but both were not statistically 
significant when compared to the filtered air controls (P=0.54 and 
P=0.94, respectively). 

Discussion
Main findings

Diesel emissions are a major source of air pollution within the 
urban environment and long-term exposure has been linked to an 
increase in respiratory disease morbidity and mortality [1-3]. Diesel 
emissions are made up of gas and particulate matter, the latter of which 
is considered a highly toxic component [3]. The diesel particulate 
composition can vary greatly depending on the emissions source [5-
7], therefore it is important to understand the potential those different 
components have in triggering biological responses. The primary 
objective of this study was to investigate the effect removing the diesel 
organic compounds from DPM has on primary HBECs using direct 
air-to-cell exposure at ALI. This study has demonstrated that the 
removal of organic content from diesel emissions can alter cellular 
responses with three main findings. Firstly, nDE and rDE triggered 
differential effects on the HBEC responses (cell viability, inflammation, 
xenobiotic metabolism and oxidative stress) when comparing between 
30 and 60 minute exposures; cell viability changes were comparable 
to cytokine secretion, but not the levels of HO-1 expression (oxidative 
stress marker); and finally, in contrast to previous literature [16,28], 
there was an increase in CYP1A1 expression in the absence of organic 
content. These findings have built upon the current understanding of 
how bronchial epithelial cells respond to diesel emissions in vitro and 
offer new insight into how diesel emissions may trigger adverse health 
effects in relation to epithelial cell response. 

The effect of removing organic content on diesel emissions 
toxicity as measured by cell viability

Previous studies have shown that exposure to diesel emissions 
can be highly toxic to airway epithelial cells both in vitro [20] and that 
the organic content present on the diesel particulate matter plays a 
key role in this toxicity [19]. In accordance with previous studies we 
showed reduced cell viability after exposure to nDE [20]. The removal 
of organic content appeared to attenuate the effect on cell viability for 
the 30 minute exposure. In contrast, the removal of organic content 
resulted in a stronger reduction in cell viability after the 60 minute 
exposure, compared to the 30 minute exposure and the nDE exposure. 
This somewhat unexpected result challenges the notion that organic 
content is the major contributor to the toxicity of diesel emissions. 
Previous research has shown that cell viability can be attenuated 
with the removal of organic content [11,16,19,28], however many of 
these studies used the submerged culture method for diesel emission 
exposure in which the diesel components are suspended in media, 
with the possibility that suspension of diesel allows for alteration in 
chemical composition [21].  Because we used direct aerosol exposure 

Figure 4: Size distribution of neat diesel emissions (nDE) and residual 
diesel emissions (rDE). Particle number distributions were measured with a 
scanning mobility particle sizer (SMPS) consisting of a TSI 3071A classifier 
(EC) and a TSI 3010 condensation particle counter (CPC). Particles within a 
10-400 nm size range were measured. For the neat diesel tests, 15 SMPS 
scans were taken, and at least 15 scans were taken for tests involving 
residual diesel exhaust.

Figure 5: WST-1 assay measuring the cell viability of primary HBECs after 
exposure to filtered air (FA), neat diesel emissions (nDE) and residual diesel 
emissions (rDE) for 30 and 60 minutes, and cigarette smoke condensate 
(CSC) for 3 hours. * indicates a statistically significant difference (P<0.05). 
Error bars indicate SEM (n=3). Values are relative to 100% baseline (B). 
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to measure the effects of organic content on diesel toxicity, we have 
minimised interference by apical cell culture media. These methods 
provide evidence for the contribution of other diesel components 
(residual after the removal of organic content) to the toxic effects of 
diesel emissions exposure on human bronchial epithelial cells. 

The effect of removing diesel organic content on oxidative 
stress and inflammation

Diesel emissions toxicity is associated with oxidative stress, a 
common adverse effect of environmental toxins on cells [29]. Oxidative 
stress can be caused by inflammatory activity [30], xenobiotic 
metabolism [31] and/or endogenous reactive oxygen species (ROS) 
from DPM [32], and this oxidative stress often leads to a reduction 
in cell viability [33-35]. HO-1 is a cytoprotective antioxidant protein 
and increases in expression in response to oxidative stress [36,37]. 
After the 30 minute exposure to nDE and rDE, there were limited 
HBEC responses of cytokine (protein or mRNA) secretion, and no 
major changes in HO-1 mRNA expression. After the longer 60 minute 
exposures, cytokine protein secretion increased significantly with rDE, 
whereas cytokine mRNA expression and HO-1 mRNA expression 
did not change with either rDE or nDE. These results highlight the 

importance of diesel emissions composition and the differential 
effects of organic content on HBEC responses after 30 and 60 minutes 
exposure.

The effect of removing diesel organic content on xenobiotic 
metabolism

Previous research has shown that the presence of organic content 
on diesel emission particles trigger the expression of xenobiotic 
metabolizing enzyme, CYP1A1 [16,28]. The classical method of 
CYP1A1 expression activation, in reference to diesel emission exposure, 
requires the activation of the AhR receptor by diesel organic content 
[31]. We showed that nDE exposure had limited effect on CYP1A1 
expression. This could be due to inadequate exposure duration, as in 
previous studies CYP1A1 expression increased after 60 minutes of 
diesel emission exposure [18]. However, there was some increase in 
CYP1A1 expression after exposure to rDE (without organics) when 
compared to both the filtered air controls and the nDE, although this 
did not reach statistical significance. In accordance with this, a study 
by Totlandsdal et al. used the conventional particle/media suspension 
method of exposure to show that residual diesel particles (without 
organics) can trigger an upregulation of CYP1A1 expression from the 
immortalized bronchial epithelial cell line BEAS-2B [19]. This suggests 
that during diesel emissions exposure, the upregulation of CYP1A1 
expression is not dependent only on the organic content and may be 
triggered by other DPM components. Although direct conclusions 
regarding the mechanistic background of toxic behaviour of residual 
diesel particles cannot be drawn from these measurements, the results 
imply that it is likely that some new pathways may be responsible for 
the observed effects. 

The advantages of direct air-to-cell diesel emissions exposure

To our knowledge, this study is the first to test the effects of 
different diesel emissions components on differentiated HBECs using 
a direct air-to-cell exposure method. Much of the previous research in 
this area has used an experimental model where DPM are suspended 
in media and administered to a submerged immortalized epithelial cell 
monolayer [17,28]. This experimental model lacks true physiological 
relevance [21] as the physical and chemical composition of the 
DPM change in suspension [18,21] and the bronchial epithelial cell 
monolayer is not representative of the airway epithelium in vivo. In 
contrast, we observed successful differentiation of primary HBECs into 
a mucociliary epithelial cell layer.  This culture technique then provided 
the platform for direct diesel emission exposure through the CULTEX® 
RFS and supported closer modelling of the adverse effects of diesel 
emissions on airway epithelial cells. Through use of physiologically 
relevant exposure model, our experiments provide new insight into the 
mechanisms by which air pollution can affect HBECs. 

Organic content on PM has been shown to confer toxicity as a 
result of its chemical composition and related reactivity [32,38]. Hence, 
our results associated with nDE exposure are not surprising. However, 
at the same time, the organic coating is disabling the reactivity of the 
carbon surface. By removing this coating, the large carbon surface 
area and its many active sites become exposed, and may trigger other 
reactions within cells with a longer duration of exposure. Another 
potential consideration is that thermodenuded particles may alter 
the stability of soot agglomerates, leading to further decomposition 
by the breakage of solid bridges of other substructures formed during 
the dilution process and related Brownian coagulation [39]. The 
probability of fragmentation of agglomerated diesel particles under 
various conditions depends on many factors and should be further 

Figure 6: Cytokine secretion of (a) TNF-α (b) IL-8 and (c) IL-6 from primary 
HBECs after exposure to filtered air (FA), neat diesel emissions (nDE), 
residual diesel emissions (rDE) for 30 and 60 minutes and cigarette smoke 
condensate (CSC) for 3 hours. * indicates a statistically significant difference 
(P<0.05). Error bars indicate SEM (n=3). Concentrations are corrected for 
cell viability.
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Figure 7: Gene expression levels of CYP1A1 (a) HO-1 (b) TNFα (c) and IL-8 (d) from primary HBECs after exposure to filtered air (FA), neat diesel emissions (nDE), 
residual diesel emissions (rDE) for 30 and 60 minutes, and cigarette smoke condensate (CSC) for 3 hours. Gene expression is relative to the baseline control group 
and relative expression is normalized to GAPDH. * indicates a statistically significant difference (P<0.05). Error bars indicate SEM (n=3).

explored for its potential role in electrochemical processes in cell 
fluid suspensions. Furthermore, in either of these cases, the dose or a 
threshold value may be a key determinant in switching on a certain 
cellular response, which may be relevant for different responses of 
residual diesel after 30 minutes and 60 minute exposures. In addition, 
the kinetics of reactions involving organic compounds and activated 
soot surface area, as well as smaller units of diesel agglomerates, may 
be completely different, having important implications for cells being 
ultimately coupled to the exposure time. 

Limitations

The study of aerosol toxicity in the airways has always been 
challenging due to the complex composition of different pollutants and 
an inaccurate representation of the airway epithelium. Although this 
study has used direct aerosol exposure to a differentiated epithelial cell 
layer to attempt to overcome these major limitations, some limitations 
remain. Firstly, the primary HBECs used were established from airway 
tissue collected from a single patient with lung cancer who smoked.  
Results obtained in this experimental system may not be generalisable 
to other individuals.  While these considerations do not interfere with 
the internal validity of the findings, additional experiments on other 
primary cell lines should be performed in the future.  Secondly, some 
consideration needs to be made for the time-point for gene expression 
analysis. The HBECs were lysed and RNA extracted after the 24 hour 

incubation and supernatant collection. Each gene of interest may 
have different expression patterns in response to diesel emissions 
exposure. For CYP1A1 mRNA expression analysis, the time-point of 
gene expression analysis was validated by the CSC exposure (positive 
control), which showed a significant increase in mRNA expression. This 
result showed that regulated changes in CYP1A1 mRNA expression 
are sustained 24 hours after diesel emission exposure. However, this 
significant difference was not demonstrated for HO-1, TNFα and IL-6 
mRNA expression. Lastly, it has been shown that apoptotic processes 
can suppress inflammation [40], therefore we considered it important 
to correct cytokine secretion for loss of cell viability in order to provide 
a more biologically relevant snapshot of responses under various diesel 
exposure conditions per viable cell.

Conclusions
The results of this study indicate that both the organic content 

and residual components of diesel emissions play an important role 
in mediating bronchial epithelial cell response in vitro. Cell viability 
and pro-inflammatory cytokine secretion (IL-8 and TNF-α) showed 
comparable changes, indicating that inflammatory responses may 
be a key mechanism of response to diesel emissions, more so than 
oxidative stress. While rDE (without organic content) has the 
ability to trigger CYP1A1 expression, this may also be regulated 
by the residual components of DPM. Together these findings 
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provide new insight into bronchial epithelial cell responses to diesel 
emissions. Future studies could be directed at defining the active 
signalling pathways and testing interventions against the adverse 
health effects of air pollution. 
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