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Abstract

We present a novel decentralized and infrastructure-less algorithm to alleviate traffic congestions on road
networks and to fill the void left by current algorithms which are either static, centralized, or require infrastructure.
The algorithm follows an online approach that seeks stochastic user equilibrium and assigns traffic as it evolves in
real time, without prior knowledge of the traffic demand or the schedule of the cars that will enter the road network in
the future. Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant Colony Optimization for
VANETs is a metaheuristic approach that uses reports from other vehicles to update the vehicle’s perceived view of
the road network and change route if necessary. To alleviate the broadcast storm spontaneous clusters are created
around traffic incidents and a threshold system based on the level of congestion is used to limit the number of
incidents to be reported. Simulation results for the algorithm show a great improvement on travel time over routing
based on shortest distance.

Introduction
Vehicular Ad hoc NETworks (VANETs) are a subclass of Mobile

Ad hoc NETworks (MANETs) and represent a relatively new and very
active field of research. Some particular characteristics of VANETs
that make them unique are high-speed mobility, driver behavior
depending on personality traits, and mobility constraints as cars move
on roadways with set boundaries. VANETs will enable in the near
future applications that will dramatically improve roadway safety and
traffic efficiency and significantly improve the associated ecological
impact. According to the Federal Highway Administration (FHWA)
[1], the U.S. highway network was near completion by the late 1980s,
there has been little construction of new roads and highways and the
number of lane miles has been increased mainly by adding additional
lanes to existing highways to carry more vehicles. From 1985 to 2006
the lane miles increased from 8 to 8.4 million while during the same
period the vehicle miles traveled has doubled. From these figures and
the familiar transit congestions that take place almost daily, it is clear
that a new and intelligent approach is needed for optimizing road
usage. Traffic assignment tries to distribute vehicles efficiently on the
road network and in accordance with their origins and destinations
[2-16]. Ant Colony Optimization (ACO) is a methaheuristic useful for
obtaining minimum cost paths [17-24]. This methaheuristic has been
applied successfully in different branches of engineering [25-35]. ACO
has gained popularity recently for traffic assignment and many
algorithms have been inspired by this metaheuristic [36-47]. In this
paper we present a novel dynamic traffic assignment algorithm for
VANET environments. The ACO inspired algorithm is decentralized
and infrastructure-less. The algorithm employs a unique on the fly
cluster system that minimizes maintenance overhead as clusters are
formed just to report traffic incidents and vanish after the incident is
reported. The algorithm avoids broadcast storm by blocking additional
reports on the same road segment in a given aggregation period by
setting a speed threshold in order not to report every speed reduction
in the segment and by reporting only bad traffic conditions. The ant

inspired algorithm differs from traditional ACO algorithms as ants
know the whole road network map, are able to broadcast pheromone,
and pheromone is used to mark bad trails. The rest of this paper is
organized as follows. In Section 2, we introduce relevant related work.
Section 3 presents an overview of traffic assignment. Section 4
introduces ant colony optimization and some of its applications. The
proposed algorithm is presented in Section 5. The simulation setup is
explained in Section 6. The results and analysis are presented in
Section 7. Finally the conclusions are included in Section 8.

Related Work
Traffic assignment is the process of assigning the traffic demand to

the routes on a road network. Wardrop [2] defined two equilibrium
criteria for the traffic flowing from a set of origins to a set of
destinations: user equilibrium assignment (UE) and system Optimum
Assignment (SO), depending on whether we optimize from the user’s
point of view or from the system’s point of view. These criteria are also
referred to as deterministic user equilibrium assignment (D-UE) and
deterministic system Optimum Assignment (D-SO). Traffic
assignment is commonly modeled by means of two different
mathematical formulations, the static traffic assignment (STA), and
the dynamic traffic assignment (DTA) depending on whether the
traffic flow is constant or time dependent. An STA model for both
Wardrop's principles was first presented in [3]. DTA originated from
the seminal works of Yagar in 1971 [4,5], and Merchant and
Nemhauser in 1978 [48,6]. DTA problems can be classified as
mathematical programming formulations, optimal control
formulations, variational inequalities formulations, and simulation-
based models [6]. Heuristic approaches and simulation-based models
are used in pursuit of realistic traffic solutions. Of great importance are
the probabilistic or stochastic heuristic methods that in general
provide more accurate results than the deterministic counterparts [7].
Achieving UE analytically is in general a very difficult task unless some
simplifications are made. The Stochastic Network Loading (S-N-L)
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type of problems assumes that the measured travel times are
independent of the link flows [7]. S-N-L problems can be approached
with analytical methods [8] or by stochastic simulation [9]. Totally
different approaches that do not make this assumption are based on
the ants foraging behavior [17]. An Ant Colony Optimization (ACO)
model using multiple ant colonies, one colony for every origin
destination pair is used in [36] and [37], where stochastic user
equilibrium (S-UE) algorithms for the fixed-point traffic assignment
problem are proposed. Information on transportation fixed-point
problems can be found in [10,16]. Approaches based on Ant Colony
System (ACS) are presented in [38,49], for both S-UE and D-UE. An
ACO approach for solving the Local Optimization of Signal Settings
(LOSS) is presented in [39]. This problem deals with the local
optimization of traffic light signals based on the vehicle route choices
and the traffic flow on that particular intersection. An ACO algorithm
for the Vehicle Routing Problem is presented in [41]. So far all of these
ant-inspired algorithms are intended for the STA and there is a need
for algorithms for the DTA. [40] Presents an ACO based algorithm for
DTA by routing vehicles at intersections. However, this algorithm is
centralized. Centralized algorithms for VANETs require the existence

of an infrastructure that may not always be available and suffer from
great computational complexity. Claes et al. [42] presents a DTA
approach based on ACO inspired agents representing vehicles and
roads. This system is decentralized but requires infrastructure. In [43]
a local control of traffic lights is proposed along with an infrastructure
supported, cluster organized system, where vehicles use ACO inspired
algorithms for routing. In [44] a centralized system is proposed where
ants going from a given origin to a destination select the 5 best routes
and update pheromone just in those routes. In case of congestion ants
choose alternate best routes until the situation is resolved. Tatomir et
al., [45] presents a DTA system where the road map is divided into
zones in a hierarchical way. Vehicles interchange information with
infrastructure to allow travel time estimation and best route selection
by ACO. In [46] two strategies to avoid congestion are presented using
pheromone marks on a decentralized system of servers. [47] presents
an infrastructure supported dynamic routing system to replace static
routing such as Dijkstra's. The intersections contain routing tables
based on history and on cars in the simulation. In Table 1 we illustrate
the advantage of the proposed algorithm. The algorithm we present in
this paper is for the DTA and is decentralized and infrastructure-less.

Algorithm DTA Decentralized Infrastructureless

ACS, [36] and [37]

ACO-based algorithm for solving the LOSS problem, [39]

ACR, [40] X

Anticipatory Vehicle Routing Using Delegate Multiagent Systems, [42] X X

Vehicular Routing with Optimal Path, [43] X X

Dynamic System for Avoiding Traffic Jam, [44] X

H-ABC, [45] X X

Self-organizing congestion evasion strategies, [46] X X

Dynamic routing system based on Ant Based Control (ABC), [47] X X

Proposed algorithm, Road-ACO X X X

Table 1: Comparison of different ACO inspired algorithms with the proposed algorithm.

Overview of Traffic Assignment
The road network is represented as a graph G = (N,L), where vector

N represents the nodes (intersections) and vector L represents the
links (lanes). For each arc l ϵ L we define the free travel time, as the
minimum travel time required when traversing α at the maximal
allowed speed. We represent with OD ⊂ N x N the set of fixed origins
and destinations the road network. We use od to denote an origin
destination pair, od ϵ OD, and Rod to denote the set of all routes or
paths that connect the origin of od with its destination. A route is an
ordered sequence of consecutive links connecting the origin of certain
od to its destination, where the end node of any link coincides with the
start node of the next link. We represent road segments with edges.
We define edge as a set of lanes, which physically run in parallel next
to each other, connecting two adjacent nodes. As in real life, edges
may include lanes with traffic flow in opposite directions.

Traffic assignment
There are two different models that can be identified when

investigating road networks transit problems, the transportation
planning models and the traffic flow models [11]. Transportation
planning models deal with modeling the route and schedule decisions
made by individuals who use the roads and the approaches used by
researchers to optimize traffic. Traffic flow models deals with
modeling the physical propagation of traffic flows. As physical tests
can be difficult and expensive to implement Traffic flow models are
used for testing the new traffic solutions proposed by researchers.
When selecting the best routes in traffic assignment it is typical to
assign a cost based on distance and/or time to the different edges and
then use a shortest path algorithm such as Dijkstra’s algorithm [50].
Wardrop [2] established two equilibrium criteria relating to the traffic
flow from a given origin to a certain destination using the available
routes:
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User equilibrium assignment (UE). The journey times on all the
routes actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route [2].

System Optimum Assignment (SO). The average journey time is
minimum [2].

These criteria are also referred to in the literature, as deterministic
user equilibrium assignment (D-UE) and deterministic system
Optimum Assignment (D-SO). In Figure 1 we can see this
classification. We could say that in D-UE all decisions are made in an
egoistic and rational way and all users have knowledge of the paths
costs. In D-SO there may be cooperation among individuals or a
centralized system coordinating the route assignment.

Figure 1: Traffic Equilibrium Classification.

The optimization of transportation on a road network is commonly
formulated by means of two different mathematical formulations, the
static traffic assignment (STA), and the dynamic traffic assignment
(DTA). The STA approach deals with networks in equilibrium where
the traffic demand and the edge flows are constant over time. On the
other hand, the DTA deals with the more realistic situation of time
dependent edge flows and congestion.

The static traffic assignment
The Static Traffic Assignment (STA) assigns routes to a set of

drivers with fixed origins and destinations under steady state flow
conditions. A model of the equilibrium assignment for both
Wardrop's principles, the UE and the SO, was first presented by
Martin Beckmann, Bartlett McGuire and Christopher Winsten
(BMW) [3]. This solution became a standard in transportation
planning since it was introduced. Currently as new approaches have
emerged. Solutions based on dynamic traffic assignment have become
available for dealing with congestion and variable conditions.

The dynamic traffic assignment
The dynamic traffic assignment (DTA) refers to a broad variety of

problems that deals with time-varying flows and originated with the
seminal works of Yagar in 1971 [4,5], and Merchant and Nemhauser
in 1978 [6,48]. These models aim at representing the interaction
between route choices, traffic flows, and time and cost metrics in a
coherent fashion as time passes [12]. DTA problems can be classified
as [6] mathematical programming formulations, Optimal control
formulations, variational inequalities formulations, and Simulation-
based models [6]. The first three types of approaches suffer from
problems induced by the algorithms such as artificial delays at
junctions [6,13], and first in first out (FIFO) violations [6,13,14]. These
problems are not consistent with traffic realism [6]. Simulation-based
models utilize traffic flow propagation models to model the critical
constraints that regulate traffic flow. The simulation is used as an

approach to produce realistic solutions that satisfy the FIFO constraint
and prevent the artificial delays.

Heuristic stochastic approaches
Heuristic methods can be used for both STA and DTA. Much effort

has been dedicated to heuristic approaches. These approaches can be
subdivided into deterministic and probabilistic or stochastic methods.
The first type usually fails on uncongested road networks where
stochastic approaches provide more accurate results [7]. A new
equilibrium criterion is needed for these approaches, the stochastic
user equilibrium (S-UE). For the traffic flow from a given origin to a
certain destination using the available routes, in S-UE no user believes
he/she can improve his journey time by unilaterally changing routes
[7]. In an S-UE system the vehicles have access to a graph representing
the network where the edge costs are represented by a vector of
stochastic and unobserved perceived travel times. In general these edge
travel times may change in time and differ from vehicle to vehicle.
Achieving UE analytically is in general a very difficult task unless some
simplifications are made. For example, the Stochastic Network
Loading (S-N-L) problems assume that the measured travel times are
independent of the edge flows [7].

Simulation-based models are used to model realistically the critical
constraints that regulate traffic flow. Social insects exhibit efficient
behaviors for path selection [18], next we present Ant Colony
Optimization (ACO), a metaheuristic that has proved to be useful in
determining minimum cost paths [17] and may be used in simulation-
based models.

Ant Colony Optimization
Ant Colony Optimization (ACO) is a relatively new metaheuristic

based on the social behavior of ants. These insects are very efficient in
finding the best path/food-source combination. Their interesting
methods are based on individuals with simple behaviors that
interchange information indirectly by means of chemical compounds
(pheromones) they use to mark their paths. Ant colony optimization
was introduced by M. Dorigo and colleagues [19-21]. According to
[21], this new metaheuristic was greatly inspired by the behavior of
real ants [22-24]. Great effort has been dedicated to ACO applications
in computer science and engineering. Several ACO algorithms have
been proposed for the Traveling Salesman Problem (TSP) [25,26].
ACO approaches for the Job Shop Scheduling Problem (JSSP) and the
Flexible Job Shop Scheduling Problem (FJSSP) have applications in
controlling mechanical engineering machines [27,28]. ACO
algorithms have been used in civil engineering for economic
optimization of reinforced concrete [29].

Research in Ant Colony Optimization has also been conducted in
digital image processing [30], electrical engineering where a system
has been proposed for environmental/economic dispatch [31], as well
as several routing protocols in computer engineering [32,33]. More
information on ACO applications can be found in [34,35].

When natural ants are faced with a food source that can be reached
only by crossing one of two bridges of different length, they usually
choose the shortest bridge. At the beginning some ants may use the
shortest bridge and others may choose the longest one. As the ants
walk they drop pheromones to mark the path. Ants that started the
shortest way will arrive earlier at the food source and will return
following the scent on the trail they used while they drop more
pheromones increasing the scent on the shortest trail faster. For the
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ants starting the process, the stronger scent will orient them towards
the shortest path. The process is a little bit more complex and is
affected by factors such as evaporation, dropping frequency modulated
by the quality of the food source, system feedback, and sensors
imperfection, among others. Evaporation is an important component
that helps minimize the impact of wrong decisions and may also
decrease interest on a route in case of food depletion.

The path selection mechanism has inspired software approaches
with artificial ants for problems where a minimum cost path solution
is required both in communications and in road networks [32,41]. The
artificial ants travel the network and update the nodes information
with artificial pheromone that can be sensed by other ants to make
routing decisions. It is common that artificial ants mark the
information of the arcs they visited only on the way back to the source
according to equation (1). In this equation the pheromone
concentration from node i to node j at node i, τ i j, is updated by the
traveling ant k with pheromone deposit Δτ k  after evaporation
coefficient ρ is applied.

Proposed Algorithm
τij←(1-ρ) τij+∆τk

We propose a novel algorithm, Reverse Online Algorithm for the
Dynamic-Traffic-Assignment Ant-Colony-Optimization inspired
(Road-ACO) that assigns traffic as it evolves in real time, without prior
knowledge of the traffic demand or the schedule of the cars that will
enter the road network in the future. This novel decentralized online
algorithm employs a new breed of ants which are position aware,
capable of broadcasting pheromone information, have the road map in
memory along with perceived edge costs, and execute shortest path
algorithms in a selfish manner consistent with S-UE, just like a
VANET enabled car. Additionally these ants differ from the traditional
ants by the reverse way they use pheromone. Higher intensity indicates
road segments of lesser quality, in contrast to better routes in
traditional ants. Similar to traditional ants, the new breed of ants use
pheromone subject to evaporation, and make routing decisions based
on the pheromone concentration on the edges, although they make
decisions based on the pheromone concentrations on the entire map
and not just on the current node. In real life ants evaporation indicates
routes becoming less appealing due to food quality depletion. In our
case, evaporation is the mechanism that progressively increases the
quality of routes as decreased pheromone concentration means less
congestion. Using the terms ant and vehicles indistinctively, we now
proceed to describe Road-ACO.

Algorithm variables
We now define the simulation variables which can be divided into

global and local variables. The global variables are constant and have
the same value for all vehicles. Local variables store data
corresponding to the individual vehicles. We now list all the variables
of interest.

Global variables
• Aggregation period (ap). Duration window which defines the time

used by vehicles to determine travel conditions.
• Edge default travel time (edtt). The time it takes to travel that edge

at the maximum allowed speed.
• ρ. Represents the pheromone evaporation.

• Speed aggregation threshold (sat). Threshold used to trigger a
vehicle to become a cluster head.

• Consensus threshold (ct). Threshold that triggers when a cluster
head reports a traffic incident.

Local variables
• Step counter. Used as a timer variable, to cycle through the

Aggregation period.
• τ i j. Represents the pheromone concentration or edge cost from

node to node at node , as perceived by the individual vehicle.
• Δτ k. Represents the pheromone intensity used by cluster head k to

mark the edge it is currently in, in case of traffic incident.
• Speed moving average (sma). Stores the modified moving average

of the vehicle speed.
• Aggregated average speed (aas). Used by cluster heads to aggregate

the average speed of reporting vehicles.
• Aggregated travel time (att). Used by cluster heads to compute the

pheromone intensity.

The algorithm
The algorithm can be subdivided into three sub algorithms, the

speed aggregation, cluster, and the communication algorithms. The
speed aggregation and the communication algorithms run
concurrently at all times while the cluster algorithm is executed only
when an abnormal traffic flow condition occurs. Each vehicle on the
simulated road network independently executes these algorithms in a
decentralized fashion.

The speed aggregation algorithm
Figure 2 illustrates the speed aggregation algorithm. When a vehicle

enters into the simulated road network, the global variables are read,
the step counter is set to 1, and the speed moving average is set to 0. At
every time step thereafter the vehicle performs the following actions:

• Applies evaporation to the perceived edge costs according to
• τij=(1-ρ) τij
• If, for a certain edge, the new τij value is less than the edge default

travel time, then τij =default travel time is used.
• Acquires the current speed at which it is traveling and updates the

speed moving average as:

sma(sma*(ap-1)+current speed)/ap.

• The step counter is incremented by 1.
• At the end of its aggregation period, the vehicle checks if the speed

moving average falls under the speed aggregation threshold. If this
is true the vehicle will execute the cluster algorithm.

The cluster algorithm
This algorithm is executed when the speed moving average falls

under the speed aggregation threshold in the speed aggregation
algorithm. Figure 3 illustrates this algorithm. The vehicle that satisfies
the mentioned condition organizes a cluster on the edge it is currently
in by broadcasting a request message and becoming the cluster head.
Each cluster member will reply with a reply message containing the
member's average speed. During an entire aggregation cycle the cluster
head aggregates the received average speeds sent by the cluster
members into aggregated average speed. At the end of this cycle, if the
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ratio of number of reply messages in consensus with the low speed
condition (nrmc) to the total number of reply messages (TNRM)
exceeds the consensus threshold, a pheromone drop is broadcasted in
a traffic incident message and the cluster dissolves. The pheromone
drop intensity is calculated according to:

Δτ k edtt + a tt * nrmc −1 / TNRM

The formula above produces pheromone drop intensity increasing
with the number of reply messages in consensus. If the total number of
reply messages is large but the number of reply messages in consensus
is small, the drop has low intensity as one would expect and could be
negligible. The cluster formation process is explained in the
communication algorithm.

The communication algorithm
Figure 4 illustrates the communication algorithm. Vehicles on the

simulated road network continuously monitor the communication
channel waiting for two different kind of messages, request messages
and traffic incident messages. Every vehicle on the same edge as the
cluster head that receives the request message will send a reply
message containing its average speed and resets its step counter to 1 to
prevent broadcasting any new request message until the end of the
new aggregation cycle. Every vehicle receiving the traffic incident
message will update the edge cost according to and execute a shortest
path algorithm using its internal map and the perceived costs in
memory. The vehicle will reroute if a better route is found.

Adverse scenarios
There are two situations that may impair the operation of the

algorithm:

• Road blockages. In the presence of a total road blockage the
algorithm will not work. Given the way road networks are
structured usually with multiple lanes and alternate roads, a total
blockage is not likely to happen. As mentioned before, in
Wardrop's UE users make routing decisions in an egoistic and
rational way and all users have knowledge of the paths costs. Our
algorithm uses egoistic routing with knowledge of the paths costs
as in Wardrop's UE. In the case of a partial blockage, where
vehicles can use alternate routing options, our algorithm will
approach a new Wardrop's UE corresponding to the new network
conditions.

• Delayed information. The performance of the algorithm can be
impaired if the paths costs information is not updated frequently.
This may lead to oscillations as routing based on old information
may send incoming vehicles to selected roads for long periods of
time increasing congestion on those roads. When these new levels
of congestion are reported it will favor alternate routes and repeat
the process while the traffic on the previous roads subsides. To
avoid this problem we chose a sufficiently small update period (5
seconds). As an example, at 70 MPH and a headway of 1 second,
just 4 cars per lane will arrive at an intersection during a 5 second
window. In the future we will investigate the impact of this
parameter on the algorithm performance.

Next we proceed to explain our simulation details.

Simulation

Setup
We evaluate the algorithm performance in a simulation

environment composed of OMNET++ [51], SUMO [52], and Veins
[53], similar to the environment described in [54]. The simulation is
performed according to IEEE 1609.4 as implemented in Veins. In the
next section, we describe the simulated environment, state the
assumptions, and define the input and output parameters.

Simulated environment
Figure 5 and Table 2 show the simulated road network. As we

explain bellow, some vehicles may need to reroute to improve their
travel times. All roads have two lanes in each direction, a maximum
speed of 40 MPH, and U turns are permitted. The horizontal edges are
495 ftlong, and all other edges are 720 ft long. The road network
contains 5 nodes: -4, -6, -8, - 10, -12, -14, (-n denotes node n). Nodes
-10, -14 are origins and node -4 is the only destination. From each
origin node, -10, and -14, 1,000 vehicles depart to the common
destination -4. When vehicles depart they have a planed route based
on a shortest route algorithm (SR). Even though this road network is
very symmetric and would suggest that all vehicles should use the
shortest routes, differences in the traffic light signals and the allowed
lane changes make the top route faster and vehicles may need to
reroute to improve their travel times. The upper route is more
favorable because: first, the traffic lights at nodes-8 and -6 both offer
green light in sync to the incoming vehicles, while for the lower route
when the traffic light at junction-12 is green, the traffic light at
junction-6 has the red light on. Second, the intersection-6 favors the
upper edge as the two lanes on it allow travel towards the destination
while just one lane from the bottom route allows transit to the
destination, since the other lane is forced to turn left. Figure 6
illustrates these lane details. All the traffic lights in the direction
towards the destination have the following cycle: green, yellow, red,
equal to 31, 6, and 49 seconds respectively. This was the default cycle
assigned by SUMO.

Citation: Arellano W and Mahgoub I (2014) Reverse Online Algorithm for the Dynamic Traffic Assignment inspired by Ant Colony Optimization
for VANETs. Int J of Swarm Intel Evol Comput 3: 111. doi:10.4172/2090-4908.1000111

Page 5 of 10

Int J of Swarm Intel Evol Comput
ISSN:2090-4908 SIEC, Open Access Journal

Volume 3 • Issue 1 • 1000111



Figure 2: Speed aggregation algorithm.

Figure 3: Cluster Algorithm
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Figure 4: Communication Algorithm.

Figure 5: Road Network Description.

Node Description Denotes node

Origins -10, -14

Destinations -4

Junctions -8, -12, -6

Traffic Demand

OD Volume

(-10, -4) 1,000

(-14, -4) 2,000

Table 2: Road Network Description.

Figure 6: Lane Connection Detail, intersection-6.

Simulation assumptions
It is assumed that the algorithm messages would be broadcasted

using regular IEEE1609 standard beacons. All vehicles are 16.4 ft long
and acceleration and deceleration are 8.53 and 14.76 ft/s2 respectively.
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Input parameters
The number of vehicles entering the simulated road network from

each origin. Vehicles enter the network as fast as the congestion of the
roads allows. For our simulation we used 1,000 vehicles per origin.
This number was selected based on reasonable simulation time and
because it produces significant traffic congestion when routing by SR.

The evaporation. Several values of this parameter are tested to
assess the impact on the solution of the speed at which pheromone
vanishes when recovering from wrong decisions and congestion. The
value of this variable was systematically changed to obtain the greatest
traffic flow improvement.

The speed aggregation threshold. This parameter is varied to assess
the impact of ignoring certain values of congestion level over the
solution. The value of this variable was systematically changed to
determine how much of congestion can be ignored and still obtain
significant traffic flow improvements.

Output parameters
The outputs of the simulation are the vehicle’s average traveling

time, and the total time, measured from the start of the simulation to
the moment that the last vehicle reaches its destination. The values of
these two parameters are obtained for the cases of route selected by SR,
UE as calculated by traffic simulator SUMO (SUMO-DTA), and with
the proposed algorithm for several different input parameters. The
Veins framework which controls the simulation keeps record of many
and diverse simulation results, from there we were able to obtain our
parameters of interest, average traveling time and the total time. In the
next section the simulation results are analyzed.

Results and Analysis
Evaluating the performance of a DTA algorithm under UE, by using

the definition of UE, is a difficult task as this equilibrium implies that
no vehicle can improve its travel time by changing routes and that is
hard to assess. We base our evaluation on average trip times. A
solution that seeks UE should have average trip times close to that of
the optimal UE. Otherwise some vehicles could be able to reduced
their individual travel times, contradicting the definition of UE. Our
algorithm does not minimize average trip times as that would produce
SO and not UE, however it is known that UE, even though less
efficient, is practical to achieve and not so far from SO [15]. Table 3
contains the 24 simulation results. Row 1 contains the data for the case
when shortest route algorithm is used; it is the worst case as it shows
the largest simulation and average trip times. On the other hand, row 2
shows the data for the case of SUMO-DTA. This solution presents the
best simulation and average trip times with an improvement of 34.97%
in average trip times. The rest of the rows show the data for the
proposed algorithm for different input parameters. All of the proposed
algorithm trials show improvement over the average trip times of the
SR. If any two solutions present similar average trip time, we prefer the
one with the lowest simulation time. The best outcome is 29.17% for
an evaporation of 25% and speed aggregation threshold of 50%.
Evaporation of 25% appears to be a good choice in this scenario as the
three best outcomes include this value. The best solution has a speed
aggregation threshold value of 50%, this implies less use of the
communication channel and prevents unnecessary rerouting.

Row Algorithm Evaporation (%) Speed Aggregation
Threshold (%)

Simulation Time
(Seconds)

Average Vehicle
Trip Time
(Seconds)

Improvement (%)

1 SR N/A 100 7,803 278.25 0

2 SUMO-DTA N/A 100 4,142 180.95 34.97

3 ACO 25 50 5,426 197.09 29.17

4 ACO 25 100 5,229 197.31 29.09

5 ACO 25 25 5,306 200.38 27.99

6 ACO 20 100 5,345 203.88 26.73

7 ACO 25 75 5,476 204.51 26.5

8 ACO 50 100 5,647 207.13 25.56

9 ACO 5 100 5,598 213.16 23.39

10 ACO 10 100 5,663 218.89 21.33

Table 3: Simulation Results. ct=25%, ap=5.

Conclusions
We introduce and evaluate Road-ACO, a novel decentralized

algorithm to alleviate traffic congestions on road networks and to fill
the void left by current algorithms which are either static, centralized,
or require infrastructure. Road-ACO is an algorithm inspired by Ant
Colony Optimization for the Dynamic Traffic Assignment in
VANETS. Initial results indicate a promising future for approaches

based on this algorithm. Simulation results for the algorithm show an
improvement on travel time of 29.17%, over the SR case, which is
fairly close to the improvement introduced by SUMO-DTA (34.97%).
It is important to indicate that Road-ACO is a realistic approach as it
improves traffic as it evolves, in real time, without prior knowledge of
the traffic demand or the schedule of the cars that will enter the road
network in the future. Also Road-ACO enjoys the benefits of being
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decentralized and infrastructure-less. We expect the algorithm to
perform well if we increase the road network complexity and the
number of vehicles. However, in this case the algorithm needs to be
modified to include multi-hops and Time To Live (TTL). Our main
concern is the simulation time as the interactions between simulators
SUMO and OMNET++ are time consuming. We plan to address this
problem by reducing the number of interactions by including in
OMNET++ some of the functions that are currently executed by
SUMO like the case of changing the oute to the one with the lowest
cost. In the near future we will continue to investigate the performance
Road-ACO in larger and more complex road networks.
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