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Introduction
Dengue has been named one of the most important emerging 

infections in 2014 [1,2]. The geographic region at risk for dengue has 
increased fourfold over the past three decades, unprecedented for a 
vector-borne disease [2,3].  DENV is an arthropod-borne flavivirus 
associated with both hemorrhagic fever and hemorrhagic shock [4]. The 
classical clinical presentation of DENV is characterized by abrupt onset 
of headache, myalgia and high fever, in addition to arthralgia, retro-
orbital pain and hemorrhagic manifestations. The DENV hemorrhagic 
fever is characterized by fluid leakage into the intersistium. These 
symptoms are commonly seen in many other infectious diseases, 
which complicates diagnosis. DENV has also been implicated as 
a possible cause of multiple findings of end organ failure, including 
but not limited to: myocardial impairment (with arrhythmias and 
potential myocarditis), hepatitis with hepatic necrosis, maculopathy, 
rhabdomyolysis, multiple neurological manifestations, and fatal 
hemophagocytic lymphohistiocytosis [2,5-14]. 2.5 billion people live 
in DENV-endemic regions [4], and roughly 400 million infections 
occur per year with a case fatality rate exceeding 5-20% in some areas 
[15,16]. Over 100 countries are affected, including Europe and the 
United States [17]. As effective point of care (POC) diagnostics for 
malaria reach widespread utilization, the prevalence of non-malarial 
fevers, caused by dengue (DENV) and other infections, is increasingly 
noted in low and/or middle income countries (LMICs) [18,19]. DENV 
is endemic in many parts of Asia, and the DENV case frequency and 
fatalities in the Americas are increasing, where the total number of 
DENV cases reported quadrupled between the 1980s and 2000-2007 
[7,17,20]. Furthermore, in recent years, infections in many LMICs are 
increasingly noted in adults, leading to significant number of work 
days lost and increasing costs to society [21]. 

Currently there is no specific treatment for DENV, recent 
hopeful vaccine candidates have just been deemed ineffective [22], 
and there is no prediction of complete vector control. However, 
rapid diagnosis followed by targeted vector control efforts decrease 
DENV transmission, and early detection followed by supportive care 
is reported to potentially decrease mortality rates from 5-20% to less 
than 1% [15,16,23]. In many endemic regions, when a surge of dengue 
infections is suspected, public health authorities will circulate notices 
in local newspapers, transmits announcements via radio, and even 
close schools and other public facilities during peaks of transmission 
in attempts to decrease likely exposure. Other preventive measures 
include use of insecticide sprays and elimination of all mosquito 
breeding grounds (areas of standing water are cleared, particularly 
in schools). While attempts at early diagnosis paired with prevention 

are helpful, the combined lack of effective treatment for dengue and 
increasing dengue transmission are worrisome.

This review will focus on treatments in various stages of development 
for dengue, organized based on treatment strategy, including direct 
acting antiviral approaches, RNAi approaches, and host-modulators, 
and will attempt to complement other recent helpful reviews [5,24]. 
This review will not cover progress being made toward the challenging 
fields of DENV vaccine design, vector-targeted interventions, of which 
there are many, anti-dengue therapeutic antibodies [25], or studies 
related to precise selection of supportive care measures including 
choice of rescuscitation fluid, corticosteroid administration [26] or 
platelet transfusion decisions [27,28]. An excellent updated review 
of DENV vaccine work has recently been published [29]. Additional 
helpful recent reviews describing DENV treatment strategies under 
development are cited [5,24,30-32]. 

Information included in this review was supported by a search of 
the PubMed database for articles published in the English language 
using the search term “dengue treatment”. In addition, bibliographies 
of the selected articles were reviewed for further relevant studies.  

Methods of Bioanalysis for Anti-dengue Activity
Pre-clinical

Dengue is a positive stranded RNA virus with an 11kb genome, 
encoding a polyprotein precursor cleaved to generate at least 10 
proteins, including three structural proteins (core, membrane 
associated protein, and envelope protein), and seven nonstructural 
proteins (NS1, NS2a, NS2b, NS3, NS4b, NS5) (Figure 1) [33] . DENV is 
transmitted by silent, urban mosquito vectors, including Aedes aegypti 
and A. albopictus, A. polynesiensis and A. scutellaris, to man [3]. Other 
modes of transmission include via blood products, organ transplant, 
and vertical transmission [34-37].  There are four serotypes (1-4) of 
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dengue, and multiple genotypes. All four serotypes infect man, and 
infection with one serotype does not confer protection against another 
serotype. In contrast, infection with a second dengue serotype appears 
to be, in some cases, enhanced by pre-existing antibodies generated 
from primary infection. This phenomenon is referred to as antibody 
dependent enhancement, or ADE [5,38].  In man, the initial cellular 
target of dengue is thought to be dendritic cells, followed by lymphatic 
spread and then distribution to monocytes and macrophages [39,40]. 
The full host of cells infected in vivo remain a subject of investigation, but 
may also include hepatocytes, myocytes, and other cell types [6,41]. In 
the laboratory, dengue can be cultivated in C6/36 mosquito cells or Vero 
African green monkey kidney cells, though intracellular modifications 
of the virus are thought to differ in these two systems, and are also 
affected by passage number, and therefore must be monitored [42,43]. 
Laboratory isolates of dengue can be used to infect several human cell 
lines, including but not limited to HepaRG human hepatoma cells, 
Huh7 human hepatoma cells, human foreskin fibrosblasts, U937 and 
THP-1 myeloid cells, HeLa human cervical carcinoma cells [43,44]. In 
order to infect monocyte cell lines, pre-incubation of virus with anti-
dengue antibody can be used to take advantage of antibody dependent 
enhancement (ADE), which increases the amount of dengue infecting 
each individual cell [5,38,43]. 

The level of dengue infectivity can then be monitored in vitro by 
multiple methods, including but not limited to plaque assay, qRT PCR, 
immunofluorescence, to identify compounds with antiviral activity. In 
addition to fully infectious dengue systems, in vitro reporter systems for 
dengue have been developed, and are also employed in assays seeking to 
identify dengue anti-virals [45-49]. The development of animal models 
of dengue virus (DENV) infection and disease has been challenging, 
since epidemic DENV does not naturally infect non-human species, 
but several models now exist, including the AG129 mouse (IFN alpha, 
beta, gamma knockout mouse), IFNAR1 knockout mouse, STAT2 
knockout mouse, and, more recently, humanized BLT mouse  [50-52]. 

Clinical

Clinical methods for evaluation of anti-dengue effects are in 
development. A major hurdle facing DENV clinical trials is the need 
for establishment of accurate diagnostic testing for case identification. 
However, current diagnostics for DENV available in the US and 
other high resource countries (PCR, IgM and IgG ELISA) are limited 
by a requirement for skilled workers, refrigeration, and specialized 
equipment [3,53]. Current point-of-care (POC) diagnostic tests for 
DENV are based on lateral flow detection of secreted DENV NS1 
protein and IgM in blood/plasma/serum or saliva IgA [53,54]. NS1 
assays are easy to use but limited in sensitivity, especially in secondary 
infections (common in endemic regions) [23,54], storage temperature, 
and cost [3,53]. IgG assays are limited in their inability to discriminate 
between recent and remote infection, and cannot detect early infection. 
Saliva IgA assays, alone, lack sensitivity during early primary DENV 

infection [23]. Because of these limitations, many LMIC sites with 
known endemic DENV are using clinical features, such as bleeding, 
leukopenia, or thrombocytopenia, and contextual epidemiological 
information to diagnose DENV at this time. Lack of precise diagnostic 
testing for DENV can lead to confusion in areas where malaria and 
yellow fever, which can include a similar presentation, are endemic, 
and can also serve as a barrier to regional participation in clinical trials, 
which currently represent the only potential mechanism of direct 
antiviral therapy, and further development and distribution of rapid 
diagnostic tests, coupled with test standardization, is in progress [53]. 
Recent clinical trials have included virologic (RT-PCR for DENV viral 
load and tests for secreted DENV NS-1 antigen) and immunologic 
measurements (multiple cytokine measurements). Because RT-PCR 
and cytokine assay technology may not be readily available at many 
dengue endemic sites, distribution of clinical trial efforts may be 
skewed. However, there is the possibility that increased DENV-drug 
design efforts will bring with them the benefit of technology transfer 
providing additional LMIC sites with these helpful resources.  

Treatment

While current treatment for DENV is supportive care, there are 
multiple anti-DENV agents in various stages of development. 

Agents in Development for Anti-Dengue Activity
Direct acting antivirals

RNA dependent RNA polymerase (NS5) inhibitors: 
N-sulfonylanthranilic acid derivatives were identified as DENV RdRp 
inhibitors through screening of one million compounds using a primer 
extension RdRp assay [1]. The identified hit was found to bind DENV 
NS5 at the site of entrance to the RNA tunnel. While this specific 
compound is not under further development, the concept of inhibiting 
polymerase through the tunnel as well as other allosteric pockets is 
being pursued. 

Nucleoside Analogues: Balapiravir (RG1626) is a prodrug 
of a nucleoside (cytidine) analog, R1479, which itself must be tri-
phosphorylated for conversion into active form. Balapiravir was 
initially developed for the treatment of HCV, but clinical trials were 
stopped due to toxicity during extended treatment courses (2-3 
months) in combination with pegylated interferon and ribavirin [55-
57]. Because R1479 displayed in vitro anti dengue activity, and because 
of the shorter projected treatment duration for acute dengue infection 
(limiting toxicity), anti-dengue effects of balapiravir were explored in a 
phase II clinical trial [58]. An exploratory, dose-escalating, randomized 
placebo-controlled trial was conducted in adult male patients in 
Vietnam with dengue and <48 hours of fever. 32 subjects received 
five days of oral balapirivir (1500 or 3000 mg) for five days, and the 
medication was well tolerated. However, DENV viral loads, NS1 
antigenemia, and fever clearance time were unaffected by treatment 

C prM E NS1 NS2a NS2b NS3 NS4a NS4b NS5

Figure 1: Schematic of the dengue virus polyprotein. The core (c ) , precursor membrane (prM), and envelope (E) proteins are structural 
proteins, whereas the remaining 7 proteins are non structural DENV proteins. NS1 is involved in RNA replication, NS2A participates in 
replication and assembly, NS2B serves as a cofactor for NS3, which is a serine protease, RNA helicase, 5’-RNA triphosphatase, and nucleoside 
triphosphatase. NS4A and 4B participate in replication, and NS5 serves as a methyl transferase and RNA-dependent RNA polymerase [1,5].
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[58]. The authors accurately state that “although this trial, the first of 
its kind in dengue, does not support balapiravir as a candidate drug, 
it does establish a framework for antiviral treatment trials in dengue 
and provides the field with a clinically evaluated benchmark molecule” 
Subsequent analyses determined that when human PBMCs were pre-
infected with dengue (prior to balapiravir treatment), their ability 
to convert the prodrug balapiravir to the active, tri-phosphorylated 
nucleoside analog, R1479, form, was significantly impaired, resulting in 
decreased potency [59]. These in vitro studies also found that activation 
of NITD008, an adenosine based nucleoside analog [60], was less 
affected by dengue pre-infection, opening the possibility that further 
exploration of NITD008 may be warranted. A related compound, 
NITD203, was found to exhibit potent in vitro and in vivo anti-DENV 
efficacy, but satisfactory no-observable-adverse-effect levels could not 
be reached in 2 week in vivo toxicity studies [61].     

Protease (NS2b-NS3) inhibitors: Recombinant retrocyclin 1. 
Rothan et al produced recombinant NS2B-NS3 protease in E. coli and 
identified recombinant retrocyclin 1, a cationic cyclic peptide theta 
defensing analogue with anti-HIV activity [62], as a potent DENV 
protease inhibitor [48]. 

BP13944: A screen of 60,000 chemical compounds in a DENV 
serotype 2 luciferase harboring replicon (BHK-21 cells) have recently 
identified BP13944, a quaternary ammonium salt, as an NS3 protease 
inhibitor [63].

α-ketoamides: Steuer et al designed an electrophilic trap for the 
serine component of the DENV NS2b-NS3 serine protease, and have 
identified α-ketoamides as DENV protease inhibitors [64].   

Quinoline containing compounds: Using virtual screening for 
DENV protease inhibitors followed by scaffold hopping, to expand 
chemical diversity, then a DENV luciferase  reporter replicon assay, 
Deng et al have described 17 new compounds with NS2b-NS3 protease 
inhibitor activity, which can now serve as potential lead structures for 
further discovery efforts [65].

NS4b inhibitor. Van Cleef et al recently screened the NIH Clinical 
Collection of drug-like small molecules for anti-DENV activity in HeLa 
cells harboring a subgenomic DENV2-replicon reporter and identified 
the δ opioid receptor antagonist SDM25N as potent DENV inhibitor 
[66]. 

Methyltransferase (NS5) inhibitors: Using a fragment-based drug 
discovery approach, Coutard et al recently  screened 500 drug-like 
fragments by thermal-sift assay for binding to the DENV NS3 helicase 
or NS5 methyltransferase, and identified 7 validated MTase binders, 
each containing 5-6 membered aromatic rings [67].    

Translation inhibitors. Wang et al performed a high throughput 
screen for reduction or elimination of DENV CPE and identified 
benzomorphan compounds that inhibit DENV through suppression 
of RNA translation and also inhibit DENV viremia in mice, though 
higher doses were limited by toxicity [68]. 

Capsid inhibitor: A high throughput small molecule screen 
with readout of DENV induced CPE was performed on over 200,000 
compounds and identified ST-148 as a unique inhibitor of the DENV 
capsid protein with both in vitro and in vivo effects (AG129 mice) [69].   

Peptide Inhibitors of Various DENV proteins: Several groups 
have recently proposed the use of peptide inhibitors to block DENV 
infection [70-76].  For example, Lok et al have identified the mimetic 
peptide DN59, which corresponds to a region of the dengue virus 

envelope protein, as an inhibitor of all four serotypes of dengue 
virus [70]. They have found that DN59 incubation with DENV virus 
particles leads to viral membrane disruption and release of DENV 
RNA from the viral particles, but was non-toxic to mammalian cells 
[70]. In another study, 2 synthetic antiviral peptides were designed 
against target domain III of DENV2 envelope protein, and were 
found to exhibit significant DENV inhibition in vitro [73]. Prusis et al 
designed 45 peptide inhibitors against the DENV NS2b-NS3 protease 
and identified the tetrapeptide WCW-NH2 as an inhibitor of DENV 
1-4 proteases [74]. 

Host Modulators
The compact 11 kb genome of DENV forces DENV to rely on 

multiple host factors for replication. This property can be exploited 
in attempts to inhibit viral replication through deprivation of these 
required host factors, or dependency factors. This strategy, targeting 
host factors to impede dengue viral infection, has recently been 
reviewed [30].   

Ribavirin

Ribavirin is a broad acting inhibitor of RNA and DNA viruses. It 
is a synthetic guanosine analog which inhibits inosine monophosphate 
dehydrogenase with resulting GTP pool depletion [77], but has 
multiple additional proposed mechanisms of action, including up 
regulation of antiviral genes [78,79]. Ribavirin use has been limited 
by toxicity of both aerosolized and oral formulations, decreasing 
its clinical efficacy [80]. The complete compendium of downstream 
effectors of ribavirin antiviral effects is unknown. Ribavirin has been 
shown to have anti-DENV properties in several cell lines and primary 
cells [81,82], and is often used as a positive control in cell culture assays 
for anti-DENV compounds. However, ribavirin was not demonstrated 
to have anti-DENV activity in either a mouse (AG129) or a primate 
model of DENV viremia [83,84]. However, more recent studies have 
described potentiation of sub-effective dose alpha glucosidase inhibitor 
CM-10-18 by ribavirin in AG129 mice, underscoring a possible role 
for ribavirin as a treatment enhancer, similar to its role in peg-IFN 
treatment of HCV [85].  

Mycophenolic Acid

The immunosuppressive agent mycophenolic acid (MPA), a 
nonnucleoside inhibitor of IMP dehydrogenase, has also been shown 
to inhibit dengue in cell culture, reproduced in four hepatoma cell 
lines, by preventing synthesis and accumulation of viral  RNA [86].

Agents that Target Host Mediated Post Translational 
Modifications
α Glucosidase inhibitors

Flavivirus assembly occurs at the host endoplasmic reticulum where 
DENV structural proteins prM and E colocalize to form an immature 
particle in the ER lumen, where a high mannose carbohydrate,   
(Glc)3(Man)9(GlcNAc)2, is added in the ER to specific asparagine 
residues on the prM and E proteins [87,88]. This carbohydrate is then 
modified by host α-glucosidases to generate N-linked glycans that lack 
the terminal α(1,2) and α(1,3) glucose residues [89]. It has been found 
that trimming these N-linked carbohydrates in the ER may be required 
for DENV assembly or secretion of DEN [88,90,91]. α glucosidase 
inhibitors include the naturally occurring iminosugar castanospermine 
and also deoxynojirimycin, isolated from Bacillus. Castanospermine 
was found to inhibit infection with all four DENV serotypes in vitro, 
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and also to prevent dengue mortality in an A/J DENV mouse model 
[88]. More recently, a pro-drug of castanospermine, 6-O-butanoyl 
castanospermine, or celgosivir, has found to fully protect AG129 mice 
from lethal infection with mouse adapted DENV when given up to 
48h following infection, and pharmacokinetic studies showed that 
celgosir is rapidly metabolized to castanospermine in mice [92,93]. 
A randomized, double-blind, placebo-controlled, phase 1b clinical 
study to evaluate the activity, pharmacokinetics, safety and tolerability 
of celgosivir was conducted in adults with confirmed dengue fever 
in Singapore between 2012 and 2013 (ClinicalTrials.gov identifier 
NCT01619969). Results of that trial are anxiously awaited.  

In parallel, another group examined the anti-DENV effects of the 
iminosugar drug UV-4, derived from deoxynojirimycin, in vivo in the 
AG129 mouse model, and found that UV-4 reduced mortality, DENV 
viremia, tissue levels of viral RNA, and virus induced cytokines, and that 
UV-4 also decreased mortality in an ADE model of secondary DENV 
infection [94]. Importantly, UV-4 treatment could be delayed up to 48 
h in this mouse model, indicating its potential role as a therapeutic, 
though the therapeutic window is narrow because  if administered at 
72 h post infection, antiviral effects were no longer present [94]. In an 
outbreak setting, such early or possibly pre-emptive treatment could 
still be both feasible and useful. A phase I study of UV-4 opened in 
February 2014 (NCT02061358).    

Other alpha glucosidase inhibitors, including 
N-alkyldeoxynojirmcin derivatives [95] and α glucosidase substrate 
mimics, such as CM 9 78 and CM 10 18, are in development [85,96]. 
Perhaps one of the most exciting recent developments in the field, a 
recent study of co administration of the α glucosidase inhibitor CM-
1018 with ribavirin led to significant reduction of viremia in mice [85], 
for the first time providing data that the in vitro anti-DENV effects of 
ribavirin can be unlocked in vivo in the appropriate setting. 

Cyclosporine blocks DENV NS5 interaction with the host 
dependency factor, cyclophilin, leading to DENV inhibition [97].  

Lovastatin

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase, used for lipid lowering and mortality reduction 
in cardiovascular disease, and have an excellent safety profile [98,99]. 
Statins have been found to exhibit anti-DENV properties in both cell 
culture and mouse models [100-102].  A clinical trial examining the 
safety and antiviral properties of lovastatin in adult patients is now 
ongoing in Vietnam [103]. 

Heparin and Heparan Sulfate

It is interesting to note that highly sulfated heparan sulfate is 
involved in initial interactions between the DENV E glycoprotein 
and the host cell, and heparin and heparan sulfate like molecules have 
been found to have anti-DENV properties [104-111]. The important 
complexities of DENV infection and host coagulation state will not be 
explored in this review.    

Vitamin D 

Treatment of both monocytic (U937) and hepatic (Huh 7) cells 
with 1α, 25-dihydroxy-vitamin D3 was associated with decreased levels 
of DENV infection [112].  

Host Kinase Inhibitors 

Using an immunofluorescence imagebased assay suitable for 
identification of small molecule inhibitors of dengue virus infection 

and replication, Chu et al identified AZD0530 and dasatinib, inhibitors 
of Src and Abl kinases, as potent DENV inhibitors. More recently, this 
group has determined that AZD0530 and dasatinib inhibit DENV viral 
RNA replication through inhibition of the host dependency factor, Fyn 
kinase [113]. Of note, AZD0530 (saracatinib) is in advanced clinical 
trials, pending FDA approval, while dasatinib is FDA approved.

Viral sensor (RIG-I and TLR3) agonists

The innate immune system includes detection of viral RNA by the 
helicase domain of RIG-I [114,115]. A synthetic 5’ triphosphate (5’ppp) 
RNA was designed to stimulate this host innate immune response as an 
antiviral therapeutic, and was found to have anti DENV effects when 
transfected into A549 cells as well as primary human monocytes prior to 
DENV infection [116]. Along a similar vein, Diwaker et al have recently 
identified the RIG-I inducer Rhodiola as an inhibitor of DENV in 
human peripheral blood mononuclear cells and the human monocytic 
cell THP1 cell line, when administered 2 hours after DENV infection 
[117]. Et al showed that TLR3 activation through administration of the 
dsRNA compound PIKA prior to DENV infection decreased DENV 
infection of HepG2 cells [118].    

Interferon

The type 1 IFNs, including IFNα, are among the broadest acting 
antiviral therapeutics known [119]. IFNα is a current component of 
anti-HCV therapy and has also been used with success for hepatitis 
B, severe acute respiratory syndrome, and WNV ([120-122]). Severe 
viral infection is often the result of subversion of the host immune 
response, rendering that response ineffective. A major common 
pathway of viral immune escape is suppression of the IFNα pathway 
(Figure 2) [33,123-143]. While IFN escape mechanisms vary from virus 
to virus, activation of IFN effectors downstream of viral subversion 
may  identify common drug targets for restoration of an effective host 
antiviral response [30,144,145] (Figure 2). Although it will likely soon 
be possible to reduce reliance on IFNα in HCV treatment regimens 
[146-149], understanding the mechanism of this broad-acting antiviral 
will inform design of agents active against many viruses, such as DENV, 
that antagonize IFNα and for which no current treatment is available 
[124,126,132,134-137,150]. Elucidating the antiviral mechanism(s) 
of IFNα will also improve understanding of host-virus interactions, 
including variable human susceptibility to viruses and response to IFN 
or potential IFN-related therapies. 

IEG Activation will Circumvent Viral Subversion of IFN 
Signaling

Type I IFN (α and/or β) binds to the type 1 IFN receptor (IFNAR1/2), 
which interacts with JAK1/TYK2, which can be followed by activation 
of STAT1 and 2 and subsequent formation of the heterotrimeric 
complex IFN–stimulated gene factor 3, or ISGF3 (consisting of STAT1, 
STAT2, IRF9) (Figure 2) [123,144]. ISGF3 then translocates to the 
nucleus, and directs transcription of hundreds of IFN stimulated genes 
(ISGs) through an IFN stimulated response element (ISRE) [123]. 
When intact, this system is highly effective in limiting viral infection. 
However, many pathogenic viruses have evolved mechanisms to escape 
the type I IFN response [33,132,134-136,150,151]. For example, HCV 
inactivates a host protein required for endogenous IFN production 
(mitochondrial antiviral signaling protein (MAVS), also known as 
IPS-1 and VISA) [152,153]. Downstream of IFN production, HCV also 
inhibits the activity of IFN (endogenous or exogenous) [154]. 

In general, IFNα can successfully inhibit DENV if given pre-
infection, but not post-infection, due to DENV mediated suppression 

http://clinicaltrials.gov/show/NCT02061358


Citation: Fusco DN, Chung RT (2014) Review of Current Dengue Treatment and Therapeutics in Development. J Bioanal Biomed S8: 002. 
doi:10.4172/1948-593X.S8-002

Page 5 of 10

J Bioanal Biomed                                      ISSN: 1948-593X JBABM, an open access journalAdvances in Drug Development: 
Novel Antiviral Agents

of early members of the IFN signaling pathway [140,155], though some 
antiviral effect was observed in post-infection administration of PEG-
rIFN-alpha-2a, which significantly lowered daily viremia levels and 
improved virus clearance, in rhesus monkeys [156] . Defining where 
viruses block, or subvert, the host IFN response can inform design of 
antivirals that act downstream of that block. In preliminary studies, we 
have identified 120 host antiviral candidates in a whole genome siRNA 
screen for HCV IEGs [44]. In addition, we have screened these 120 
HCV IEG knockdowns for rescue of DENV from IFN in HeLa cells 
and have identified a subset of 45 HCV/DENV IEGs. Among our 45 
HCV/DENV IEGs, we detected 6 known ISGs, including JAK1 and 
STAT2. While JAK1 and STAT2 lie proximal to likely subversion 
by Flaviridae (Figure 2), the remaining 4 DENV/HCV IEG/ISGs are 
likely downstream of this block, and may serve as candidates for IEG 
activation. Broad-acting IEG activation fits with criteria for identifying 
high-value targets for therapeutic intervention by (1) overcoming viral 
ability to inhibit IFN action or (2) acting downstream of the virus-
mediated IFN block. Because of their downstream location, such 
therapeutics could have fewer systemic effects than IFN itself, which 
would contribute to improved tolerability and therapeutic index. As 
host rather than virally targeted agents, these therapeutics are predicted 
to have a high barrier to viral resistance. 

D4 dopamine receptor antagonists

Smith et al have identified a class of tricyclic small molecule 
compounds, the dihydrobenzothiepines (DHBTs), in a high throughput 
small molecule screen for DENV-2 inhibitors, using high content 
immunofluorescent assay readout in HEK293T cells [157,158]. They 
further determined that SKI-417616, a highly active DHBT, inhibited 
all 4 DENV serotypes in vitro at an early event in the DENV lifecycle, 
and identified the mechanism of activity as host D4 dopamine receptor 

inhibition. The authors suggest that, in vivo, macrophage-expressed 
dopamine receptors may be targettable DENV dependency factors.

Ivermectin 

The anti-helminthic drug ivermectin has been identified as an 
inhibitor of the nuclear importer importin α/β. Because DENV NS5 
polymerase activity requires importin α/β, anti-viral properties of 
ivermectin were explored, and revealed that pre-treatment with 
ivermectin inhibited DENV infection of Vero cells [159]. Supporting 
NS5 inhibitor effects of ivermectin, Tay et al. have found that ivermectin 
pretreatment strongly inhibits the nuclear localization of NS5 during 
DENV 1, 2 infection of BHK-21 or Huh-7 cells, along with inhibition 
of DENV infection levels [160]. At the same time, Mastrangelo et al 
identified ivermectin as a DENV NS3 helicase inhibitor using an 
in vitro modelled helicase inhibition assay, and further confirmed 
ivermectin anti-DENV activity, though only for virus yield reduction 
(qRT-PCR) and less so for CPE reduction [161].

Pentoxifylline

A small clinical trial of the TNFa inhibitor, pentoxifylline, showed 
a potential decrease in mean length of ICU stay and decreased TNFa 
levels, though viral parameters were not assessed [162].

Chloroquine

Chloroquine is an inexpensive, widely available, well-tolerated 
lysosomotropic 4-amino-quinoline derivative, which is well known 
as an anti-malarial drug but also possesses in vitro anti-viral activity, 
including anti-DENV activity, potentially related to its effect of 
increasing endosomal pH [163,164]. In vitro, treatment with 
chloroquine caused a dose-dependent reduction of DV-1 infectivity 
in THP/DC-SIGN cells [165]. A clinical trial of anti-DENV efficacy 
of chloroquine was performed in Vietnam, where 154 adult patients 
with suspected dengue received 3d chloroquine versus placebo. While 
a trend toward lower incidence of dengue hemorrhagic fever was 
detected, chloroquine did not reduce the duration of DENV viremia or 
NS1 antigenemia [166]. 

Amodiaquine

The quinoline derivative amodiaquine was recently identified in a 
replicon based screen for anti-DENV agents, and confirmed to have 
anti-DENV activity in DENV2 plaque assays and qRT PCR assaying 
for both intracellular and extracellular DENV levels [46].

RNAi

RNA interference, or RNAi, is a gene silencing process which 
degrades target RNA in a sequence specific fashion. RNAi has been 
proposed as a strategy to directly inhibit viral infections, including 
DENV [167-170]. One group showed that use of dendritic cell-
targeting peptide mediated delivery of siRNA against a conserved 
sequence in the DENV envelope effectively suppressed DENV 
replication in macrophages and monocytes [171]. In addition to RNAi-
mediated suppression of DENV itself, RNAi-mediated suppression of 
viral dependency factors, or factor required by the virus for productive 
infection, has been shown to inhibit DENV [172,173]. There are 
currently no RNAi agents registered under clinicaltrials.gov when 
searched with dengue. 

Interestingly, it has recently been found that the DENV NS4B 
protein of all four DENV serotypes acts as a suppressor of human 
intracellular RNAi machinery, including Dicer, Drosha, Ago1, and 
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Figure 2: A subset of IEGs likely act downstream of viral subversion of IFN.IFN 
signaling events lead to upregulation of IFN stimulated genes (ISGs) via an 
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IFN effectors activate downstream antiviral events that may circumvent this 
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Ago2, as well as many human microRNAs [174].

Morpholinos

Taking advantage of the RNA-RNA or RNA–protein interactions 
required for DENV replication, antisense peptide-conjugated 
phosphorodiamidate morpholino oligomers (P-PMOs) have be 
designed to sterically interfere with these interactions [175-178]. 
Holden et al. evaluated the mechanism and effectiveness of DEN 5’ stem 
loop, DEN 3’ cyclization sequence, and one more novel morphilino 
complementary to the top of the DENV 3’ stem loop. They found that 
the 5’SL P-PMO blocked DENV viral translation, the 3’CX P-PMO 
blocked viral RNA synthesis, and the novel 3’ SLT P-PMO blocked 
both viral translation and RNA synthesis, and could potentially be 
useful as therapeutics in human infection.   

Other Compounds 

Other agents that have been suggested to display anti-dengue 
activity include geneticin, an aminoglycoside antibiotic, which has 
been found to have the unique property, among aminoglycosides, 
of inhibiting DENV [179] and FCI 106, a compound of unknown 
mechanism identified in a screen for anti-Ebola agents, which has also 
been found to have anti-DENV activity, in DC-SIGN cells [180]. 

Medicinal plant derivatives

There is a significant amount of research dedicated to hypothesis–
driven and practice-based identification of naturally occurring 
compounds with anti-dengue properties. While this literature will not be 
reviewed extensively here, several recent references are indicated [181-
187]. It is important to note that many of the compounds examined in 
these studies are selected because they are already in use against dengue 
in traditional settings, underscoring the need to examine their effect on 
dengue-related outcomes, regardless of whether they will be assessed 
for drug development. 

Summary
In summary, dengue virus has emerged as an increasingly 

worrisome arboviral disease, with 2.5 billion people currently living 
in regions at risk of disease, and innumerable others exposed through 
travel, with no realistic optimism of near-term vaccine or vector 
control, and incomplete understanding of factors predicting who will 
succumb to fatal infection. There are multiple leads for antiviral design 
advancing through the therapeutic development pipeline, and clinical 
trials are beginning. Major challenges ahead will include identification 
of compounds that validate in vivo [68], exhibit a highly favorable 
safety profile, are active beyond the earliest hours of infection, are 
inexpensive, and unlikely to be overcome by viral resistance. There is a 
significant amount of work to be done.
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