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Introduction
Response-adaptive (RA) [1-4] randomization scheme has become 

popular in clinical research because of its flexibility and efficiency. 
Based on the accruing history of patients’ responses to treatment, the 
RA randomization scheme adjusts the future allocation probabilities, 
thereby allowing more patients to be assigned to the superior treatment 
as the trial progresses. As a result, RA randomization can offer 
significant ethical and cost advantages over equal randomization. 

The RA design based on binary outcome is commonly used in 
clinical trial where “success” is defined as the desired (or undesired) 
event occurring within (or beyond) a clinical relevant time. As patients 
entering into trial sequentially, only part of patients have sufficient 
follow-up during interim analysis. This results in a loss of information 
as it is unclear how patients without sufficient follow-up should be 
handled. Alternatively, adaptive design for survival trial was proposed 
for this type of trial. 

However, most of current practice assumes the event times following 
a pre-specified parametric distribution.  We adopt a nonparametric 
model of survival outcome which is robust to model of event time 
distribution, and then apply it to response-adaptive design. The 
operating characteristics of the proposed design along with parametric 
design are compared by simulation studies, including their robustness 
properties with respect to model misspecifications. 

Method
A nonparametric survival model

Patients are enrolled in sequential groups of size {Nj }, j =1, . . . , J , 
where Nj is the sample size of the sequential group j . Typically, before 
conducting the trial, researchers have little prior information regarding 
the superiority of the treatment arms. Therefore, initially, for the first 
j’ groups, e.g. j’=1, patients are allocated to K treatment arms with an 
equal probability 1/K. As patients accurate, the number of current 
patients increased. Let Ti be the event time for patient i and τ be the 
clinical relevant time where θ=Pr(T>τ) is the probability of interest. 
For example, a trial is conducted to assess the progression-free survival 

probability at 9 months. During the trial, the number of current patients 
increased as patients accurate. Let N(t) denote the current number of 
patients who have been accrued and treated at a given calendar time 
t during the trial. Without censoring, θ can be modeled by binomial 
model where the likelihood function evaluated at time t is

( ) i i

N(t )
I(T ) I(T )

i 1

L data| (1 )>τ ≤τ

=

θ = θ −θ∏              (1)  

However, censoring is not avoidable in clinical practice. As patients 
enter into the trial sequentially, the follow-up time for certain patients 
may less than τ when we evaluate θ at any calendar time t. Other 
reason for censoring, including, but not limited to, patient drop out, 
failure to measure the outcome of interest, and so on. If we ignore the 
censoring, substantial information will be lost. Cheung and Chappell 
[5] introduced a simple model for dose-finding trial. Later, Cheung
and Thall [6] adopted this model to continuous monitoring for phase
II clinical trials. With censoring, the likelihood function (1) can be
rewritten as

( ) ( ) ( )i i

N(t )
Y(x ) 1 Y(x )

i i i i
i 1

L Pr{T min x , } Pr{T min x , }data| −

=

= ≤ >θ ∏ τ τ
             (2)  

Where xi=min (ci,ti) is the observed event time, ci is the censoring 
time, and Y(xi )=I{Ti≤ min (xi,τ)} is the censoring indicates function.

Furthermore, the parameter θ will be plug into the likelihood 
function through probability transformation, 

Pr (Ti≤t)=Pr  (Ti≤t,Ti≤τ)+Pr  (Ti≤t,Ti>τ) 

= Pr(Ti≤t|Ti≤τ)  Pr(Ti≤τ)+Pr(Ti≤t|Ti>τ)Pr (Ti>τ)
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Abstract
Since the release of FDA draft guidance on adaptive design (2010), adaptive randomization (e.g. response-

adaptive (RA) randomization) has become popular in clinical research community because of its flexibility and efficiency 
improvement, which also have the patient centric advantage of assigning fewer patients to inferior treatment arms. The 
RA design based on binary outcome is commonly used in clinical trial where “success” is defined as the desired (or 
undesired) event occurring within (or beyond) a clinical relevant time. As patients entering into trial sequentially, only 
part of patients have sufficient follow-up during interim analysis. This results in a loss of information as it is unclear how 
patients without sufficient follow-up should be handled. Alternatively, adaptive design for survival trial was proposed 
for this type of trial. However, most of current practice assumes the event times following a pre-specified parametric 
distribution. We adopt a nonparametric model of survival outcome which is robust to model of event time distribution, and 
then apply it to response-adaptive design. The operating characteristics of the proposed design along with parametric 
design are compared by simulation studies, including their robustness properties with respect to model misspecifications.
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=w(t)(1- θ)   					                  (3)

Where ( )
Pr( | ) ,

1
i iT t T t

w t
t

τ τ
τ

≤ ≤ ≤
=  >

, is a weight function 

Finally, we can obtain a working likelihood with unbiased estimation 
of w(t).

( ) i iY(x ) 1 Y(x )N(t)
i=1 i iL data| w(x )(1 ) {1 w(x )(1 )} −θ = ∏ −θ − −θ    	

						                    (4)

Theorem: if ( )iw x  converges almost surely to w(xi) for all I as 
N(t)→∞, then ˆ arg max ( | )L dataθ θ=  is strongly consistent for true 
survival probability θ .

Cheung and Chappell [1] assumed the nuisance parameter ( )iw x  
as a linear function ( ) /i iw x x τ= . Ji and Bekele [7] shows that these 
estimated weights are based on strong assumption of linearity and 
independence; it may leads to biased results when the assumptions 
are violated. We propose to estimate ( )iw x  with Kaplan–Meier (KM) 
estimation of S(t) , where

i1 S(x )( )
1 S( )iw x −

=
− τ






It’s easy to show that ( )iw x  is a unbiased estimation of (xi) .

Adaptive randomization

Under model (4), the survival probability evaluated at time τ, is 
used as a conventional measure of treatment efficacy. However, such 
a survival probability at τ ignores the entire path of survival curve.  
While, particular interest in a clinical trial is the estimation of the 
difference between survivals probability for the treatment groups at 
several points in time. As shown in Figure 1, the survival curve under 
treatment B declines faster than that under treatment A, although both 
treatments have the same survival probability at τ. In the renal cancer 
trial, this indicates that patients under treatment B would experience 
disease progression much faster than those under treatment A. Because 
delayed disease progression typically leads to a better quality of life, 
treatment A would be preferred in this situation [4]. Another example 
is showed in Figure 2. The survival curves are almost identical between 
two treatments before time 20. If we compare the survival probability 
between two treatments at the time before 20, the treatment effect 
is inconclusive. To provide a comprehensive measure of efficacy by 

accounting for the shape of the survival curve, we propose to evaluate 
survival probability at several points in time. Let θkj be the survival 
probability at time τj for treatment k where j=1, …, J. The treatment 
allocation probability for treatment k is defined as, 

J

k j kj lj
j 1

w Pr( max{ ,1 l J} | data)
=

π = θ = θ ≤ ≤∑
Where wj is the pre specified weight. Currently, we use equal weight 

with wj =1/J (Figures 1 and 2)

During the trial, we continuously monitor posterior probability of 
πk. When the efficacy of πk is lower than the prespecified lower limit pl, 
then the treatment arm k will be terminated early due to futility. When 
πk is higher than pu, the treatment arm k will be selected as promising 
treatment. In practice, the values of pl and pu are chosen by simulation 
studies in order to achieve desirable operating characteristics for the trial.

Simulation Study
Parameter estimation

We simulate a single arm trial where the event times follow weibull 
distribution with α=2 and λ=50. And, patients enter into the trial 
sequentially with accrual rate of one per week. At week 50, we stop enrol 
the patients and continue to follow the trial for additional 30 weeks. The 
parameter of interesting is θ=Pr(T>40). 

The purpose of this simulation study is to compare the performance 
of estimation with different methods and to show whether the estimation 
at different trial monitoring time is consistent. Four estimation method 
will be evaluated, including proposed method, true parametric method 
(weibull distribution), misspecified parametric method (exponential 
distribution), and original method ( ( ) / )i iw x x τ= . Trial monitoring 
starts at time 40 and continue until the end of study. Figure 3 shows 
the estimated θ at different monitoring time. The results show that the 
true parametric method and proposed method can provide unbiased 
estimation over monitoring time while the original method and 
misspecified parametric method give large bias. It is worth to note 
that the original method gives small bias at the end of trial because 

Figure 1: Survival curves of the time to disease progression, where the two 
survival curves have the same survival probability at the follow-up time τ = 1.5 
months, but different areas under the survival curves until τ

Figure 1: Survival curves of the time to disease progression, 
where the two survival curves have the same survival 
probability at the follow-up time τ=1.5 months, but different 
areas under the survival curves until τ.
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Figure 2: Survival curves of the time to disease progression, 
where the two survival curves have the same survival probability 
before week 20, but gradually show difference as time increase.
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Figure 2: Survival curves of the time to disease progression, where the 
two survival curves have the same survival probability before week 20, but 
gradually show difference as time increase.



Citation: Lin J, Sankoh S (2016) Response-Adaptive Randomization Design for Clinical Trials with Survival Outcomes. J Biom Biostat 7: 302. 
doi:10.4172/2155-6180.1000302

J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 3 of 4

Volume 7 • Issue 3 • 1000302

the number of censored observed decreased as follow-up time increase.  
In Figure 4, we present the coverage probability along the monitoring 
times. The figure shows that the proposed method and true parametric 
method provide constant coverage probability over the monitoring 
time which is close to the nominal value of 95%. While the original 
method and misspecified parametric method provides low coverage 
probability (Figures 3 and 4).

Adaptive randomization

We conducted simulations to evaluate the performance of the 
proposed adaptive randomization design under various clinical 
scenarios (1000 simulations per scenario). For the simulations, we 
set the accrual rate to two patients per week. The maximum number 
of patients is 120. After the initial 60 weeks of enrollment time, there 
is an additional follow-up period of 40 weeks. The event times are 
simulated from weibull distribution with α=1 in scenario I and α=0.5 
in scenario II. We assigned the first 30 patients equally to two arms (A 
or B) and started using the adaptive randomization at the 31st patient.  
The proposed design will be compared with the following designs: 
parametric design (exponential distribution) and original design
( ( ) / )i iw x x τ= . 

Table 1 shows the simulation results where event times simulated 
from exponential distribution. For each design, we list the average 
number of patients (with percentage of total patients in the trial) assigned 
to each treatment arm, and the chance of a treatment being selected as 
promising. Comparing the proposed design and parametric designs, 

the proposed design provides comparable operational characteristic 
where both design assign more patients to more promising treatment 
(69% for proposed design and 70.3% for parametric design) and both 
design provide the sample level of power (0.978 for proposed design 
and 0.979 for parametric design). While the original design provides 
lower power than then proposed design and parametric design (Tables 
1 and 2).

Table 2 shows simulation results for scenario II. In the presence of 
event time distribution misspecification, the parametric design provides 
lower power than proposed design (0.836 vs 0.647). And, the proposed 
design assigns more patients to more promising treatment. Once again, 
the original design has lower power than the other two designs.

Discussion and Conclusion
We have developed a Bayesian response-adaptive randomization 

design for survival trial. A nonparametric survival model is applied 
to estimate the survival probability at a clinical relevant time. The 
proposed design provides comparable operational characteristics 
as true parametric design. Whereas, the proposed design perform 
better than parametric design when the event time distribution is 
misspecified. The proposed design can be extended to Response-
Adaptive Covariate-Adjusted Randomization (RACA) design when 
we need to control important prognostics among treatment arms [8,9]. 
The benefits of adaptive randomization for survival trial depend on 
the distributions of event times and patient accrual rate as well as on 
the particular adaptive design under consideration [10]. If there are 
short-term response quickly available and can predicting the long-term 
survival, we can used those short-term response to “speed up” adaptive 
randomization for survival trial [11].
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Figure 3: Estimated θ with different method.

Figure 4: Coverage probability of θ with different method.Figure 4: Coverage probability of θ with different method.
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0.005 24.72 
(29.6%)
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0.749

    84.86   90.08   100.96  

Table 1: Simulation result for scenario I.

Table 2: Shows simulation results for scenario II. 
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