Reward Deficiency Solution System (RDSS) “Repairing a Hypodopaminergic Trait/State: Reflection Over 50 Years

Kenneth Blum1-9*

1Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA
2Human Integrated Services Unit University of Vermont Center for Clinical & Translational Science, College of Medicine, Burlington, VT, USA
3Department of Nutrigenomics, Bio Clarity, Inc. La Jolla, CA, USA
4Impact Genomics, LLC, Lederoch, PA, USA
5Department of Clinical Neurology, Path Foundation, NY, New York, USA
6Department of Personalized Medicine, IGENE, LLC, Austin, Texas, USA
7Dominion Diagnostics, LLC, North Kingstown, Rhode Island, USA
8Department of Addiction Research & Therapy, Malibu Beach Recovery Center, Malibu Beach, California, USA
9National Institute for Holistic Addiction Studies, North Miami Beach, Fl, USA

Over the last 50 years of my journey in the exciting field of “Addiction Medicine”, I have seen remarkable changes in our scientific understanding of how psychoactive drugs influence behavior, through very complex actions on neuronal pathways especially in the mesolimbic system (craving) and the prefrontal cortex –cingulate gyrus (relapse) of the brain [1]. During this period I have had the distinct pleasure of not only working with some of the giants in the field but personally interacting with many of them. While the concept of recovery became a household word incorporating the 12 step program & fellowship [2], it is my belief that introducing a new definition of “addiction” espoused by the American Society of Addiction Medicine (ASAM) [3] will have tremendous impact on generations to come who will accept addiction is indeed a brain disorder. My work with Ernest P. Noble and our esteemed associates, the discovery of the first gene to associate with alcoholism and sparked the current field of “Psychiatric Genetics,” is certainly a highlight in my career [4].

We are now poised in the 21st century through the era of genomic medicine to begin to understand the true nature of this brain disorder, that I intuitively coined “Reward Deficiency Syndrome (RDS) [5,6]. Reflecting over these many years, there are a number of important examples of progress: understanding of the neurochemical mechanisms involved in the addiction process including withdrawal symptomatology [7]; understanding the physiological basis for brain neurotransmission [8]; understanding neurochemical mechanisms for synaptic function [9]; understanding the role of long-term potentiation in drug self-administration and sensitization [10]; understanding the neurobiological mechanisms of storage, release and catabolism of neurotransmitters in pre and post synaptic loci [11]; understanding the role of the “Brain Reward Cascade” in craving behavior and relapse [12]; neuroimaging dissecting dopaminergic activity in brain regions and understanding the role of neurogenetics in all aspects of drug seeking and process addictions [13].

However, with all of this positive and remarkable understanding we have a long way to go before we can say that science has caught up with this very complex brain disorder known as RDS. A priori, have we been looking at the genetics in a simplistic fashion (candidate gene approaches) compared to GWAS evaluation of a large body of genes (clusters)? [14] Should we pay more attention to epigenetic effects and continue our pursuit through EWAS studies? [15]. In regard to this rhetoric I submit to my scientific peers that it seems reasonable that based on well-known physiological mechanisms that we should not “toss the baby out with the bathwater.” In my point of view, in spite of a number of GWAS studies having difficulty in finding significantly large associations with various gene candidates, (small associations) may be due to a number of factors such as the complex nature of the disorder being polygenic and most importantly, the flawed utilization of seemingly reasonable controls [16].

If indeed my associates and I are correct about the true phenotype of “addiction” which constitutes RDS and all of its subtypes (e.g. drugs, alcohol, nicotine, food, sex etc.) then it makes good scientific sense to rigorously screen controls for these RDS subtypes prior to systematic analysis whether one prefers the candidate or GWAS approach [17]. Having the disease as part of the controls will only lead to spurious and useless results. While this question will take years to resolve I would, like to turn my attention to the clinical management of the RDS patient. It is well known that patients especially when young, that present to a treatment center due to being coerced (court, family and friends intervention) will deny the real ongoing brain related issue there may be a number of reasons, including denial. To develop a non-invasive genetic test for RDS, BDS, such as “The proposed “Genetic Addiction Risk Score (GARS)” based on known associations with alleles, that will “Genetic Addiction Risk Score (GARS)” that will allow for stratification of genetic risk in an individual, should at the very least provide a “mirror to the brain” thereby reducing some guessing in terms of brain function [18]. Obviously, there are other clinical benefits such as medical monitoring for pharmacogenetic response of a drug, metabolic issues of drug delivery; tailored customized treatment; medical necessity for type of clinical care; pharmacogenomic treatment targeting gene polymorphisms; and a host of other clinical benefits including family curiosity and willingness to participate in the patients recovery plan.

The genetic test should be coupled with methodology involving drug urine testing evaluating both compliance to FDA approved treatment medications and abstinence from licit and illicit psychoactive drugs. Importantly, our recent research utilizing the Comprehensive Analysis of Reported Drugs (CARD) as developed by Dominion

*Corresponding author: Kenneth Blum, Department of Psychiatry, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, USA, Tel: 619-890-2167; E-mail: dnd2gene@gmail.com

Received January 03, 2014; Accepted January 08, 2014; Published January 18, 2014


Copyright: © 2014 Blum K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflicts of Interest

Kenneth Blum, PhD holds a number of patents worldwide involving both natural D2 receptor agonist therapy and gene testing.

References


