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Introduction
Cancer is one of the major diseases that limited the human life; 

it is treated with surgery, radiation, chemotherapy, hormones, and 
immunotherapy. According to estimates from the International Agency 
for Research on Cancer (IARC), there were 12.7 million new cancer 
cases in 2008 worldwide. The corresponding estimates for total cancer 
deaths in 2008 were 7.6 million (about 21,000 cancer deaths a day). By 
2030, the global burden is expected to grow to 21.4 million new cancer 
cases and 13.2 million ancer deaths simply due to the growth and aging 
of the population, as well as reductions in childhood mortality and 
deaths from infectious diseases in developing countries [1].

The development work in cancer prevention, detection, treatment, 
and management is recently very advanced. Mathematical modeling of 
cancer is one of the important methodology that have contributed in 
this domain. With their basis in clinical studies, multiple discussions, 
revisions and evaluations, mathematical models help researchers 
understand the effects that various factors, such as tumor growth and 
drug infusion rates, have on optimal treatment plans. The models are 
used to spotlight the importance of looking at cancer treatment as a 
formal optimization problem. The number of cancerous cells, toxicity, 
and drug resistance are the key factors in planning a chemotherapy 
treatment. Most of the studies examining chemotherapy treatment 
optimizations use various ways to model the interactions among these 
key factors. Certain authors consider the minimal number of cancer 
cells at the end of therapy to be a sufficient indicator of treatment 
quality (e.g., Costa and Boldrini [2]), but the negative cumulative effect 
of the administered drug(s) should also be explicitly included in the 
performance index.

The mathematical modeling of the various phases of solid-tumor 
growth has itself been developing and expanding over the years. 
However, over the last 20 years or so, models of cancer invasion 
have begun to appear in the research literature [3-7]. In [8], a 
hybrid, multiscale cellular-automaton model was presented with 
the goal of studying the effects of various combinations of cell-cycle 
specific chemotherapy drugs in the presence of internal and external 
heterogeneity. 

Actually, surgery and radiation therapy are the most common 
direct therapies for curing solid tumors [9]. However, when cancer 
reaches the metastasis stage, when cancerous cells from the primary 
tumor are transmitted to other parts of the body, a systemic treatment 
such as chemotherapy must be applied to the diffused cancerous cells. 
Surgery is performed when a tumor is found in only one area, and it 
is likely that all of the tumor can be removed; occasionally radiation 
therapy is also used during or after an operation. When the tumor is 
entirely excised, we do not need to study the treatment optimization 
problem. However, when chemotherapy is used as treatment, there is 
an evolution of the number of cancer cells with time, as shown in Figure 
1. Because chemotherapy works like a two-sided sword, destroying the
normal cells while annihilating the cancerous cells, we cannot inject
the drug frequently. Therefore, the administration of chemotherapy
involves a tradeoff between cancerous cell reduction and tissue toxicity, 
which is a function of the size of the destroyed normal cell population
and the drug dosage limits. For this reason, we are interested in
optimizing cancer chemotherapy.

Randomized clinical trials are the standard method for the 
evaluation of chemotherapy treatment plans. For example, in reference 
[10], Andre et al. conduct a trial to compare the effectiveness of two-
drug chemotherapy with various dosages, frequencies and treatment 
durations. Apart from the dosages and time duration, the choice of 
drug combination is another essential factor considered in clinical 
trials [11].

The choice of treatment depends on the type of cancer, its stage 
and its grade. The oncologist will also consider the overall health of 
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Abstract
Tumors in humans are believed to be caused by a sequence of genetic abnormality. Understanding these 

sequences is important for improving cancer treatments. Biologists have uncovered some of the most basic 
mechanisms by which normal stem cells develop into cancerous tumors. These biological theories can then be 
transformed into mathematical models. In this paper, we review the mathematical models applied to the optimal 
design of cancer chemotherapy. However, chemotherapy is a complex treatment mode that requires balancing the 
benefits of treating tumors with the adverse toxic side effects caused by the anti-cancer drugs. Some methods of 
computational optimization have proven useful in helping to strike the right balance. The purpose of this paper is 
to discuss the limitations of the existing theoretical research and provide several directions to improve research in 
optimizing chemotherapy treatment planning using real protocol treatments defined by the oncologist. 
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the patient and their medical history, personal preferences and other 
relevant factors. Typically, chemotherapy is administered into the veins 
through an injection—this mode of injecting the drug into the vein 
is known as intravenous chemotherapy. Chemotherapy can also be 
administered orally with the help of tablets and capsules; this method 
is known as oral chemotherapy. Chemotherapy drugs can be injected 
directly into the muscles, known as intramuscular injection, or beneath 
the skin’s surface, called subcutaneous injection. In intravenous 
chemotherapy, the drug reaches the blood stream directly [12].

Although clinical trials have been used to determine the most 
reliable and efficient chemotherapy treatment plans, they are limited by 
high costs, long trial times, and the difficulty of having to test multiple 
options. In addition to the treatment cost and the effectiveness of the 
chemotherapy plan, its feasibility should also be evaluated. All of these 
steps multiply the cost; for this reason, we are studying chemotherapy 
treatment planning as an optimization problem using a mathematical 
model. As several researchers note, further refinement of chemotherapy 
will require attention to rigorously derived models because clinical 
empiricism can be an inefficient method of understanding and 
developing a treatment strategy [13,14].

To this end, Mathematical modeling provides a low-cost method to 
evaluate different treatment strategies more efficiently, quantifying the 
relationships among several important factors, such as the population 
of cancerous cells, toxicity, and drug resistance. Mathematical models 
also aid researchers in understanding the effects of other variables, such 
as the tumor growth and drug infusion rates, on the performance of the 
optimal treatment plan. Therefore, there is a growing interest among 
researchers on the problem of chemotherapy treatment optimization. 
A close collaboration with an oncologist will improve the model, 
making the research more practical and meaningful.

In general, many researchers develop mathematical models to 
simulate the pharmacokinetic and pharmacodynamic processes. 
Pharmacokinetic processes describe the distribution and metabolism 
of the drug, and pharmacodynamic processes characterize the effects of 
a drug on cancerous cells and normal cells [15]. The researchers then 
apply computational methods to solve these models and compute the 
optimal chemotherapy plan, which generally specifies the combination, 
frequency, and dose of drug administration. 

In real cases, the oncologist uses for a given cancer a standard 

chemotherapy treatment defined from the results of many clinical trials 
[16,17]. For example, for a patient with breast cancer, we have many 
standard protocol treatments. The oncologist uses the predetermined 
treatment dosage. 

Most cancer modeling studies consider treatment in the form of 
a generic efficacy term that represents the effectiveness of the drug. 
Various treatment types have been used, such as chemotherapy as a 
means to reduce cancer cells [18-23] in an attempt to simulate clinical 
practice as closely as possible. In [18], the authors demonstrate that, 
in the chemotherapy treatment, the effect of the drugs was shown to 
reduce not only cancer cells but also normal and immune cells, as is 
the case in reality. 

The concept of applying optimal control to various disease states 
began by the mid-1970s, and since then, it has become the subject 
of various publications [24-27]. In [28], engineering optimal control 
theory is applied to investigate the drug regimen for reducing an 
experimental tumor cell population. In [29], several optimal-control 
problems resulting from the simplest models of cancer chemotherapy 
leading to singular control solutions was proven.

Swan [30] presents a study that has used engineering optimal 
control theory for a chemotherapy problem. It involves a human tumor 
and minimizes the total amount of used drug for a specified value 
of tumor cell population. The study by Swan is critical for the basic 
understanding and comprehension of the early mathematical modeling 
approaches on chemotherapy treatment planning problem. The first 
published review of optimal control problems in the general area of 
cancer research appeared in [31]. In later papers, for example [32], 
Swan provides evidence for the use of continuous delivery of drugs. An 
excellent general reference for this whole topic is [26]. But in [33], Zietz 
and Nicolini attempted a compromise between toxicity and cell kill by 
using an objective function that is a combination of tumor cell final and 
normal population. As a different methodology, like in [34] and [35], 
the application of drugs is matched up with the progression of the cells 
through the cell cycle. In [34] the optimal period for drug application 
corresponds approximately to the normal cell cycle time.

In the literature, one can find several modeling approaches related 
to cancer chemotherapy problems and to optimal drug regimens. 
Several of these are mentioned in [36], and we can find many different 
approaches and models for the job of reducing the tumor burden while 
keeping the side effects of the drugs sufficiently in check.

References in recent years, such as Jinghua Shi et al. [37] and 
Nanda et al. [38], represent various optimal control models of cancer 
chemotherapy. Most of these references concern the treatment of solid 
tumors or cancer treatment in general. 

In [39], the authors review many topics about i) the modelization 
of the cell cycle as an object control under the action of anticancer 
chemotherapy, which includes modeling of drug resistance; ii) the 
modelization of tumor angiogenesis and antiangiogenic therapy; and 
iii) the modelization of therapies targeting specific cellular regulatory 
networks, involved in carcinogenesis and cancer growth and 
progression. All of these topics exist in the literature and are discussed 
to help improve the situation and realize the potential for cancer 
treatment. This paper is rich with references on mathematical models 
and does not take into account the optimization part.

In another work [23], the authors confirm that the two major 
obstacles against successful chemotherapy of cancer are the cell-cycle-
phase dependence of treatment and the emergence of resistance of 
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Figure 1: Comparison of the evolution of cancer cells using chemotherapy 
or surgery treatment.
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they consider models based on amplification of the resistance gene 
up to a very large number of copies. This approach is to study basic 
mathematical properties of the models to help in understanding the 
control problem.

The simplest mathematical models that describe the optimal control 
of cancer chemotherapy treat the entire cell cycle as one compartment 
[51]. In reality, each drug affects the cell evolution in a particular 
phase. Therefore, it makes sense to combine these drugs to produce 
the greatest cumulative effect on the cancer population. However, 
as 20 years have already passed, updating the level of knowledge in 
chemotherapy-treatment planning research is necessary. Clare et al. 
[13] introduce several models in their review of the application of 
mathematical models on breast cancer and discuss the mathematical 
modeling of adjuvant chemotherapy as one of the subsections. Parker 
and Doyle [52] provide a comprehensive review of the articles using 
mathematical modeling for drug delivery with only a subsection on 
the optimal cancer chemotherapy. This review describes the primary 
factors considered in the chemotherapy treatment models without 
surveying the literature in mathematical modeling systematically.

In the previous discourse, we discussed and appraised some 
mathematical models of cancer treatment. We noted the benefits 
of using the theory of optimal control to determine chemotherapy 
scheduling, and we underscored the need for cancer treatment to be 
viewed as a formal optimization problem. 

The optimization model

Optimal control theory is widely used to model chemotherapy 
treatment planning problems. In this paper, we first explain the 
problem formulation. Then, we discuss the model describing the 
tumor growth and give an explication of several conditions that affect 
the optimal control results, such as the objective function and the 
treatment’s function, duration and dosage.

To properly pose the optimal-control problem, we must define the 
goal we wish to minimize (i.e., the objective functional, the treatment 
dosage and duration). Hence, an optimization problem consists of a 
set of constraints that must be fulfilled and an objective function to 
be minimized (or maximized) with respect to a set of independent 
variables.

Let us describe the continuous optimal problem as follows:
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Where jw represents the different type of cells (i.e., cancer, normal 
or immune cells) described in the model studied, u is the dosage of the 
drug and ff is the final value function. 

This paper will be organized according to the definition of the 

cancer cells to cytotoxic agents. These two problems are understood 
by applying optimal control theory to mathematical models of cell 
dynamics. The authors have defined a mathematical model that can 
be used to pose and solve an optimal chemotherapy problem under 
evolving resistance and estimated the parameters of the constructed 
models. 

In [40], Clairambault presents a review concerning several 
problems encountered by biologists and physicians who address 
natural cell proliferation and disruptions of its physiological control 
in cancer disease. He concludes that the modeling of cell proliferation 
and drug disposition by continuous time evolution equations can help 
by i) studying the theoretical effects of the control functions; ii) proving 
the feasibility or unfeasibility of proposed therapeutic strategies, under 
accurate biological theoretical assumptions on the biological framework 
used; and iii) proposing optimized multidrug multi-targeted therapies 
according to criteria and constraints defined by oncologists. In this 
paper, the author describes in detail the biological phenomena related 
to cancer and treatment without going into the mathematical details 
of in which case they are mentioned and whether they are mentioned 
briefly or in a general and simple way.

Finally, in [41], Billy et al. review i) some models that describe 
the evolution of cancer cells under the influence of anticancer drugs, 
which have been used or may be used to tackle the general problem of 
therapeutic optimization in oncology; and ii) theoretical therapeutic 
optimization methods that can be used in the context of various models 
of cell-population growth. Then, they present several techniques 
used for the identification of the parameters of population-dynamics 
models used in chemotherapy, and they focus on a novel method of 
optimization under unwanted toxicity constraints. This method is 
based on the optimization of eigenvalues in an age-structured model of 
cell-population dynamics.

The following is another set of references where drug therapies 
for cancers that involve tumors, are studied: Chakrabarty and Hanson 
[42], Duda [43], Fister and Panetta [19], Murray [43,36] and Swan [27] 
on cancer chemotherapy. For alternate types of objective functions, we 
can cite the work of Swierniak, Polanski, and Kimmel [44], Murray [43] 
and Ledzewicz and Schättler [20]. The books by Sethi and Thompson 
[45], Cohen [46], Clark [47] and Eisen [48] provide the background for 
the optimal control theory we use and include some simple biological 
applications. The book of Martin and Teo [49] applies optimal control 
to several detailed models of cancer tumors, and provides a survey of 
many research results of optimal control applied to cancer. 

Mathematical work that has been performed in the optimal control 
setting includes two non-cell-cycle-specific (drugs that are effective 
in all of the phases of the cell cycle) models by Murray [43,36]. Swan 
[27] provides a good review of the role of optimal control in non-
cell-cycle-specific cancer chemotherapy: he not only elaborates on 
miscellaneous-growth kinetic models and cell-cycle models, but he 
also briefly describes important issues in chemotherapy treatment 
planning, such as drug resistance that requires the use of quantitative 
research. Swierniak, Polanski, and Kimmel [44] use optimal control 
theory on a cell-cycle-specific chemotherapeutic model. Swierniak, 
Polanski, and Kimmel [44], along with Swan [27], investigate the effects 
of the drugs on the normal tissue and use this to limit the drug strength, 
but only for non-cell-cycle-specific treatments. Therefore, we develop 
an optimal-control problem that will directly determine the effects of 
the cell-cycle-specific treatments on the normal tissue, and we attempt 
to relate the mathematical results to known clinical information. In 
another work [50], the authors stress the aspect of drug resistance; 
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mathematical optimization problem. For this reason, we will review i) 
a set of deterministic models that describe the evolution of cancer cells; 
ii) a set of mathematical models that describe the pharmacokinetics 
and pharmacodynamics of injected chemotherapy drugs; iii) a set of 
objective functions, considered in the literature, and affect the results 
of the optimization method; and iv) various optimization methods 
found in the literature. All these points are reviewed to optimize 
the theoretical drug delivery and the number of cancer cells in 
chemotherapy treatment. 

The cancer models presented include deterministic, stochastic, 
compartmental, spatial, and hybrid models. They provide the reader 
with a state of the art overview of the rapidly evolving field of cancer 
modeling and treatment optimization. 

The remainder of this paper is organized into sections. In the section 
of review of Cancer Modeling, we review the different deterministic 
mathematical models used to describe tumor growth under the 
influence of chemotherapy. In the section of review of treatments, 
we review the treatment type, the administration method, the drug 
combination and the treatment protocols for the chemotherapy. In 
the section of Review of the Objective Function, we review the various 
objective functions that affect the results of the optimization method. 
In the section of Solution Methods, we summarize the role of optimal 
control and the optimal control models applied to the chemotherapy 
treatment planning and group them according to the solution methods 
used. Finally, in the section of Discussion and Conclusions, we describe 
the challenges of using mathematical modeling and discuss the gap 
between theoretical research and their clinical applications. We also 
provide several future research directions.

Review of Cancer Modeling 
Because there are three distinct stages (avascular, vascular, and 

metastatic) to cancer development, researchers often concentrate their 
efforts on answering specific questions on each of these stages [53]. This 
review aims to describe the current state of the mathematical modeling 
of avascular tumor growth, i.e., tumors without blood vessels. This is 
because, when attempting to model any complex system, it is wise to 
attempt to understand each of the components as well as possible before 
they are all put together. Avascular tumor growth is much simpler to 
model mathematically, and yet it contains many of the phenomena that 
we will need to address in a general model of tumor growth.

Cancer modeling has a wide variety of forms. Indeed, it can involve 
almost any type of applied mathematics, as shown in Figure 2. We use 
probability models to understand how genetic mutations lead to cancer 
progression, metastasis and resistance to therapy. Ordinary differential 

equations can be used to study the growth of tumor cell populations, 
often leading to a conclusion of Gompertzian growth [54].

Partial differential equation models (PDE) using cell densities 
and nutrient concentrations as state variables can be used to analyze 
various spatio-temporal phenomena [23].

The agent-based model (ABM) that treats cells as discrete objects 
with predefined rules of interaction can offer an improvement over 
PDE methods in some situations, such as the study of angiogenesis 
[55, 56], the development of new blood vessels to bring nutrients to 
a growing tumor [57]. In [58], an extensive theoretical investigation 
of the process of tumor-induced angiogenesis is presented, and the 
results from computational simulations of the mathematical model 
have highlighted a number of important new targets for therapeutic 
intervention.

In general, PDE models are used with hyperthermia cancer 
treatment [59], and the ABM model is used with immunotherapy 
treatment [60]. The ABM model often contains components of multi-
scale models, which have the ability to simulate tumor properties 
across multiple scales in space and time [61,62].

Another phenomenon is incorporated into the process of cancer 
development: metastasis [63,64]. In case of the formation of another 
cancer type via metastasis phenomena, we resolve this problem using 
two different protocol treatments for each cancer to minimize the 
number of cancer cells with the minimum treatment dosage. 

In this paper, we are interested in reviewing the models used to 
describe tumor growth with chemotherapy treatment, which can be 
viewed as a formal optimization problem.

The mathematical models that describe tumor growth are 
divided into five categories:

•	 Deterministic model with non-linear differential 
equations: In this model, we used a system of ordinary differential 
equations (ODE) to describe the evolution of cells reflected by a well-
defined curve.

( , , )
dw

f w u t
dt

					                    (3)

Where ( )f t may take different non-linear forms.

Compartmental model: The cell cycle is modeled as compartments, 
each of which either describe different cell phases or combine phases 
of the cell cycle into clusters. The function ( )f t  is linear, and the 
optimization solutions are analytical.

Stochastic model: Observations of cancer cell cycles are often 
presented in an erratic fashion. For this reason, we are trying to 
introduce probabilities, such as those used in stochastic models.

The various stochastic models that are able to describe biological 
processes, include the following:

•	 Moran model [65]

•	 Wright-Fisher model [66]

•	 Galton–Watson branching process [67]

•	 Markov chain processes [68]

•	 Model of Moolgavkar, Venzon, and Knudson [69]

There are attempts to their development, to use them in the 
Figure 2: General schema of the different cancer modeling.
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description of cancer process.

•	 Spatio-temporal model [70-72]: In this model, the evolution 
of cancer cells is studied in space as well as time. We can add Laplacian 
terms into the different equations of the deterministic models to study 
the spatial evolution of cancer cells.

2( , , )∂
= + ∇

∂



 

l
w f w u t d w
t

				                (4)

 Where ld  is the diffusive coefficient for the described cell. The 
Laplacian terms denoted by 2w∇

  capture the diffusive properties of 
the specific cell in arbitrary spatial dimensions.

An analysis of these models was carried out in a one-dimensional 
geometrical setting, in which the operator ∇2 was set equal to the second 

order partial derivative 2 2x∂ ∂ of the normal and abnormal cell 
population with x representing the real number line. A validation of the 
analysis was extended to higher spatial dimensions, and simulations of 
the model were considered in two-and three-dimensional space and in 
radial geometries. In reference [73], a continuous three-dimensional 
model of avascular glioma spatiotemporal evolution is developed. 
Based on the experimental validation, as well as the evaluation by 
clinical experts, the proposed model may provide an essential tool for 
the patient-specific simulation of various tumor evolution scenarios 
and the reliable prognosis of glioma spatio-temporal progression.

•	 Hybrid model: this model is similar to the non-linear 
differential equation model, but we added a term for white noise or 
some other parameter (such as birth rate) that varies according to the 
probability law. This reflects the external randomness that affects the 
tumor growth behavior.

( , , , )θ=




dw f w u t
dt

				                  (5)

Whereθ


 represents the random perturbations in our system. 

Referring to many studies [23,39-41] on the application of the 
optimization method for the various mathematics models that describe 
the evolution of cancer cells, we conclude that the optimization method 
i) is not largely applied to the stochastic models, ii) is not applied to 
PDE models and iii) is largely applied to the ODE models. The studies 
concerning the application of the optimization method on the ODE 
models was not applicable in the real case of used treatment protocols. 
For this reason, in this paper, we include a bibliography with a 
simple definition for the different deterministic mathematical models 
(nonlinear differential equation, hybrid and compartmental models); ii) 
the treatment type, the administration method, the drug combination 
and the treatment protocols, for the chemotherapy; iii) the various 
objective functions that affect the results of the optimization method; 
and iv) the solution methods of the optimizations models, to determine 
chemotherapy scheduling, viewed as a formal optimization problem. 
This study concerning the optimization of cancer-treatment protocols 
can become in the future a standard element to help oncologists predict 
the minimum dosage for a patient based on theoretical considerations 
such as those reviewed in this paper. 

Deterministic model

Mathematical models describing the cancer-evolution phenomena 
can be used as an important tool in therapy planning. Several models 
of cancer at various stages have been formulated over many years of 
research. In this paper, we focus on models in the form of ordinary 

differential equations (ODEs), controlling cancer growth on a cell-
population level. Many references, such as [25,28,30], studied cancer 
growth using Gompertzian growth [26]. Other ODE models have also 
been used to describe the exchange between two cells populations, 
proliferating and quiescence ones [25]. Other ODE models have 
considered some form of tumor immune interaction [31,36]. Normal 
cells have also been modeled in many forms to model toxicity 
disadvantage [25,74]. 

We must divide the deterministic model into three types:

•	 Non-linear differential equations 

•	 Compartmental model

•	 Hybrid model

Non-linear differential equations: This model must be further 
divided based on the number of differential equations, which are 
used to describe the evolution of several cell types (including cancer, 
normal and immune cells). Historically, these models are cited as 
below in the various articles but scientifically they are not related.

We start with the simplest model:

Model with one differential equation: The most frequently used 
model in oncology for growth retardation in malignant tumors is 
the Gompertz equation [75], developed by the 19th century English 
actuary, Benjamin Gompertz [54,76]. The equation is characterized by 
two parameters, the initial specific rate of exponential growth and the 
rate of exponential fall in the initial growth rate. Unlike the logistic 
function, which is symmetrical about the inflexion, the Gompertz 
function is asymmetrical about the inflexion, which is always 0.37 of 
the asymptotic value [76]. 

Typically a tumor will grow very rapidly with the growth rate 
proportional to the tumor size. However, as tumors increase, the 
growth rate decreases as tumor size increases. In order to reflect this, 
differential equation models have been proposed. It is customary to 
assume that tumor volume and number of tumor cells are proportional 
and so the model which follows describes ( )dC t dt , where ( )C t
represents the number of tumor cells at time t. Three models have been 
widely used in the study of tumor growth: exponential, logistic and 
Gompertz growth. The effect of chemotherapy (pharmacodynamics) 
is incorporated into tumor growth model by adding a kill term to the 
differential equation by assuming that there is a concentration ( )u t
of a cytotoxic drug at time t and the presence of the drug will cause a 
decline in tumor cell population jointly proportional to concentration 

( )u t and the population size ( )C t  at any given instant. We will also 
assume that there is a threshold drug concentration level,ε  below 
which no tumor cells are killed. The Gompertz growth equation is the 
most commonly used model of tumor growth and takes with treatment 
the form:

log( ) ( ) ( )
θ

λ ε ε= − − − 
 
 

dC
C k u H u

dt C
		                    (6)

Where λ  is a positive constant related to the growth function 
and θ  is the largest possible size of the tumor. k  is a constant of 
proportionality, and H  is the Heaviside unit function [77].

Among the proposed models, those based on Gompertz growth 
are frequently proposed [78]. It models the growth of a population 
consisting of a group of individuals of one or more similar species 
in the absence of migration and interaction with other species, by an 
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S-shaped function ( )C C t=  that is the solution of:

( )( ) log( )α β= − −
dC C u t C C
dt

			                  (7)

Within the context of tumor growth, C  denotes the number 
of tumor cells at time t , 0C  is the size of the tumor at the start of 
treatment, ( )u t  denotes the drug concentration at the site of action. 

( )C t is assumed to be continuous and differentiable [79]. Parameters 
α  and β  (measured in 1t− ), denote growth and decay rates, 
respectively, they characterize the evolution of different tumor types. 
During chemotherapy it is assumed that the basic growth kinetics of 
the tumor will be perturbed by the action of the cytotoxic drug ( )u t .

Swan and Vincent [12] used assumptions about Gompertzian 
growth of immunoglobulin G (IgG) multiple myeloma cells and 
developed a single differential equation of drug action on such cells. 
The equation describing the drug action is as follows:

1

2

log( )θα= −
+

k uCdC C
dt C k u

		                                   (8)

Where, the parameter θ  represents the greatest size of the tumor; 
and 1k  and 2k are the positive constants in the saturation type loss 
term in the equation.

Model with two differential equations: The cell growth of various 
types of cells, whether they are immune, cancer or normal cells have 
certain features in common. Therefore, a mathematical model of a 
particular cell growth may be used to model other types of cell growth, 
provided some basic changes can be made.

A few models of acute myeloblastic leukemia (AML) were proposed 
by Afenya [80]. Normal and leukemic cells were assumed side-by-side 
with the two cell populations obeying Gompertzian dynamics but 
with the leukemic cells exercising inhibition over the normal cells. The 
kinetic equations and steady-state properties of one of the models are 
analytically obtained as:

log( ) ( )

log( ) ( ) ( , )

θ
α β

α

= − −

= − − − +A

dC
C C ku t C

dt C
NdN

bN cNC hu t N f C N
dt N

                       (9)

where AN  and θ  are the asymptotic bounds (limits) on, or carrying 
capacities of, the normal and leukemic cell populations, respectively, 
and ( ),f C N  is a function that can take many form:

( )
( , ) =





mCNH C
f C N

rN
				                 (10)

a is the intrinsic growth rate or growth speed of the normal cells, 
and b is their death rate. c is a measure of the degree of inhibition of 
the normal cells with respect to the leukemic cells, k is the fraction 
of leukemic cells that are killed due to the drug effect, and h is the 
fraction of the normal cells that are destroyed by the lethal binding 
effects of the drugs (it is assumed that k h> ). r is the maximum 
fraction of normal cells that should be injected per unit time to ensure 
normal cell regrowth. It can also be interpreted to be the maximal rate 
per unit time at which growth factors are infused. We assume that, as 
the normal cell population decreases because of the drug effect, the 
regenerative process through which normal cells are injected or growth 
factors are infused could be directly related to this normal population. 

This is modeled by the term rN . The negative effects of the drugs on the 
normal cells are modeled by the term ( )hu t N [78]. m is the maximum 
growth coefficient of the normal cells and ( ) 1 (1 )H C pC= + , which 
could take a number of forms, is the growth fraction of the normal 
cells, which is dependent on the leukemic population, and p can be 
considered as an inhibitive parameter.

Model with three differential equations: In this model, we let 
( )nT t  denote the native T  cell population, and ( )eT t the effector T 

cell population at time t  [38,81]. We assume that the effector T  cells 
are specific to one type of cancer (e.g., chronic myelogenous leukemia, 
CML), activated by the presence of the CML antigen. The state system 
for our model is given by: 

( )

2
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α α γ
η η
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dT C C
k T T u t d T CT

dt C C

dT C
S u t d T K T

dt C

dC
u t C u t C CT

dt C

	               (11)

This model consists of a system of three nonlinear ordinary 
differential equations. Each equation represents the rate of change with 
respect to time of one of the cell populations. All parameter descriptions 
are in the cited reference [38]. 

Another model with three differential equations is described as 
follows by Villasana and Ochoa [82]:

( )

( )
( )
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2 4
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1 3
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2 ( ) ( ) ( ) ( )
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( ) ( ) ( ) ( ) (1 ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )

( ) 1 ( )

= − − − −

= − − − − − −

= + − − −
+ +
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k u t
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I M
I M

I M

k u t

dC t
a C t c C T t d C t a C t

dt
dC t

a C t d C t a C t c C t T t k e C t
dt

T t C t C tdT t
k c T t C t c C t T t

dt C t C t

d T t k e T t

  (12)

This model divides the population of the tumor cells into interphase 
cells (pre-mitotic, phase period comprising G1, S and G2) and mitosis 
cells, which are represented by ( )IC t  and ( )MC t , respectively. The term 

( )T t represents the population of immune cells that are the population 
of cytotoxic T cells. Let ( )u t  be the concentration of the drug present at 
time t , and τ  be the resident time of cells in the interphase stage. The 
parameters ρ , α  and n  depend on the type of tumor being considered 
and the health of the immune system [82,83].

Model with four differential equations: Immunotherapies are 
quickly becoming an important component in the multi-pronged 
approaches being developed to treat certain forms of cancer [84]. The 
goal of immunotherapy is to strengthen the body’s own natural ability 
to combat cancer by enhancing the effectiveness of the immune system. 
The importance of the immune system in fighting cancer has been 
verified in the laboratory as well as with clinical experiments [85-88]. 
Additionally, it is known that those with weakened immune systems, 
such as those suffering from AIDS, are more likely to contract certain 
rare forms of cancer. This phenomenon can be interpreted as providing 
further evidence that the role played by the immune response in 
battling cancer is critical [89,90]. Through the mathematical modeling 
of tumor growth, the presence of an immune component has been 
shown to be essential for producing clinically observed phenomena 
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such as tumor dormancy, oscillations in tumor size, and spontaneous 
tumor regression.

The mathematical modeling of the entire immune system can 
be an enormously intricate task, as demonstrated in [91], so models 
that describe the immune system response to a tumor challenge must 
necessarily focus on those elements of the immune system that are 
known to be significant in controlling tumor growth. In the work of de 
Boer and Hogeweg [92], a mathematical model of the cellular immune 
response was used to investigate such an immune reaction to tumors. 
It was found that, initially, small doses of antigens do lead to tumor 
dormancy. 

This model describes the kinetics of four cell populations (tumor 
cells and three types of immune cells), as well as the concentrations 
of two drugs in the bloodstream, using a series of coupled ordinary 
differential equations that are based on the model developed by de 
Pillis and Radunskaya [93]. The populations at time t are denoted by 
the following terms [84]:

( )C t , tumor cell population

( )NKT t , total NK cell population

8 ( )CDT t , total CD8+ T cell population

( )LT t , number of circulating lymphocytes (or white blood cells)

Both NKT  and 8CDT  cells are capable of killing tumor cells, NKT  
cells are normally present in the body, even when no tumor cells are 
present, and the active tumor-specific 8CDT  cells are only present in 
large numbers when tumor cells are present. NKT and 8CDT cells become 
inactive after a certain number of encounters with tumor cells, and 
the circulating lymphocyte levels can be used as a measure of patient 
health.

The equations governing the population kinetics must take into 
account a net growth term for each population, the fractional cell kill, the 
per cell recruitment, the cell inactivation and the external intervention 
with medication. We attempt to use the simplest expressions for each 
term that still accurately reflect the experimental data and population 
interactions.

Bringing together the specific forms for each cell growth and 
interaction term leads to the full system of equations:
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  (13)

All parameter descriptions are in Table 1 of the cited reference 
[84]. The term I represents the immunotherapy drug concentration in 
the bloodstream, and in our case we set I equal zero because we are 
interested only in the chemotherapy drug concentration.

Finally, as stated above, Villasana and Ocho’s model does not 
include quiescent tumor cells. In [94], we show how Yafia [95] 

develops a delayed differential equation model for the interactions of 
proliferating and quiescent tumor cells. The concept of cancer cells in 
the quiescent phase ( )QT is introduced, and the model by Villasana, 
cited above, is corrected:
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  (14)

Compartmental model: In the compartmental model, the cell 
cycle is modeled in the form of compartments that describe different 
cell phases or combine phases of the cell cycle into clusters. Each cell 
passes through a sequence of phases from cell birth to cell division. 
The starting point is the growth phase G1 after which the cell enters the 
phase S, in which the DNA synthesis occurs. Then, the second growth 
phase G2 occurs, in which the cell prepares for mitosis or phase M, in 
which cell division occurs.

Each of the two offspring cells can either reenter phase G1 or may 
simply lie dormant for some time in a separate phase G0 until reentering 
G1, thus starting the entire process all over again.

The simplest mathematical models that describe the optimal 
control of cancer chemotherapy treat the entire cell cycle as one 
compartment, but solutions to these single-compartment models are 

Drug combinations
Initials Combination Indications

ABVD

A: Adriamycin
B: bleomycin
V: Vinblastine

D: Dacarbazine

Hodgkin's disease [136]

AIM
A: Adriamycin
I: Ifosfamide
M: Mesna

Soft tissue cancer [138]

Alexanian therapy
M: Melphalan
P: Prednisone

Given orally each week
Myeloma [139]

BEP
B: Bleomycin
E: Etoposide
P: Cisplatin

Testicular cancer [140]

CAF
C: Cyclophosphamide

A: Adriamycin
F: Fluorouracil

Breast cancer [135]

MIC
M: Mitomycin-C

I: Ifosfamide + Mesna
C: Cisplatin

Non-small cell lung 
cancer [141]

M-VAC

M: Methotrexate
V: Vinblastine
A: Adriamycin
C: Cisplatin

Bladder cancer [137]

CP C: Cyclophosphamide
P: Cisplatin Ovarian cancer [142]

MACOP-B

M: Methotrexate
A: Adriamycin

C: Cyclophosphamide
O: Vincristine
P: Prednisone
B: Bleomycin

High grade non-Hodgkin's 
lymphoma [9]

Table 1: Different combinations of treatments used for certain cancers
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not very informative due to the over-simplified nature of the model.

For the compartmental model, the problem of finding an optimal 
cancer chemotherapy protocol is formulated as an optimal control 
problem over the finite time interval of the fixed therapy horizon. The 
state variable is given by the average number of cancer cells, and the 
control is the effect of the drug dosages on the respective subpopulation. 
The goal is to maximize the number of cancer cells that the agent 
kills and to appropriately minimize the number of cancer cells at the 
end of the therapy session, while keeping the toxicity to the normal 
tissues acceptable. The last aspect is modeled implicitly by including 
an integral of the control over the therapy interval in the objective so 
that minimizing controls will balance the quantity of drugs given with 
the conflicting objective to kill cancer cells. The analytical approaches 
to these models are based on applications of the Pontryagin Maximum 
Principle.

The general compartmental model can be described uniformly by 
the following state equation [22]:

0
1

( ) ( ), (0)
=

= + = 
 
 

∑

m

i i
i

C t A u B C t C C 	 	              (15)

where 0 1 2[ .... ]T
jC C C C C= is an infinite dimensional state vector, 

with jC  denoting the number of cancer cells in the j th− compartment, 
1,...,j n= . The control is a vector ( )1,...,

T
mu u u= with iu  denoting the 

drug dosage administered. Let A  and iB , 1,...,i m=  be constant n n×  
matrices, and the elements of matrices A and iB are positive factors 
related to mean transit time of cells through the j th− compartment. 
It is important to note that model parameters satisfy the following 
relations: 3 1 0a a> > , and 2 0a < . All of the matrices have negative 
diagonal entries but nonnegative off-diagonal entries. The diagonal 
entries correspond to the outflows from the i th−  compartments, 
and the off-diagonal entries represent the inflows from the i th− into 
the j th−  compartment, i j≠ . This is satisfied for each of the models 
described below. More generally, if the condition that the first orthant 
of the control system is positively invariant were violated, this would be 
a strong indication that the modeling is inconsistent.

We start from mathematical models describing the dynamics of 
the cancer cell population under a single drug treatment, from the 
simplest, two-compartmental, to infinite-dimensional ones. Problems 
of multidrug treatment and multidrug resistance are addressed 
afterward. A model with an infinite number of compartments was 
considered in a series of papers by Kimmel, Swierniak, and coworkers 
(e.g., references [22,23,42,51,96,97]), in the context of drug resistance 
caused by the gene amplification dynamical process. 

The infinite-dimensional compartmental model of drug-resistance 
evolution has been proposed to approximate the dynamic branching 
random walk related to the process of gene amplification [98] and has 
led to results not achievable in simplified finite-dimensional models. 
These results in turn have made it possible to formulate several 
recommendations regarding treatment protocols. Optimization of 
the model has become possible after its transformation to the integro-
differential form.

We briefly recall some compartment models that fit into this 
general class. For a more detailed description of the models, we refer 
the reader to Swierniak et al. [44].

In a two-compartment model, the phases G0, G1 and S are clustered 

into the first compartment, G2 and M are combined into the second 
compartment, and only a killing agent 1u u=  is considered. Thus, 

2, 1n m= = , and the matrices A and 1B B= are given by:

1 2 2
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2 0 2
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0 0

− −
= =

−
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  
  

a a a
A B

a a
		                              (16)

The ia  values are positive coefficients related to the mean transit 
times of cells through the i th−  compartment.

The differential equations of this model are:
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	  	                                (17)

In this three-compartment model, a blocking agent 2uν =  is 
additionally considered which is active in the synthesis phase S; thus, 
S is modeled as a separate compartment. Now, 3, 2n m= = , and the 
matrices are given by:
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		                   (18)

Thus, the differential equations of this model are:

1
1 1 3 3 1
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= + −
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		                                 (19)

In both models, the control 1u u= represents the dose of the 
killing agent administered with the value 0=u  corresponding to no 
treatment and 1u =  corresponding to a maximum dose. It is assumed 
that the dose stands in direct relation to the fraction of cells that are 
being killed in the G2/M phase. Therefore, only the fraction 1 u− of the 
outflow of cells from the last compartment undergoes cell division and 
reenters the first compartment. However, all cells leave compartment 
G2/M.

In the second model, the blocking agent 2uν =  is additionally 
applied to slow the transit times of cancer cells during the synthesis 
phase S. As a result, the flow of cancer cells from the second into the 
third compartment is reduced by a factor of 1 ν− of its original flow 
to ( ) ( )2 2 max(1 ) , 0 1t a C tν ν− ≤ <  . Here the control ( ) 0tν = corresponds 
to no drug being applied, and a maximal reduction occurs with a full 
dose maxν .

In the models mentioned above, the compartments are divided 
based on the cell cycle. Next, we must divide the compartments 
depending on the number of cells sensible or resistant to the drug 
injected [74]. The most basic model consists of only two compartments 
representing the sensitive and drug resistant subpopulations. It has 
been a subject analyzed by many researchers but arguably, the most 
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recent comprehensive studies can be found in Ledzewicz and Schättler 
[20,21].

The model based on the assumption of the mutation being the 
basis for drug resistance caused the cell to acquire one additional 
copy of a certain gene. Therefore, a sensitive mother cell produces two 
daughter cells, one of which remains sensitive, while the other changes 
into a resistant one with a probability of γ . Similarly, if a resistant 
cell undergoes cell division, one of the offspring remains sensitive. The 
other one may mutate back into a sensitive cell with a probability d  (it 
is assumed that no additional gene copies can be acquired).

Let us denote by 0C  and 1C  the average number of sensitive and 
drug-resistant cells, respectively Then, the system is described by the 
following set of equations:

0 0 0 0 1

1 1 1 0 1

(1 2 ) (1 )
(1 )

λ γ

λ γ

= − − − +

= + − −





C u C u C dC
C C u C dC

		              (20)

This model represent the evolution of cancer cells using a single-
agent treatment; in Panetta [99], the simplest model possible was 
analyzed using two treatment agents, and the mutation that makes cells 
resistant to the first drug is assumed to be irreversible. Therefore, the 
second sub​population resistant to this first drug 1u  is assumed to be 
sensitive to the second drug 2u , so the resulting mathematical model 
is as follows:

0 0 1 0

1 1 0 1 2 1

( )
( )

λ

γ λ

= −

= + −
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C u C
C u C u C

		  		                  (21)

where γ  is a probability of a mutational event leading to drug 
resistance. For this model, no formal optimization has been performed.

If we consider killing and blocking agent actions (denoted by 1u  
and 2u , respectively), the issue of resistance is much more complex. 
However, if only the resistance to the killing agent is considered, then, 
the compartments of cells in the phase G1, S, G2 and M, denoted by 

0,1, 2i = , respectively, and by the 3i ≥  compartments of resistant 
cells, the following description is obtained:
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                          (22)

The variables iC denote the average number of cells in the ith
compartment, The lifespan of all cells are independent, exponentially 
distributed random variables with means 1 iλ  for cells of type i . The 
parameter iλ  is assumed to be a constant, not a function of u .

Another form of the compartmental model with two compartments 
is denote as the model of Gyllenberg and Webb [79,100]; the creators 
used this model to show that it yields Gompertz or logistic growth 
under special parameter selection. The model consists of proliferating 
and quiescent cell compartments; it allows for transition between the 
compartments and cell death from either compartment. The transition 
rate functions are considered to be functions of the total number of 
cells. The following set of ordinary differential equations describes the 
model:
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		                (23)

PC  and QC  represent the normalized number of proliferating and 
nonproliferating (quiescent) cells, and 0Pµ ≥  and 0qµ ≥ represent the 
death rate parameters for the PC and QC compartments, respectively. 

0β >  is the proliferation-rate parameter. The transition rate functions 
are: 

0 ( ) 0r C ≥ , describing the transition from the proliferation 
subpopulation into the quiescent subpopulation, and ( ) 0ir C ≥
, describing the transition into the proliferation subpopulation from 
the quiescent subpopulation. By Combining the Gompertz and the 
Gyllenberg–Webb model we have:

( )
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( )β µ

β µ µ µ

= − −Φ

= − + −





P p P

p q P q

C C C

C C C
		                                (24)

This idea was briefly introduced in a recent paper [101]; we start by 
defining the net transition rate function:

0( ) ( ) ( )Φ = −P i QC r C C r C C 		                                   (25)

When ( ) 0CΦ > , the net transition rate is from the proliferating 
compartment into the quiescent compartment.

Analytical approaches to these models are based on applications of 
the Pontryagin Maximum Principle [102]. 

A mathematical model of two ordinary differential equations for 
the interactions between the cancer cell growth and the activity of the 
immune system during the development of cancer was proposed by 
Stepanova [103]. This model is described as follows [104]:

2
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α γ

µ δ

= − −

= − − + −

x
x x c x x x

I x n n Yx

dC
C F C C T k C u

dt
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C C T d T S k Tu
dt

                                          (26)

Where T  represents the immunocompetent cell densities related 
to various types of T cells activated during the immune reaction, 

xC  denotes the tumor volume, 1 δ  corresponds to a threshold 
beyond which the immunological system becomes depressed by the 
growing tumor, and the coefficients Iµ  and δ  are used to calibrate 
the interactions between the cancer and the immune cell, and in the 
product with T collectively describe the state-dependent influence 
of the cancer cells on the stimulation of the immune system, The 
coefficients xk  and Yk  are chosen to normalize the control set, i.e., 
we assume that 0 1u< < . In Stepanova’s original formulation, F  
is simply given by ( ) 1E xF C = , in Gompertzian growth, F is given by 

( ) log( )G x xF C C C∞= − , and in the logistic growth models, F is given 
by ( ) 1 ( )L x xF C C C ν

∞
= − , with 0ν > .

Hybrid model: Discrete or continuous time equations are used 
for the deterministic model. It is represented by ordinary differential 
equations (ODEs) with delay or partial differential equations (PDE) [79] 
or the agent-based model (ABM) [105]. Among the suggested models, 
the simplest ones are those of one or several differential equations. 
Despite their simplicity, these models must predict the evolution of 
many biological phenomena [106]. Models based on the deterministic 
Gompertz law appear to be particularly compatible with the evidence of 
tumor growth.

However, it is quite common that discrepancies are found to 
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exist between clinical data and theoretical predictions due to intense 
environmental fluctuations. For instance, Ferreira et al. [107] analyzed 
the effect of various chemotherapeutic strategies on the vascular tumor 
growth. They confirmed that an environment such as chemotherapy 
would affect tumor growth behavior and lead to morphological 
transitions under certain conditions. Therefore, a better model is 
necessary to reflect the external randomness that affects the tumor-
growth behavior.

Ferrante et al. [108] proposed a stochastic version of the Gompertz 
law in which random fluctuations of the model parameters are 
considered. They assume that the growth deceleration factor β (death 
rate) does not change, whereas the variability of the environmental 
conditions induces fluctuations in the intrinsic growth rate α . The 
intrinsic growth rate is assumed to vary in time according to the 
following equation:

( ) ( )θ α σε= +t t 				                 (27)

The parameter α  is the constant mean value of ( )tθ , σ  is the 
diffusion coefficient, and ( )tε  is a Gaussian white noise process. 

By adding the expression for ( )tθ into Eq. (7) without treatment, 
we have:

( )( ) logα σε β= + −
dC t C C C
dt

		                               (28)

Briefly, all deterministic equations could then be written by adding 
the term ( )t Cσ ε to the equation, which describes the evolution of 
cancer cells, transforming them from deterministic to hybrid models.

Finally, the hybrid model is a combination between deterministic 
and stochastic models. It appears in three forms:

α  and β are random and follow the normal distribution, with 
means α  and β  and variances ασ  and βσ

α  and β  are random and follow the uniform distribution 

( [ ]min max,α α α∈  and [ ]min max,β β β∈ )

α  and β  are constants, and a white noise term is added to the 
equation

Beginning with the model described by Eq. (6), λ  is a random 
number. It follows either the normal distribution, with meanλ  and 
variance λσ , or the uniform distribution, with [ ]min max,λ λ λ∈ , or λ  
and k  are constants, and a white noise term is added. Then, Eq. (6) 
becomes:

log( ) ( ) ( ) log( )θ θλ ε ε σε = − − − + 
 

dC C k u H u
dt C C

	              (29)

For the model described by Eq. (8), α  is also a random number that 
can be represented by the same three distribution options described 
above, if we add a white noise to this model, the equation becomes:

1

2

log( ) ln( )θ θα σε= − +
+

k uCdC C C
dt C k u C

		               (30)

For a model with three differential equations, described by Eq. (11), 
we obtain the following equation, when α and β  are set to constants 
and white noise is added:

( )1 2 1 21 ( ) log( ) ( ) (1 ( )) log( ) ( )
θ θ

α β γ σε= − − − + − − 
 
 c e

dC
u t C u t C CT C u t u t

dt C C   (31)

Review of Treatments 
Standard chemotherapies are typically administered with a 

constant dose scheduling [22,109-112]. In the administration of 
cancer treatments, it is conventional that strategic dosing is used to 
maximize anticancer-drug effects while minimizing host toxicity 
[113]. Accordingly, many therapy schedules employ intensive therapy 
initially, when the tumor is the largest, and then the dose is decreased 
as the tumor is reduced.

Treatment type and administration method

Drug delivery is the method or process of administering a 
pharmaceutical compound to achieve a therapeutic effect; drug-
delivery technologies modify the drug-release profile, absorption, 
distribution and elimination for the benefit of improving the product 
efficacy and safety, as well as patient convenience and compliance. 
The most common routes of administration are the oral, topical 
(skin), transmucosal and inhalation routes. Many medications may 
not be delivered using these routes because they might be susceptible 
to enzymatic degradation or cannot be absorbed into the systemic 
circulation efficiently due to their molecular size. For this reason, the 
drugs must be delivered by injection. Current efforts in the area of 
drug delivery include the development of targeted delivery in which 
the drug is only active in the target area of the body and of sustained-
release formulations in which the drug is released over a period of 
time in a controlled manner from a formulation. To achieve efficient 
targeted delivery, the designed system must avoid the host’s defense 
mechanisms and circulate to its intended site of action [114]. One type 
of sustained-release formulation includes liposomes.

We are interested i) in the different methods of chemotherapy-
drug administration that can be used in cancer treatments, and ii) 
for each type of drug administration to describe the pharmacokinetic 
(PK) models that predict the hematic-drug concentration after their 
administration.

Continuous-infusion drugs: An infusion is a method used to put 
fluids, including saline and drugs, directly into the bloodstream as a 
body-wide way to fight cancer.

Because infusional chemotherapy is administered directly into the 
blood, every cell in the body is exposed to the drugs. Cancer cells as 
well as certain healthy cells may be affected. Blood counts may change 
after each treatment depending on the drugs given, so a test called a 
complete blood count (CBC) will be administered to check the levels of 
white and red cells as well as other elements in the blood.

Mathematical models used to describe the diffusion throughout 
the body of drugs that are administered via continuous infusion are 
described below.

For comparison, we first consider a therapy in which the dose 
linearly increases with time [115]. This can be implemented by simply 
replacing the constant dosage treatment u with the following:

max( ) (1 )β= +u t u t 		  (32)

Next, we also examine the late logarithmic intensification therapy 
proposed by Gonzalez et al. [116]. To model such a logarithmic therapy, 
we replace the constant dosage u  with the below term:

max( ) log( )= + Γu t u e t 				                  (33)

where e is the ‘Neper constant’ equal to 2.718. We choose Γ
and β  to be two adjustable negative parameters that control the rate 
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because clinically, a therapy with a linearly increasing intensity could 
be fatal to the patient.

Another form in the administration of drugs is used, the size-
dependent therapy [117]. For this, we replace the constant dosage u  
by the following equation:

2 2
1 1

( )2 max
max 0

2 max 2 max

1 1
2 2( )
σ σ

ψ − +
− −

= − +
+ +

  
  
  
  
  

A u t
A A

u t u e
A u A u

	                 (34)

0ψ  is the initial tumor size, 1A  is the intrinsic growth rate of 
the tumor (related to the initial mitosis rate) and 2A  is the growth 
deceleration factor (related to the antiangiogenic processes) and σ
is the diffusion coefficient. Determining the schedule of treatment 
depends mainly on the initial state of the cancerous cell population.

The function cited above describes the best way to administer a 
treatment to the body. Next, we need to describe the pharmacokinetic 
(PK) models that predict the hematic drug concentration after their 
administration. In the literature, the majority of therapeutic studies 
did not include the pharmacokinetic action of the drug injected but 
a general efficacy term is introduced, in the form min maxu u u< < , to 
represent the percentage effectiveness of the drug. 

Several different approaches have been used in the past to model 
the fate of a drug within the human body [118]; several of them 
are summarized in this paper. First, we address the mechanistic 
compartmental models, the one-compartment model and the two-
compartment model. The one-compartment model is based on the 
schematization of the human body as a single reactor; in this case, the 
evolution of the drug concentration in the tumor tissues over time 
[119] is given by:

0γ= − +
du u u
dt

					                (35)

Here, 0u  is a control function characterizing the rate at which the 
drug is introduced into the tumor, and γ is the dissipation coefficient. 
The generalizations of this model (25) were formulated in [51,120] to 
demonstrate its flexibility.

Another form is used to describe the PK in a one or two 
compartmental model [121]; this form is explained as follows:

In the case of the one-compartment model, the human body 
is represented as a single reactor, as shown in Figure 3. The two-
compartment model, shown in Figure 4, is based on the representation 
of the body by two reactors, the first of which is a central compartment, 

involved in absorption, distribution, metabolism and elimination, 
which represents the plasma, and the second represents tissues, 
involved only in distribution.

In these two models, ( )g t  represents the mass rate with which the 
drug reaches the reactor and depends on the route of administration, 

PV  and 
TV  are the plasma and the tissues volumes, respectively, PTk  

and TPk are the rate constants that describe the transport between the 
plasma and the tissue, respectively, ELk  is the elimination rate constant, 
and ( )Pu t  and ( )Tu t are the time functions that express the evolutions 
of the drug concentration in the plasma and tissue, respectively. All of 
the rate constants are assumed to be first-order kinetic constants.

The mathematical statements of the one- and two-compartment 
models are given by the mass balances. They are:

0 In constant rate intravenous injection

In constant rate intravenous injection

( )
( ) ( ) ( ) ( )

( )
( ) ( )

( )

( 0) 0

= + − −

= −

=

= =

P
P TP T T PT P P EL P P

T
T PT P P TP T T

P

du t
V g t k V u t k V u t k V u t

dt
du t

V k V u t k V u t
dt

g t k

u t

                       (36)

Where ( )P PV du t dt  is the drug mass balance in the central 
compartment (plasma), ( )T TV du t dt is the drug mass balance in the 
peripheral compartment (tissue), and 0k is the constant-mass rate. 

Another approach is used to distinguish the plasma and the 
active drug concentrations [122]; most mathematical models assume 
that the drug is instantaneously delivered to the cancer site. We 
avoided this undesirable simplification by considering the dynamic 
relationship between the kinetic behavior of the drug administered 
and its corresponding concentration profile at the cellular level. We 
propose a compartment model, as shown in Figure 5, to express the 

Figure 4: Representation of human body in two-compartments model.

Figure 5: Compartmental model expressing pharmacokinetics of 

plasmatic 1 ( )u t and active 2 ( )u t drug concentrations on the tumor site.

Figure 3: Representation of human body in one-compartment model.
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pharmacokinetics of the plasmatic ( )pu t and active 2 ( )u t  drug 

concentrations on the tumor site [119]. PV  and 2V  are the volumes of 
distribution, and 1Ek , 12k  and 2Ek are the rate constants.

Let ( )pu t  denote the concentration of the administered anticancer 
drug in the plasma. The second compartment with a volume of 
distribution 2V  is the effect compartment of the active concentrations 

2 ( )u t [118,123]. From the plasma compartment, the drug reaches the 
effect compartment, and then it is eliminated from it:

1 12

2
12 2 2

2

1 1
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, 2,...,

(0) 0
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		               (37)

( )u t represents the drug-input function, which is the intermittent or 
continuous drug delivery by intravenous infusion, the amount id , 
denoting infused function between the start- and the end-of- infusion 
times 1it −  and it , respectively.

Another approach to determine the drug concentration in the body 
is described below [124]:

The distribution of the drug in a tumor is represented in terms of its 
concentrations in three compartments: intracellular, ( )iu t ; extracellular, 

( )eu t ; and vascular (plasma), ( )vu t . The drug binds extensively to 
proteins in both the plasma and the tissue [125]; ( )eu t  and ( )vu t  
therefore represent only protein-unbound drug. The following system 
of ordinary differential equations is solved over time t :

max

max( )

φ

φ

= −
+ +

= − − −
+ +

 
 
 

 
 
 

i e i

e e i i

e e i
t v e c

e e i i

du u u
V

dt u K u K

du u u
PS u u d V

dt u K u K

	               (38)

The plasma concentration for an infusion time T is, for t T<
[126]:

( ) (1 ) (1 ) (1 )α β γ

α β γ
− − −= − + − + −

 
 
 

t t t
v

u A B C
u t e e e

T
	            (39)

And for t>T:

( ) ( 1) ( 1) ( 1)α α β β γ γ

α β γ
− − −= − + − + −

 
 
 

t t t t t t
v

u A B C
u t e e e e e e

T
      (40)

Then, the plasma concentration ( )vu t for bolus injection is given 
by:

( ) α−= t
vu t uAe 		                                                   (41)

Here, u is the total dose injected, 1 20.693 tαα = ; 1 2t α  is the initial 
plasma half-life of drug and the parameter A  is the inverse volume 
of distribution in plasma. Values for the other pharmacokinetic 
parameters , , Bβ γ  and C are given in [124].

The equation used for a liposomal drug in the plasma is a 
biexponential fit made by Gabizon et al. [128] for their clinical data:

( )21
1 2( ) − −= +k t k t

Lv
G

uu t A e A e
D

			            (42)

For the liposomal drug in the extracellular space:

( )
τ

= − −Le Le
L t Lv Le

re

du u
P S u u

dt
			               (43)

Therefore, the plasma concentration of the free drug vu is governed 
by:

( ) α
τ

= − − + −v t Lv
t v e B cv

B rv

du V u
PS u u AV

dt V 		               (44)

The parameters appearing in these equations are defined in Table 
1 of reference [124]. 

The above model for liposomes has been adapted for thermo 
sensitive liposomes [128,129], which are designed to release their 
contents rapidly upon heating. First, reτ  the time constant for drug 
release from the liposomes in the tumor extracellular space, is replaced 
by the following time function:

0

( )
τ

τ
τ

 < > +
= 

< < +
re h h d

re h
re h h d

if t t or t t t
t

if t t t t 		             (45)

Here, ht is the time at which hyperthermia begins (after the initial 
drug injection), and dt is the duration of the hyperthermia. A new 
constant, h

reτ  is the time of drug release from the heated liposomes 
[130]. The permeability of the vessel to liposomes is assumed to increase 
during heating, so the parameter LP  is replaced by a function of time:

0

0
( )

< > +
=

< < +





L h h d
L

L h h d

P if t t or t t t
P t

EP if t t t t
		             (46)

E is an enhancement factor for LP  at 45°C. Gaber et al. [130] 
observed a 76-fold increase in the liposome extravasation upon heating 
to 45°C. It is difficult to deduce from this the increase in the value of LP
itself. The range of E=1 to 100 is considered here.

bolus drug injection: The injection of a drug (or drugs) in a 
high quantity is called a bolus [12]. It is a relatively large dose of 
medication administered into a vein in a short period, usually within 
1 to 30 minutes. The intravenous (IV) bolus is commonly used 
when rapid administration of a medication is needed, such as in an 
emergency; when drugs that cannot be diluted, such as many cancer 
chemotherapeutic drugs, are administered; and when the therapeutic 
purpose is to achieve a peak drug level in the bloodstream of the patient. 
The IV bolus is not used when the medication must be diluted in a 
large-volume parenteral fluid before entering the bloodstream or when 
the rapid administration of a medication, such as potassium chloride, 
may be life threatening. Bolus injections allow medication to become 
useful to a patient faster, which can be the difference between life and 
death in some situations.

The mathematical model used to describe the diffusion throughout 
the body of drugs that are administered via bolus drug injection is 
similar to the model (Eq. (36)). However, in this case, ( )g t  is equal to 
zero because of the instantaneous (limited to the initial instant) drug 
absorption.

To describe the evolution in the time of the drug concentration 
with the one- and two-compartment models, the initial conditions that 
are required to solve the balanced equations can be found in the recent 
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article [121] and are observed below:

In bolus intravenous injection( 0)= =P
P

uu t u 	            (47)

Orally Administered Drugs: Oral chemotherapy doses are set up 
so that the patients will have constant levels of the drugs in their bodies 
to kill the cancer cells. Not taking chemotherapy drugs as they should 
be taken can affect how well the treatment works, and it can even allow 
the cancer to grow, so sometimes changes may be needed. Even after 
starting to feel better, they may still have cancer cells in the body that 
must be kept under control with chemotherapy [12].

Oral chemotherapy drugs may be taken every day, every week, or 
once or twice a month; sometimes, the frequency is as much as several 
times a day. It may necessary to use chemotherapy for several months 
or longer. Chemotherapy is often given in cycles. This means that the 
chemotherapy will be used for a period of time, and then there will be 
a break. This allows the body of the patient to grow new, healthy cells. 

The mathematical model used to describe the diffusion throughout 
the body of drugs that are administered via the oral method is similar 
to the model (Eq. (36)). However, in this case, ( )g t is equal to 

( )A BODYk A t , where ( )BODYA t  is the drug mass available at the time t  at the 
site of absorption, the profile of which is defined by the pharmaceutical 
system-dissolution characteristics and by the drug solubility.

For the oral method, the drug mass balance at the site of absorption 
is [121,131]:

( ) ( )
( )= −BODY

A BODY

dA t df t
k A t

dt dt
		   	              (48)

The function ( )f t corresponds to immediate availability of the 
entire dose u , and we define ( )f t as follows:

constant (case a)
( )

( ) (case b)
=




f t
fur t

			                (49)

For case a, the ingestion is of a system with a high solubility, or a 
high-permeability drug; in this case, the drug’s mass that lies at the site 
of absorption changes over time only because of absorption proceeding. 
For case b, the system ingested is a low solubility or low permeability 
drug; in this case, the drug’s mass that lies at the site of absorption 
additionally changes between the instant t  and the following instant 
because of the change in the fraction of the drug that is actually available 
for absorption. Ak  is the absorption constant, and the function ( )r t  
expresses the in vitro release. The relationship between in vitro and in 
vivo release is ( ) ( )f t fur t= , where fu is the maximum fraction of the 
pharmacological dose ( u ) that could actually be absorbed, taking into 
account the liver metabolism.

To describe the evolution in the time of drug concentration for 
the one- and two-compartment models, the initial conditions that are 
required to solve the balanced equations are mentioned in the recent 
article [122] and are observed below:

In oral assumption( 0) 0

(case a)
( 0)

0 (case b)

= =

= =




P

BODY

u t

fu
A t

		             (50)

In these three modes of administration, the drug can be taken 
alone with dilution or in a liposome or a thermo liposomal capsule. 
Liposomes are artificially prepared vesicles made of a lipid bilayer, 
which can be filled with drugs and used to deliver drugs for cancer and 

other diseases. They are composite structures made of phospholipids 
and may contain small amounts of other molecules [132]. Thermo 
liposomal capsules have the same definition as liposomal capsules with 
the difference that the thermo liposomal capsule can release its drug 
content within minutes of heating [124].

Drug combinations and treatment protocols

Chemotherapy was first introduced in the 1940s [133]. For the 
next 20 years, it was considered an investigational treatment. In the 
last 30 years, chemotherapy information has evolved, and  many 
more effective drugs have been developed. During this time, doctors 
have documented responses and conducted clinical trials comparing 
standard treatments to new treatments. This process of gathering 
chemotherapy information  has helped to establish specific protocols 
regarding the types, doses and dosing schedule of drugs that are based 
on the type, stage, and other specifics of a person’s cancer. There is 
no one correct choice in chemotherapy treatment. Each treatment 
protocol has advantages and disadvantages, and there may be more 
than one good option. In addition, treatment choices can change over 
time. A good chemotherapy treatment choice at one time may not be 
the right choice later.

The development of drug resistance is one reason that drugs are 
often given in combination. It is thought that this may reduce the 
incidence of a resistance developing to any one drug. Often, if a cancer 
becomes resistant to one drug or group of drugs, it is more likely that 
the cancer will also be resistant to other drugs. Thus, it is very important 
to select the best possible treatment protocol at the outset.

Table 1 presents the different combinations of treatment used 
for some cancers. For some of the combinations, we cited treatment 
protocols:

•	 CAF treatment consists of the cyclic administration of [134] 
drug “C” orally for 14 days, while “A” and “F” are given together, 
intravenously (i.v.) into the hand or arm, on days 1 and 8 of that 2-week 
period. This schedule will repeat four to six times, once every 4 weeks. 
The entire process takes a total of approximately 4 to 5 months, barring 
any complications that slow it down. Another option is that C, A, and 
F are all given simultaneously, via a drip into the arm or hand. This 
treatment is repeated every three weeks, four to six times, barring any 
complications. The standard dosages of CAF are as follows: 600 mg/
m2 cyclophosphamide (19.9 mg/kg), 60 mg/m2 adriamycin (1.9 mg/kg) 
and 600 mg/m2 fluorouracil.

Doxorubicin, bleomycin, vinblastine, and dacarbazine regimen 
(ABVD) [135] : Combined modality consisting of a doxorubicin 25-
mg/m2 IV plus a bleomycin 10-IU/m2 IV plus a vinblastine 6-mg/m2 IV 
plus a dacarbazine 375-mg/m2 IV on days 1 and 15; every 28ad for 2-4 
cycles; followed by involved field radiation therapy (IFRT) at a dose of 
approximately 20 Gy.

•	 Methotrexate, vinblastine, adriamycin, and cisplatin, a 
regimen for bladder cancer [136-141]: Patients on the MVAC regimen 
received methotrexate 30 mg/m2 on days 1, 15, and 22; vinblastine 3 
mg/m2 on days 2, 15, and 22; doxorubicin 30 mg/m2 on day 2; and 
cisplatin 70 mg/m2 as a 1- to 8-hour infusion on day 2. Cisplatin was 
administered with adequate pre- and posthydration. The cycles were 
repeated every 28 days.

Review of the Objective Function
Optimal control, which has been widely used in the cancer literature, 

is the process of determining the control and state trajectories for a 
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dynamic system over a period of time to minimize (or maximize) the 
final value of a single variable J . This can be written mathematically 
as, Eq. (1):

( ) ( )( ), ( ) , ,
T f

f
Ti

f f fMin J F dt fu t w t u w T= +∫
 

The objective function may be composed of any number of 
functions, combined to produce a single number, usually through a 
weighted sum. It is difficult to convey the knowledge and experience 
of a clinician to an optimizer through one or more simple functions. 
The use of the drug is subjected to a constraint represented by the 
limit of toxicity. Therefore, numerical solutions are found, considering 
various objective functions. It is assumed that the drug is administered 
by continuous infusion and that the number of tumor cells decreases 
during treatment. The toxicity of the treatment causes a limitation in 
the dosing [142]; then, u  must be within the range max[0, ]u  for any t
in the range [0, ]T , where T is the final time of treatment.

In this section, we give examples of objective functions considered 
in the literature on the treatment of cancers. Starting with a quadratic 
function:

2 2( ( ) ( ))= +∫
Tf

Ti

J C t u t dt 		                                 (51)

Where 2 ( )C t denotes the number of cancer cells sensitive to 
treatment and 2 ( )u t  represents the nonlinear cost of the treatment. 
The quadratic forms do not make much sense, as they do not represent 
anything biological. The idea behind them came from control theory 
and closed-loop control, in which the quadratic error is minimized and 
the quadratic control terms arise from the energy interpretation. 

The linear function (Eq. (52)), is used to minimize the number of 
tumor cells at the end of the treatment period while limiting the side 
effects of drugs [36]. 

( ( ) ( ))= +∫
Tf

Ti

J C t u t dt 				                (52)

The logarithmic function (Eq. (53)) is used to prevent, for example, 
the development of new subpopulations that are resistant to drugs. On 
the other hand, the logarithmic function (Eq. (52)) was mainly used 
because of the logarithmic transformation of state variables, which is 
especially useful in the case of Gompertz-type growth equations.

( )( ) ( )( )( )ln ln= +∫
Tf

Ti

J C t u t dt 		                              (53)

These functions have been used for the optimal control of the non-
cell-cycle-specific model (drugs that are effective in all of the phases 
of the cell cycle) introduced by Murray [36]. Additionally, Swan [27] 
provides a good review of the role of optimal control in non-cell-cycle-
specific cancer chemotherapy. However, in another study we focus on 
optimal control problems as applied to cell-cycle-specific chemotherapy. 
First, Eisen [143] developed a system of linear differential equations 
describing the growth dynamics of the proliferating (drug-sensitive 
phase) and quiescent (drug-resistant phase) cells. In this work, the 
control over a given interval reduces the cancer to a fixed level while 
minimizing the total drug use. Another work by Swierniak, Polanski, 
and Kimmel [44] uses optimal control theory on a cell-cycle-specific 
chemotherapeutic model. 

In the stochastic model, different objectives can be used that 
combine to maximize the probability of cure while minimizing 
toxicity. Here, we achieve this goal by maximizing the probability of 
uncomplicated control [144]:

{ } { } (1 ( )) { ( ) 0}= × = − × =T N NJ P no toxicity P tumor is cured CUMP t P R t  (54)

where ( )TCUMP t is the cumulative probability of a toxic event with:

( ) ≤T N toxCUMP t U 				                (55)

toxU denotes any explicit limits on the toxicity, and { ( ) 0}NP R t =  is 
the probability that the number of cancer cells equals zero.

A patient can fail treatment for two reasons. Either the treatment 
may not be able to eliminate the tumor or the treatment itself may 
create toxicity for a patient, to the point that the regimen cannot be 
completed. Both of these results lead to treatment failure. This function 
expresses the probability that neither of these circumstances occur. 
It determines the probability for a given regimen that a patient can 
complete treatment (i.e., that it will not be prematurely stopped due to 
toxicity) and have the tumor eliminated.

Several studies using a compartmental model are able to solve their 
optimal control model and find an analytical expression for the optimal 
chemotherapy treatment plan. 

In most optimal control studies, the sufficient and necessary 
conditions for optimality, optimality conditions, can be obtained using 
frameworks such as the Pontryagin Maximum Principle [102]. On the 
other hand, several other studies solve their optimal control model by 
using sequential quadratic programming [145]. The objective function 
to be minimized is given by [120]:

( ) ( )
1

1
0 0 0

( ) τ τ
− ∞

= = =

= + +∑ ∑ ∑∫
Tl m

i i k
i i l k

J C T r C T r u d 	            (56)

Where m  is the number of administered drugs and r  and 1r  are 
weighing factors. This general model even allows for the inclusion of 
special cases, such as multidrug therapy. However, this model is valid 
only in cases when two of the following conditions are met:

•	 Each drug affects cells of a different type (true in the basic 
model of a killing and a blocking agent treatment).

•	 Either the molecular source of resistance to each drug is 
identical (as in multidrug resistance [146]) or the infinite subsystem 
representing gene amplification is required for only one type of a drug 
(the basis for resistance to other drugs requires only a single mutation 
and there is only one level of resistance for each of them).

The objective function of the compartmental model in the case of a 
single drug is described as:

( ) ( )
0 0

τ τ
≥

= +∑ ∫
T

i i
i

J rC T r u d 			               (57)

where iC  denotes the average number of cancer cells in the i th−  
compartment, T denotes the time at the end of therapy, and r  and 

ir are weighting factors. Similarly, Eq. (57) was used in the context of 
phase-specific chemotherapy in a number of papers, such as [20,22,44].

For a deterministic model with the three differential equations 
described above, (Eq. (11)), we have the following objective function:

2 21 2
1 2 1 2 3 4

0

( , ) ( ( ) ( ) ( )) ( ) ( )
2 2

= + + + −∫
t f

f n f

B B
J u u C t u t u t dt B C t B T t   (58)
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In the objective functional, we minimize the total cancer-cell 
population over the interval [0, ]ft through the first term in the 
integrand, and at the final time through a salvage term ( )3 fB C t . The 
systemic costs in the body of the two drugs ( 1u  and 2u ) are also 
minimized. It is expected that the effects of the drugs are nonlinear, and 
we choose the quadratic cost terms 2

1 ( )u t  and 2
2 ( )u t  to reflect these 

effects, as in [38]. The coefficients B1 and B2 are weight constants for the 
controls and include a measure of toxicity of the drugs to the body. The 
salvage term 

3 ( )fB C t  is included to counter the effect of using a fixed 
treatment time. If this term were not present, the controls could taper 
off earlier and allow a rise in the cancer-cell count at the end of the 
treatment period. The salvage term 

4 ( )n fB T C t−  is included to create a 
penalty for low values of nT  because this affects the patient’s ability to 
fight off other diseases. 

For the Stepanova model [103], we have the following objective 
function:

( ) ( ) ( )
0

( ) ε= − + ∫
t f

f fJ u aC t bT t u t dt 		                  (59)

Where a  and b are positives coefficients determined by a stable 
eigenvector, and ε  is a positive constant.

For the delay differential equation model [83], we have the 
following objective function:

0

1( ) ( ) ( ) ( ( ) ( ) ( ))= + + + + +∫
t f

I f M f Q f I M Q
f

J C t C t C t C t C t C t dt
t

  (60)

And:

max 0γ− ≥T T 					                 (61)

Another objective function is described in a recent paper [134], as 
follows:

The first objective of treating a patient with stage IIB breast cancer, 
who is in adjuvant chemotherapy for four months, is to find the optimal 
value of ( )u t in a way that the number of cancer cells, ( )C t , resulting 
from this treatment, track ( )rC t . Thus, the optimal value of ( )u t  can 
minimize the cost function, described as follows:

2
1

1

( ( ))
=

= −∑
t f

i r
i

J C C i 				                 (62)

Where, ( )rC t is a reference trajectory, and 84
f

t =  is the period of 
treatment in this case. Because biological systems usually respond in a 
sigmoidal fashion to inputs, ( )rC t is derived by the nonlinear rescaling 
[147,148]. 

The second objective function is used to preserving the normal 
cell population ( )N t  in the best way by minimizing the following cost 
function:

2 2 2 2

2 ( (21 ) ) ( (42 ) ) ( (63 ) ) ( (84) )− − −

∞ ∞ ∞ ∞
= − + − + − + −J N N N N N N N N   (63)

where N∞ is an asymptotic number of normal cells, and ( )N i−  for i 
= 21, 42, 63 is the normal cell population at the times just before the 
second, third and fourth cycles of the chemotherapy. (84)N is the 
normal cell population 21 days after the fourth cycle of chemotherapy.

Different beneficial cases can be found between these two extreme 
situations by minimizing the cost function, described as follows:

1 1 2 2= +J W J W J 				                (64)

where, the weighting coefficients 1W  and 2W are selected by the 

treating physician according to the particular conditions of each 
patient to indicate the cases for which the cancer-cell reduction has 
more priority than preserving the normal cells 1 2( )W W>  or vice versa.

Solution Methods
As we have already cited, optimal-control theory is usually used 

to model chemotherapy-treatment planning. Optimal-control theory 
uses a system of differential equations that are solved to determine the 
optimal choice of the chemotherapy-treatment plans. These problems 
are difficult to solve optimally. For these reasons, the optimal control 
theory is applied with simplifying assumptions that reduces its clinical 
validity.

In the first part, this paragraph presents a simple review of the ways 
in which optimal-control theory interacts with cancer chemotherapy. 
In the second part, we review the optimal-control models based on the 
solution methods used: the analytical solution, approximation with 
analytical intuition, and heuristics [37].

Role of optimal-control theory

There are three main areas of study: the first studies the diverse 
growth-kinetics models, the second studies cell-cycle models and the 
third is a classification of ‘other models’. 

Diverse growth-kinetics models: In this section, the authors in 
[27] use the Gompertz equation to describe the evolution of cancer cells 
under the influence of chemotherapy treatment. The optimal-control 
problem is formulated using the Hamiltonian function to determine 
the positive continuous time optimal controller u that minimizes the 
toxicity of the treatment subject to the perturbed growth kinetics of 
the tumor. 

Another model used to describe the evolution of cancer cells is 
the Verhulst-Pearl equation [149]. For this model, several numerical 
results to the solution are presented. The optimal control u increases, 
but as time increases, its rate of increase slows down rapidly. For the 
Cox-Woodbury-Meyers equation [150], there is a nonlinear algebraic 
feedback relationship that connects the control and the state, and the 
optimal controller is monotonically decreasing and drives the tumor 
population to a more desirable level. It is hoped to see closed-loop 
control.

Finally, Abulesz and Lyberatos use a model to describe the 
evolution of cancer and the normal cells [151], with the introduction 
of a pharmacokinetic equation. They give an optimal solution for the 
drug administered, but it is not clear what the biological significance 
of the steady state means, and it is not clear how this applies to the 
dosage rate.

Cell-cycle models: The first application of optimal-control theory 
in a cancer-chemotherapy problem is to a cell-cycle model analyzed by 
Bahrami and Kim [28], using a discrete-time state vector approach. The 
optimal-control problem is to determine the controls u(k) such that 
the size of the tumor is minimized at the end of the treatment interval 
while minimizing the toxicity.

Creasey et al. [152] present a general overview of the optimal 
control and cancer chemotherapy, but no particular problem is solved. 
Long and Fegley [153] consider a discrete dosage program, which is cast 
into the framework of dynamic programming. They wish to determine 
the doses and treatment times to maximize the surviving fraction of 
normal cells at the end of the recovery period. They do not apply their 
procedure to any illustrative problem.
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Biran an dMcKinnis [154] considered a single closed loop of the 
cell cycle in three phases. The time rate of change of each number of 
cells in one phase is related to the flux of cells into and out of each 
phase. Numerical results are presented for the case of use of the drug 
Melphalan. The optimal control results suggest that cultured cells 
treated with Melphalan accumulate and arrest their progress in the 
mitotic phase.

In another paper, Dibrov et al. [155] examine a dynamic model 
of a population of continuously dividing cells under multiple periodic 
treatments with a phase-specific agent. They introduce a model of 
the cell cycle that has both deterministic and what they refer to as 
“probabilistic” discrete compartments.

Other models: In this section, several models are presented that, 
are not directly dependent on the growth kinetics of the tumor but 
could be combined with them if desired. In the papers by Bellman and 
coworkers [156] the authors study the “control aspects of the pioneering 
efforts in the modeling of chemotherapy. Bischoff and Dedrick [157] 
described a physiological model for the anticancer drug concentration 
in anatomical compartments. Swan and Alexandro [158] present the 
reduction of a physiological model for the chemotherapy of brain 
tumors.

Problems of the following type remain to be investigated: 
determining the optimal drug inputs in regional chemotherapy 
to achieve a cell kill in the tumor while minimizing the toxicity to 
important anatomical compartments. Gaglio et al. [159] describe two 
expert systems that are being used for the characterization of optimal 
adjuvant cancer therapies. Unfortunately, no details of the optimal-
control application are provided. Maceratini et al. [160] have reviewed 
expert systems and some of their applications in medicine.

For more details about the role of optimal-control theory, we refer 
the reader to reference [161], in which four different mathematical 
models of chemotherapy from the literature are investigated with 
respect to the optimal control of the drug-treatment schedules. The 
various models are based on two different sets of ordinary differential 
equations and contain either chemotherapy, immunotherapy, 
antiangiogenic therapy or combinations of these. Optimal-control 
problem formulations based on these models are proposed, discussed 
and compared. For different parameter sets, scenarios, and objective 
functions, optimal-control problems are solved numerically with 
Bock’s direct multiple shooting methods.

Role of the Nonlinear Optimization Method

In this paragraph, we classify the optimal-control models with 
respect to the solution method used.

Analytical solution: We use the analytical method when the 
model is composed of linear differential equations; in most optimal-
control studies, the sufficient and necessary conditions for optimality, 
the optimality conditions, can be obtained using frameworks such as 
the Pontryagin Maximum Principle [99]. Zietz and Nicolini [33] use 
the Pareto version of the Pontryagin Maximum Principle (Yu and 
Leitmann [162]) to show that a specific type of chemotherapy plan 
is optimal under certain conditions; their solution depends on the 
two weighting factors in the Hamiltonian form of the model. Murray 
[36] uses Pontryagin Maximum Principle to show that the optimal 
chemotherapy treatment plan is a mixture of an initial bolus dose (an 
immediate infusion of a single dose) drug application followed by no 
drug and then continuous infusion.

Another optimal control is solved by analytical solution, for 
example, by explicit formulation of the treatment plan [30,33,43], or 
by explicit formulation of the treatment administration period given 
the dose size [163]. 

Approximation with analytical intuition: In some studies, the 
optimality conditions obtained using the Pontryagin’s Maximum 
Principle are not simple enough to explicitly derive the optimal 
chemotherapy treatment plan. The optimality conditions provide an 
idea about the structure of the optimal solutions. However, optimality 
conditions, which are used in the characterization of the optimal 
solution, are expressed in terms of adjoint variables. These adjoint 
variables turn up in the Hamiltonian function that the optimal 
solution needs to maximize for all instances. These conditions give a 
large system of differential equations, which is difficult to solve. For 
this reason, these studies use approximation techniques to determine 
the optimal chemotherapy treatment plan, such as i) discretization 
of the continuous decision horizon and solving of the optimal model 
using control parameterization; and ii) solving the system of equations 
obtained from the optimality conditions using approximate methods 
such as Newton’s method [164].

Certain optimal controls are solved by approximation with 
analytical intuition. Several example are by using standard methods 
with hypothetical data [165], by characterizing the optimal solutions 
for quadratic and linear controls [145], by using an iterative algorithm 
that may converge to a local optimum [166], by transforming the 
model to mixed integer linear programming (MILP) by discretizing 
the decision horizon and linearizing the nonlinear constraints [15], by 
characterizing analytically the form of the optimal solution and using 
discretization and nonlinear programming to solve it [167], by using 
a linear time-varying approximation technique, or finally, by using 
an explicit formulation of the optimal treatment plan as a function of 
variables from the Hamiltonian form of the model that are quantified 
via approximation [38].

Heuristics: Although the optimal solution is typically 
computationally intractable, we develop heuristic algorithms to solve 
the optimal chemotherapy treatment. Tan et al. [168] use distributed 
evolutionary computing software that employs the resources of a 
network of computers to overcome complex chemotherapy treatment 
planning problems. Floares et al. [147] design an adaptive neural 
network algorithm to solve this problem. Liang et al. [169] minimize 
the size of the tumor population using an adaptive elitist-population-
based genetic algorithm, and they design a multimodal optimization 
genetic algorithm that represents the chemotherapy treatment plans 
as genes to optimize the chemotherapy plan under various cumulative 
toxicity functions.

Several optimal controls are solved by heuristics. For example, 
Iliadis and Barbolosi [118] use simulation to evaluate the performance 
of possible drug-dose plans for given drug-administration periods. 
Petrovski and McCall [170] adapted the strength Pareto evolutionary 
algorithm [170] to evolve a population of treatments spread out along 
the Pareto efficient frontier and find the Pareto-optimal chemotherapy 
plans. They also develop a new heuristic algorithm in their further 
research: a genetic and a particle swarm optimization (PSO) algorithm 
[171]. The genetic algorithm encodes the multi-drug chemotherapy 
schedules as binary strings. The PSO algorithm uses a population of 
candidate-solution particles that swam around the search space. Tse et 
al. [172], minimize the size of the tumor population using a customized 
algorithm combining a genetic algorithm and iterative dynamic 
programming.
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All of the methods cited above are used to find a global optimum 
value, knowing that there are several computational biology research 
studies [142,173,174] that integrate local search algorithms into a 
global research algorithm to increase the computing accuracy.

Discussion and Conclusion
The number of cancerous cells, the toxicity, and the drug resistance 

are the key factors in chemotherapy-treatment planning. Most of the 
studies on chemotherapy-treatment optimization problem differ from 
each other according to how they model the interactions among these 
key factors.

This paper provides a comprehensive review of the relevant 
literature while considering several other pieces of information not 
mentioned previously, such as the cancer modeling characteristics 
and optimization computational methods used to solve these models. 
We also provide information on the medical relevance, such as real 
treatment protocols and one-drug/multi-drug involvement.

Our study is oriented toward the optimization of treatment 
protocols. The optimization methods can still lead to solutions, even 
if the parameters to identify are numerous. Clinically, however, to 
identify the parameters, we need many experiences. The number of 
parameters is large, and therefore, the number of experiences is large; 
for this reason, it is preferable that the number of parameters is small. 
It is clear from all of the studies presented that there is a desperate 
need to create more interaction between mathematicians, clinicians 
and biologists to correctly identify the model. Of course, these highly 
interdisciplinary efforts are not easy to achieve. We see the role of 
mathematical modeling in cancer biology as twofold. On the one 
hand, mathematical models are able to verify supposed word models 
suggested by experimentalists.

The field of cancer biology is reaching a stage of maturity at which the 
next step in the modeling process must be the careful parameterization 
of a number of the models so that specific experimental predictions can 
be made and tested in close collaboration between experimentalists and 
theoreticians. Many problems in this review require the determination 
of the parameters in the model by fitting the model to data. Clinical 
tests are performed over short durations, so we require an efficient 
identification protocol to correctly identify the model parameters. The 
clinical trials occur over a short duration, whereas the phenomenon is 
long, occurring over several months.

In the literature, most mathematical models that describe the 
diffusion of drugs in the body are based on a single drug. Whereas, 
in real cases, oncologist use a treatment protocol with a combination 
of drugs. In some cases, these drugs work together in series or parallel 
mode, or without any interaction between them. Some drugs have 
physical effects and other have chemical effects. Based on these 
information, it is necessary to develop these models to consider all 
these aspects of administered drugs. Although there have been some 
success stories in the application of mathematical models to cancer 
biology with chemotherapy treatment, mathematics has much more 
to offer for the use of mathematical models with real chemotherapy 
treatment protocols. For example, in Eq. (9), this model describes the 
use of a single drug. However, by using a real protocol, the treatment of 
many drugs must be considered together, so we propose to change the 
form of the equation:

1log( ) ( ..... ) 1....
θ

α β= − − =i

dC
C C C fct u u i number of drugs

dt C
  (65)

This form must be verified by mathematicians and biologists to 
ensure its reliability. Briefly, one of the advantages of mathematical 
modeling is its ability to determine a delicate balance when building 
any model between reliability and realism.

Research in chemotherapy should consider a more realistic 
objectives function. Currently, most models aim to obtain the 
chemotherapy treatment plan that minimizes the size of the tumor 
population while satisfying the constraints on maximum toxicity in a 
given time interval. However, this is only a part of an optimal treatment 
plan. In this context, the question of how to define the objective function 
naturally becomes more important. In this paper we have reviewed all 
of the objectives functions to include and cover all of the possibilities of 
cancer phenomena in our optimization method. 

It is important to compare the performance of all objective functions 
to choose the best that can lead to the optimal solutions. Reading 
various articles shows that all objective functions lead practically to 
optimal solutions close to each other, without showing the specificity 
of each objective function. For these reasons, comparative study is 
important.

The chemotherapy process involves the interactions between the 
patient’s response and the oncologist’s scheduling decision. During 
the chemotherapy session, when drug resistance becomes obvious, 
the drugs must be changed immediately. During this process, better 
information about the characteristics of the tumor will be available, 
which necessitates dynamic and sequential decision making. On the 
other hand, current models consider only the decision process prior 
to the initiation of chemotherapy and then calculate the optimal 
plan of the entire period. For these reasons, we incorporate in our 
optimization method the evolution of the normal and immune cells to 
help the oncologist to make a better decision about the administration 
of the treatment. In real cases, the evolution of normal and cancer cells 
varies according to the treatment. The relations between the treatment 
dosage and the number of normal and immune cells are clearly visible 
in the mathematical models that describe the evolution of these cells.

Additionally, we can improve the optimization problem by adding 
as constraints the evolution of the white blood cells (WBC) in the 
body after treatment administration. There are mathematical models 
that describes the evolution of the number of immune cells under 
the influence of cancer and drugs. We can add Eq. (66) [118] for 
mathematical models that do not have an equation that describes the 
evolution of the number of immune cells. In this case, the oncologist 
can define if it is necessary to stop the treatment if the number of 
immune cells is less than a predefined number.

( ) ( ) ( ) ( ) ( )ν µ= − −
dWBC t

r t WBC t WBC t u t
dt

		              (66)

where WBC  are produced at rate ( )r t and eliminated by the first-
order process ( )WBC tν . The dimensions of ( )r t ,ν ,µ  and WBC
are 1 1(volume) (time)− − , 1(time)− , 1 1(concentration) (time)− − and 0 3mm− , 
respectively. The initial condition 0WBC  was selected as the physiological 
level of WBC  with the constant ( ) cr t r= and without drug toxicity; 
therefore, neglecting the third term in the equation, we can set 0 cWBC r ν= .

The normal range for the WBC  count is 4.3 to 10.8×109 cells per 
liter. A range of 11 to 17×109/L may be considered mild-to-moderate 
leukocytosis, and a range of 3.0 to 5.0×109/L may be considered mild 
leucopenia [142].

In the literature, applying the optimization method to the 
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mathematical models that describe the evolution of cancer cells, the 
authors do not provide any clinical applications. However, in our 
further research, the usefulness of these models is shown for using real 
chemotherapy treatment protocols. The major limitation of the existing 
studies is the lack of clinical realism in the models. Most studies treat 
chemotherapy-treatment planning as a pure optimization problem. As 
a result, the practical applications of this area of research are limited. 
In this paper, we provide several suggestions to improve the research 
in this area.

Mathematical models must be developed to aid in our 
understanding of how to implement this work and hopefully to show 
how to develop new optimal treatment strategies. To accomplish this 
goal, we can determine a strategy that makes it possible by following it 
to apply the optimization method using real chemotherapy treatment 
protocols. This strategy can be described as follows:

1) Define the genre of the cancer treated.

2) Choose the model of cancer evolution with and without 
treatment.

3) Identify the parameters of this model according to the cancer 
treated.

4) Choose a real treatment protocol defined by the oncologist.

5) Choose the pharmacokinetic model that describes the evolution 
of the drug concentration after its administration.

6) Define the model of resistance (e.g., white blood cells) added as 
constraints.

7) Define the minimal and maximal thresholds for the resistance of 
treatment and white blood cells.

8) Resolve the optimization problem using one solution method 
(we recommend the genetic algorithm).

By using a real treatment protocol, we suggest that the treatment 
optimization is performed using genetic algorithms (GA) [175] to 
avoid the problem of oversizing caused by the use of deterministic 
optimization methods. GA allows us to set an initial population size 
to a fixed value at the beginning of the search that remains constant 
throughout the run. However, making it necessary to specify this initial 
parameter value is problematic in many ways. If it is too small, the GA 
may not be able to reach high-quality solutions. If it is too large, the GA 
spends unnecessary computational resources. 

We propose the use the genetic algorithm because it is a method 
that has been adopted in all cases. It allows us to offer a software tool 
ready for use by oncologists. Additionally, the deterministic models 
converge according to each case, so it is not a generalized method 
contrariwise for stochastic models.

Due to the complexity of cancer, chemotherapy-treatment studies 
should focus on a specific cancer rather than modeling cancers in 
general. It is important to biologically classify the models, based on the 
cancer definition and not as a function of the mathematical description 
(e.g., linear or nonlinear models).

It is evident from all of the studies presented that there is a 
desperate need to have more interaction between the modelers and 
either the experimentalists or the clinicians. Of course, such highly 
interdisciplinary endeavors are not easily accomplished. Another 
feature of importance is the need to work with models of biological 
relevance that can be tested on a computer and in a laboratory situation.

At present, there are no commonly used techniques to measure 
the number of tumor cells in humans when the level is below the 
minimum level of a tumor that can be diagnosed, (Cd). Some clinicians 
believe that one should treat the tumor only to the level Cd because, as 
indicated, they cannot measure the size below Cd. This means that we 
should attempt to find a model to describe cancer appearance starting 
with at least one cell. In the thesis [176], the authors demonstrate, 
using stochastic models, that the cancer passes through two phases: 
i) a creation phase, in which they study the probability that a cancer 
will arise from a healthy population of cells under the influence of 
mutations, and ii) a phase in which the cancer appears. The first phase 
is explained by stochastic static models. These models are divided into 
three types, i) the Moran model [64,65], ii) the Wright-Fisher model 
[66] and iii) the Moolgavkar, Venzon, and Knudson (MVK) model 
[69]. Simulations of these models show the uncontrollable evolution 
of cancer cells. The cancer cell number grows until reaching the 
population size or to a nonpredictable number. 

In this paper, we reviewed i) the mathematical models that describe 
the evolution of cancer and biological cells; ii) the mathematical models 
that describe the diffusion of drugs throughout the body that are 
administered via bolus injection, continuous infusion, and liposomal 
and thermo liposomal drug delivery; iii) a set of objective functions that 
affect the results of the optimization method; and iv) a solution method 
for the optimizations models. These studies imply significant gaps 
between theoretical research and clinical application in chemotherapy 
treatments. We note that the application of the optimization method 
in the real case of chemotherapy is only a tool that helps doctors to 
determine the best decision for a patient’s treatment.

Finally, the question of therapeutic optimization in cancer is vast, 
and it can be treated in notably different manners that must be adapted 
for the particular clinical problem at hand. Nevertheless, modeling the 
target and the means of control while considering the known clinical 
issues is still a successful way to reduce the cost and time of clinical 
trials. Room remains for further mathematical developments to meet 
other challenges, especially for optimizing treatments for more clinical 
problems. These results will be all the more useful as more links develop 
between mathematicians and clinicians.
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