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Atherosclerotic Renal Artery Stenosis (ARAS) is a common cause 
of secondary hypertension, especially in the elderly population, and is 
often associated with increased cardiovascular morbidity and mortality, 
as well as progression to chronic renal insufficiency [1,2]. Consequently, 
treatment options have been increasingly directed towards the 
preservation of renal function and reduction in the progression to end-
stage renal disease (ESRD).

Antihypertensive drug therapy with angiotensin-converting-enzyme 
inhibitor (ACEi) or angiotensin II receptor blockers (ARBs) is extensively 
used for controlling blood pressure, and at times for salvaging the function 
of the ischemic kidney [3]. This approach is supported by several studies 
that suggested considerable survival advantages for patients treated with 
these drugs [4,5]. However, restoring blood flow is critical for specific 
individuals such as those with progressive decline in renal function 
during antihypertensive treatment or inadequate blood pressure control 
after optimal medical therapy [6]. 

The procedure of choice for revascularization in ARAS is 
percutaneous transluminal renal angioplasty and stent implantation 
(PTRS). Although small clinical trials demonstrated the potential of 
PTRS for lowering blood pressure and improving renal function in 
ARAS [7,8], several major prospective clinical studies have reported no 
measureable clinical benefit from revascularization compared to medical 
therapy alone [9,10]. Likewise, our group has previously shown in a swine 
model of ARAS that PTRS failed to improve tubulointerstitial injury, 
microvascular rarefaction, and renal function four weeks after treatment, 
despite correction of the stenosis (normal blood pressure levels) [11]. 
This might be linked to ongoing tissue damage distal to the stenois that 
is not relieved by revascularization. Taken together, these observations 
emphasize the need for adjunctive therapies to improve renal outcomes 
after revascularization in ARAS.

Considerable evidence implicated mitochondrial dysfunction as an 
important mechanism in sustaining tissue injury after revascularization. 
Increased inflammation and oxidative stress at the time of reperfusion may 
compromise mitochondrial function, leading to cell death by apoptosis. 
For example, increased production of reactive oxygen species (ROS) may 
cause cardiolipin peroxidation in the inner mitochondrial membrane, 
triggering the formation of the mitochondrial permeability transition 
pore (mPTP) [12]. This may in turn facilitate the release of cytochrome 
C into the cytoplasm and initiation of apoptosis [13]. Therefore, therapies 
focused on preventing oxidative injury in the mitochondria might be 
associated with better outcomes after revascularization. 

Mitochondrial targeted aromatic-cationic peptides, originally 
designed by Szeto and Schiller, are small water soluble synthetic peptides 
(less than 10 amino acids) that concentrate in the inner mitochondrial 
membrane and prevent formation of the mPTP [14]. Experimental 
studies in rats have shown that pretreatment with these peptides reduced 
myocardial lipid peroxidation and infarct size in ischemia-reperfusion 
injury [15]. Among them, Bendavia (also known as SS-31) has shown 
unique antiapoptotic and antioxidant properties in several disorders 
associated with significant ROS generation, such as ischemia reperfusion 
injury [14,16]. Furthermore, treatment with Bendavia ameliorated 

hypertension-induced cardiomyopathy in mice by preventing angiotensin 
II-induced oxidative stress [17], underscoring its potential role in the
prevention of hypertensive cardiovascular diseases.

In summary, restoration of function to the kidney by renal angioplasty 
in ARAS has not been supported by clinical studies, warranting 
development of alternative protective strategies in combination to 
PTRS to preserve renal structure and function in the stenotic kidney. 
The evidence available from the studies reviewed above reveals that 
mitochondrial targeted peptides like Bendavia possess cardio and Reno- 
protective properties in experimental models of ischemia reperfusion 
injury. Our recent findings suggest potent anti-apoptotic and antioxidant 
effects of Bendavia for improving the efficacy of PTRS in chronic 
experimental renovascular disease. Future studies are needed to examine 
the feasibility of this approach in human ARAS.

Acknowledgements

These studies were supported by grants from Stealth Peptides Inc., and the 
American Heart Association.

Recently, experimental studies have illustrated unique Reno 
protective effects of Bendavia for attenuating tissue injury and improving 
renal function in different experimental models. For example, infusion 
of Bendavia 30 minutes before bilateral occlusion of renal blood flow 
for 30-45 minutes reduced medullary vascular congestion, decreased 
oxidative stress and inflammation, and accelerated the proliferation of 
surviving tubular cells in a rat model of ischemic kidney injury [18]. 
Similarly, Mizuguchi et al. demonstrated that pretreatment of rats with 
Bendavia decreased renal damage and oxidative stress in a model of 
unilateral ureteral obstruction [19]. In line with these observations, we 
have recently shown in swine ARAS that systemic infusion of Bendavia 
during the PTRS procedure (from 30min before to 3.5 hours after PTRS), 
promoted renal mitochondrial biogenesis and attenuated microvascular 
remodeling, apoptosis, oxidative stress, tubular damage, and fibrosis 
evaluated four weeks after revascularization [20]. Furthermore, renal 
inflammation, one of the main determinants of disease progression and 
response to revascularization in ARAS [21], was restored to normal 
levels in Bendavia-treated pigs. Remarkably, stenotic-kidney blood flow 
and glomerular filtration rate were normalized in animals treated with 
Bendavia, suggesting a unique potential of this drug for limiting renal 
reperfusion injury in chronic experimental ARAS.
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