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Introduction
In fluid mechanics, the Reynolds number is certainly the most 

important dimensionless quantity used in research and engineering. It 
is defined as the ratio of momentum to viscous forces and it quantifies 
the relative importance of these two phenomena for given flow 
conditions. When viscous forces are predominant, the flow regime is 
laminar and stream-lines are parallel to each other. Reynolds number 
values are low and for constant flow conditions in a duct of arbitrary 
cross section shape, stream-lines velocity varies from zero at the duct 
walls to a maximum value at the centre of the duct. Turbulent flow 
regime occurs at higher Reynolds number values when inertia forces 
become predominant. In that conditions, stream-lines behaviour 
is more chaotic giving eddies, vortices and other flow instabilities. 
Between these well-defined flow regimes, there is an often called 
transition region delimited by critical Reynolds number values. As 
shown by many authors (Leuliet [1], Delplace, [2] Delplace [3] critical 
Reynolds number values can vary a lot depending on ducts geometry. 
Changes of flow regime have a considerable importance for heat and 
mass transfer industrial applications (heat exchangers, reactors.).

From these well-established results, it is clear that geometry of 
flow systems is essential to explain and quantify flow phenomena. 
In the Reynolds number definition, geometry is described through a 
"reference length" LR sometimes called "scale length". Sometimes, LR 
can be determined analytically by solving Navier-Stokes equation, 
this is the well-known case of fully developed laminar flow in a duct 
of circular cross section shape where LR is the pipe diameter. But when 
geometries are more complex, LR can be conventional. This is the 
typical case of mixing tanks where LR is the turbine diameter or a plate 
heat exchanger having complex flow geometry where LR is defined as 
twice the maximum gap between two plates (Leuliet [1], Delplace [2]).

Recently, fluid mechanics concepts were introduced in theoretical 
physics for general relativity (Padmanabhan [4], Delplace [5]) and 
quantum mechanics (Delplace [5]). From these results, it appears that 
Einstein general relativity equation is similar to Navier-Stokes equation 
and, if spacetime is considered as fluid; it could be possible to apply 
Navier-Stokes equation at both astronomic and atomic scales.

General relativity equation tells that spacetime geometry described 
by its curvature (Einstein tensor) is proportional to stress energy 
tensor. In every flow system, one can consider we have a spacetime (x, 

y, z, t in Cartesian coordinates) deformed by stresses produced by the 
mechanical energy transferred to the liquid by the pumping or mixing 
device.

The main objective of the present publication is then to revisit 
the Reynolds number definitions used for batch and continuous flow 
systems by use of the general relativity concept of curvature available 
for continuous spacetime medium.

Reference Length in Reynolds Number Definitions
Fully established laminar flow of Newtonian fluids in pipes

Solving Navier-Stokes equation in that well known case gives 
a parabolic velocity profile. For practical use, it is common to use a 
correlation between the Fanning friction factor f/2 and the Reynolds 
number Re. This correlation often called friction law takes the following 
form:
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In these equations, ( ) w Paτ is the wall shear stress, ( )1 .u m s− is the
mean fluid velocity, ( )3 .kg mρ −  is the fluid density, ( ) P Pa∆  is the
pressure drop, ( ) D m  is the pipe diameter L(m), is the pipe length and 

( ) .Pa sη  is the dynamic viscosity.
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In that perfectly defined case, the reference length found for 
Reynolds number is the pipe diameter and we have LR=D.

Fully established laminar flow of Newtonian fluids in ducts of 
arbitrary cross section

In that case, Navier-Stokes equation reduces to the following well 
known Poisson partial differential equation:
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u(x, y) is the scalar velocity field in the duct cross section, ΔP (Pa) is 
the pressure drop L (m), is the pipe length and η (Pa. s) is the dynamic 
viscosity.

Even for simple geometries like rectangular or triangular ducts, 
analytical solutions of equation (4) are not simple. Shah et al. [6] gave 
a complete review of these solutions for a wide variety of regular ducts. 
For non regular ducts, only numerical approaches are available and are 
always an intense field of research (Delplace [7] Sestak [8] Sochi [9]).

As reported by Midoux (1993), for a complex cross section shape, 
a balance between pressure and friction forces allows determining f/2 
(equation 2) in a simple way:
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DH (m) being the hydraulic diameter defined by:
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S (m2) is the cross section area and P(m) the wetted perimeter.

This definition is of considerable importance because it allows 
writing friction laws for ducts of arbitrary cross section in the following 
general form in agreement with equation (1):
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As shown analytically and experimentally by many authors (Miller 
[10] Leuliet [1] Delplace [3]), parameter ξ values depend only on ducts 
geometries. A good example is the case of rectangular ducts from 
square duct to well known infinite parallel plates. Solving equation (4), 
it is possible to calculate for each rectangle of cross section length 2b 
and cross section width 2a the parameter ξ value as followed:
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In the case of a square duct, numerical calculations gave the well 
known value 7.1136 (Shah & London [6]). In the other limit case often 
called infinite parallel plates where b>>a, the exact solution is:
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Then, for rectangular ducts, for aspect ratio b/a varying from 1 to 
+∞, ξ values increase from 7,1136 to 12 which is the well-known value 
for the symmetric case of infinite parallel plates comparable to the other 
symmetric case of cylindrical duct or pipe giving ξ=8 (equation 1).

The case of cylindrical ducts of arbitrary cross section shape is often 
called two dimensional flows (2D). The case of three dimensional flows 
(3D) is much more complex because solving analytically the Navier-
Stokes equation is not possible. But the use of dimensionless numbers 
and particularly the Reynolds number gives powerful tools to engineers.

As a conclusion, for the laminar 2D flow in regular ducts of 
arbitrary cross section shape, we use LR=DH. This definition of scale 
length LR can be considered as theoretical on the basis of equation (5).

Fully established laminar flow of Newtonian fluids in complex 
geometries

As expressed above the case of 3D flows is much more complex 
than the case of 2D flows. 3D flows are encountered in continuous 
flow systems in the case of complex shape channels like those built in 
compact heat exchangers. Because of their extensive use in chemical 
and food industries, plate heat exchangers are a good example of these 
complex 3D flow geometries. For laminar flow conditions, plate heat 
exchangers were studied by many authors and reported in reference 
encyclopaedias (Cooper [11] Leuliet [1] Delplace [12]).

For plate heat exchangers, all authors used as hydraulic diameter 
DH=2 e. e being the maximum gap between two plates. ξ values obtained 
experimentally varied a lot depending on plates geometry or design 
and on plate heat exchanger flow arrangement. Typical values varied in 
the range 14 to more than 50.

Another important case of 3D flow is encountered in mixing 
systems or mixing tanks. In industrial reactors like fermentors, 
turbines of various designs are used to create 3D flow patterns and 
obtain a maximum mixing efficiency. A huge amount of scientifical 
work has been performed to predict power consumption of mixing 
systems. An accurate review and analyse of this work can be found in 
Delaplace [12]. Two dimensionless numbers defined below are used to 
characterise these complex flow systems: the power number Np and the 
rotational Reynolds number ReR.
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In these equations, P (W) is the power consumption of the turbine, 
N (rad.s-1) its rotational speed, ρ and η being respectively the fluid 
density and dynamic viscosity.

The complex geometry of mixing systems makes the reference 
length for both ReR and Np calculation difficult to determine. 
Consequently, for practical use, D is defined as the turbine diameter 
even if it is poorly representative of the entire mixing system shape.

The correlation between Np and ReR takes the following form 
similar to equation (7) obtained for continuous flow systems:

 p
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Parameter Kp value depends on batch mixing system geometry like 
parameter ξ value depends on duct geometry.

Couette system used in rheology for viscosity measurements is 
a simple and good example of equation (12) application. The simple 
geometry (two cylinders) allows flow equation to be solved analytically 
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and then Kp value to be calculated as a function of cylinders diameters. 
The narrower is the gap between the two cylinders, the greater is the Kp 
value. Typical Kp values vary in the range 40 for marine propeller to 300 
for helical ribbons and more than 500 for Couette systems [12].

To conclude, for complex flow systems including batch devices 
like mixing tanks, we use a conventional reference length for LR in the 
Reynolds number definition.

Free falling sphere

In the laminar flow regime, the flow equation of a Newtonian liquid 
around a sphere is given by the following equation (Midoux [13]):
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In these equations, T (N) is the flow resistance, Ω (m2) is the frontal 
area, u(m.s-1) is the fluid velocity far from the sphere, and d(m) is the 
sphere diameter. η and ρ being respectively the dynamic viscosity and 
the density of the fluid.

Considering that CX can be related to f/2 through the following 
relationship:
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Equation (13) takes the same form than equations (1), (7) and (12). 
This approach is also available for particles having different shapes 
and the reference length LR used in Reynolds number definition is the 
diameter in the case of a spherical particle.

Reference length in Reynolds number definition

As expressed in the introduction of this paper, we have shown 
above, through classical uses of Reynolds number in fluid mechanics, 
how important is the reference length LR definition. It is clear that when 
geometry complexity increases, LR changes from a theoretical value (D 
or DH) to a conventional value (turbine diameter in the case of a mixing 
tank).

This analysis is based on the hypothesis of laminar flow regime. It 
is well known that the same Reynolds number definition is used for 
transition and turbulent flow regimes. Correlations between Reynolds 
number and Fanning friction factor can be obtained giving the well-
known Blasius law for the turbulent flow in a smooth pipe or others 
correlations in different geometries (Delplace [7]).

In turbulent flow regime, it is interesting to consider Kolmogoroff's 
scales theory. It explains how inertia of large scale eddies is transferred 
to smaller scales until it reaches a microscopic scale where viscous 
dissipation occurs and kinetic energy is converted into heat (Midoux 
[13]). The Kolmogoroff Reynolds number is defined as followed:
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Where ( )1.u m s−
  is the turbulent fluctuation velocity and LK(m) is 

the Kolmogoroff scale of turbulence. The value of LK is around 5.10-6m 
(Midoux [13]) corresponding approximately to 2.1012 molecules.

To conclude, the reference length used in the Reynolds number 
definitions is of considerable interest whatever is the flow geometry 
and even whatever is the flow regime.

Others Important Quantities in Friction Laws
As described in §2, friction laws are correlations between the 

Fanning friction factor and the Reynolds number. The Fanning 
dimensionless number we called f/2 is the ratio of wall shear stress τw  
and kinetic energy concentration in the fluid (equation 2). The wall 
shear stress is related to another important quantity in fluid mechanics: 
the wall shear rate wγ  through the following relationship:

  w wτ η γ=                                                                                              (18)
Equations (18) and (2) make the wall shear rate for the flow of a 

Newtonian liquid in a pipe easy to calculate:

8 w
u
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u (m.s-1) being the mean fluid velocity and D(m) the pipe 
diameter. This theoretical quantity, coming from the parabolic velocity 
profile obtained for the laminar flow in a pipe was generalized to more 
complex geometries according to the Reynolds number definition. For 
a regular pipe of non circular cross section (2D flow), the wall shear 
rate definition is then:

 w
u
D
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For a mixing tank, giving complex 3D flow, another definition of 
shear rate was necessary. This definition being representative of the 
entire system can be seen as a mean value:

  SK Nγ =                                                                                                                      (21)

In this equation, N (rad.s-1) is the turbine rotational speed and KS a 
constant representative of the entire mixing system shape. Rotational 
speed can easily be related to a linear velocity u(m.s-1) through the 
following well known relationship:

u=NR                                                                                                                      (22)

This equation is, for a circular motion, the fundamental relationship 
between angular velocity N, linear velocity u and circle curvature 1/R(m-1). 
Using equation (22), it is fundamental to notice that equations (19), 
(20) and (21) take the same form whatever is the flow complexity (2D 
or 3D). Moreover, it is also very important to consider the coherence 
between the reference lengths LR used in Reynolds number definitions 
given above and the shear rate definitions used in this chapter.

Spacetime Curvature in Fluids Flow
Fluid flow system as spacetime continuum

Every flow system can be considered as a continuum where 
small particles of fluid move in a container of fixed geometry. These 
small particles are analogous to "Atoms of spacetime" introduced 
by Padmanabhan [4]. Depending on the container geometry and 
the mechanical energy given to the continuum (the fluid), particles 
position (x, y, z) in Cartesian coordinates will change with time t.

In the general case, we can consider we have a spacetime continuum 
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delimitated by a rigid container. In this container of given geometry, 
Navier-Stokes equation describes the motion of the particle M (x, y, z) 
vs. time t.

The spacetime continuum concept is usual in theoretical physics 
to describe planets motion through Einstein general relativity theory. 
But as showed above, the same principles are used in fluid mechanics 
explaining why Navier-Stokes and Einstein equations can be considered 
as very similar (Padmanabhan [4]). In order to use general relativity in 
fluid mechanics we have to change our definition of dimensions. What 
we call 2D flow in fluid mechanics is 3D flow for general relativity 
because time is considered as a length in this theory. For the same 
reason, 3D flow in fluid mechanics is a 4D flow in general relativity. In 
the following paragraphs, we will use 3D and 4D descriptions replacing 
respectively 2D and 3D coordinates previously used.

Spacetime curvature definition

In general relativity theory, one of the most important quantities is 
the Riemann curvature tensor often called the Einstein tensor Gij (m-2). 
Its definition given below involved the metric tensor gij (dimensionless), 
the Ricci tensor Rij (m-2) and the Ricci scalar R (m-2):

1    
2

R= −ij ij ijG R g                                                                                      (23)

This complex equation is the general curvature definition available 
whatever is the 4D spacetime continuum geometry. Moreover, this 
quantity giving a local value of spacetime curvature is not well adapted 
to the case of Reynolds number definition being a global quantity for a 
given fluid and container system as described in §4.1.

Let us consider the simple case of a circular motion in a 3D 
spacetime continuum (x, y, t). This is the typical case of what we 
previously called 2D flow. Scalar curvature C3D (m-1) can simply be 
defined as the inverse of circle radius R:

3
1 DC
R
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As reported in equation (22), C3D is the well known scalar curvature 
converting a linear velocity into an angular velocity. For the 4D (x, y, z, 
t) case, we propose to use the well-known scalar curvature of a sphere 
of radius R:

4 2

1 DC
R

=                                                                                                                   (25)

The dimension of C4D is m-2 according to the dimension of Gij and 
we propose to use this simple definition as a mean to characterize the 
flow geometry in a complex shape container. The use of these equations 
appears well adapted to circular geometries. As showed in §2.2, the 
hydraulic diameter is used in Reynolds number definition when duct 
cross section is not circular. We propose then to use the hydraulic 
diameter as a mean to characterize curvature of a non-circular duct 
cross section.

Reynolds number definition using spacetime curvature

For a cylindrical duct of arbitrary cross section, using LR = DH, we 
obtain the following well known Reynolds number definition:
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Using curvature definitions introduced in §4.2, we have:
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This relationship shows that Reynolds number can be considered 
as the ratio of two curvatures: the curvature of pipe wall C3D and the 
curvature of the flow itself *

3DC  due to inertia and viscosity:
*
3

3

 D

D

C
Re

C
=                                                                                            (28)

Let us use this Reynolds number definition for the case of a pipe 
of circular cross section in order to illustrate the influence of C3D on 
Reynolds number value. Developing equation (27) gives the following 
Reynolds number definition as a function of volumetric flow rate 
Q(m3.s-1):

3
2     

 DRe C Qρ
π η

=                                                                                (29)

For a given flow rate Q of a Newtonian liquid with density ρ and 
dynamic viscosity η, in a pipe of circular cross section, increasing 
cross section curvature i.e., decreasing pipe radius will increase 
Reynolds number value as expected. If you modify pipe wall geometry 
as described in (Figure 1), you will increase the mean value of wall 
curvature and then increase the Reynolds number value for the same 
flow rate and the same liquid physical properties.

It is well known that modified pipes wall geometries improve heat 
and mass transfers and this new way of considering Reynolds number 
in terms of curvatures could be of huge interest for the design of high 
performances geometries. Increasing C3D will enhance heat and mass 
transfer performances.

Moreover, a comparison between the circular cross section case 
and others geometries in the same conditions i.e., the same liquid, the 
same flow rate and the same wall curvature gives an interesting result 
in term of critical Reynolds number and then in term of laminar flow 
stability. In equation (29), the numerical value is 2⁄ π≈0.637 for circular 
cross section. For a square duct, this factor is 1/2 and for an equilateral 
triangular duct, the same value is 2⁄3 √3 ≈0.385. These values could 
be representative of experimental critical Reynolds number values 
reported by Delplace [3]): 2100 for circular duct, 1150 for square duct 
and 780 for equilateral triangular duct.

The same approach can be performed in the case of 4D flow 
encountered in mixing systems. Using equation (11) and equation (25), 
we obtain:

4

4  1  R
D

NRe
C

ρ
η

=                                                                                          (30)

This equation is the equivalent of equation (27) for a complex 
geometry 4D flow system. The use of relationship between linear and 
angular velocities (equation 22) allows converting equation (27) into 
equation (30).

To conclude, we showed that Reynolds number can be interpreted 
as the ratio of two curvatures. Even if the calculation of polygons 

Axis of the pipe

Modified pipe wall

Pipe wall
Figure 1: Modified pipe wall geometry increasing curvature.Figure 1: Modified pipe wall geometry increasing curvature.
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curvature is always an important field of research in mathematics (Liu 
[14] Cantarella [15] Cufi [16]), the use of hydraulic diameter in regular 
ducts of polygonal cross section as a mean to quantify cross section 
curvature appeared of great interest to compare geometries hydraulic 
performances using Reynolds number.

Shear rate, momentum diffusivity and spacetime curvature

As reported in §3, shear rate is a very important quantity related to 
shear stress through equation (20). Another very important parameter 
is the ratio η ⁄ρ often called kinematic viscosity v in m.s-2. This quantity 
can be seen as momentum diffusivity (Midoux [13]).

In equation (28), we defined the flow curvature *
3DC  as followed:

*
3

2   D
uC ρ

η
=                                                                                       (31)

Introducing momentum diffusivity in this equation allows the 
mean velocity u  to be written as followed:

*
3

1   
2 Du C ν=                                                                                         (32)

The same approach can be done for 4D flow using equation (30) 
giving:

*
4

1   
4 DN C ν=                                                                                       (33)

Using shear rate definitions reported in §3 give the following 
definitions for 3D and 4D flows:

3 *
3 3    

4
D

w D DC Cξγ ν=
                                                                            (34)

4 *
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4
D

D
Ks Cγ ν=

                                                                                 (35)

Even if these equations describe two different flows: 3D and 4D, 
they are very similar and of considerable importance. First of all, they 
show that shear rate or velocity gradient ( )1sγ −


 is proportional 

to momentum diffusivity ν(m².s-1) and a volumetric curvature 
* *

3 3 4(   )D D Do CrC C in unit m-2.

From a mathematical and theoretical physics point of view, this 
result allows to write the Einstein tensor Gij in a new way giving the link 
between Riemann curvature and velocity gradient tensors:

  kν =ij ijG γ                                                                                                             (36)

To be accurate, ijγ  is the symmetric part of the velocity gradient 
tensor often called the rate of strain.

According to equations (34) and (35), constant k value only 
depends on flow system geometry through ξ and KS values.

The well-known Einstein general relativity equation can then be 
rewritten as followed:

4

8      G k
c

π νν = =ij ij ijG T γ                                                                  (37)

and then,

   
8   

k c
π νij ij                                                                                         (38)

This relationship between the Einstein stress energy tensor Tij 
(Pa) and the velocity gradient tensor ( )1s−

ijγ  is very similar to the 
rheological equation describing the deformation of a Newtonian fluid 

without volume modification (Midoux [13]):

  η=ij ijτ γ                                                                                                         (39)

τij (Pa) being the stress tensor and ( )1s−
ijγ the rate of strain tensor. 

Equation (39) can be considered as the definition of dynamic viscosity 
(the ratio of stress and velocity gradient tensors) then, the constant 
term in front of velocity gradient tensor in equation (38) could be 
interpreted as the definition of a dynamic viscosity in general relativity 
theory.

It is well known that dynamic viscosity plays a key role in 
momentum transfer. If η=0, then momentum cannot be transferred 
between two streamlines in the fluid and then the momentum flux 
density τij will be null. As a consequence, equation (38) could signify 
that, if planets motion exists in Einstein curved spacetime, it is due to 
the existence of a non-zero value of spacetime dynamic viscosity.

At this time where many physicists consider that spacetime could 
be a fluid, the non-zero dynamic viscosity result given by equation (38) 
could be of great importance.

Finally, this new way of writing Einstein general relativity equation 
shows how deep is the relationship between gravity and hydrodynamics.

Conclusion
The purpose of this paper was trying to give a new vision of Reynolds 

number using spacetime curvature. This mathematical quantity is of 
major interest in theoretical physics because it tells us how space is 
deformed by energy concentration through the well-known Einstein 
general relativity theory.

Considering 3D and 4D flow systems, a first result of this approach 
is a Reynolds number definition as the ratio of two curvatures: the 
curvature of the flow container and the curvature of the flow itself. This 
definition could signify a deeper signification of Reynolds number than 
the well-known ratio of inertia and viscous forces.

Direct practical consequences of this new definition are both the 
design of modified pipes geometries and the determination of critical 
Reynolds numbers for transition between laminar and transition flow 
regimes. The design of modified pipes is of great importance for example 
in high performances heat exchangers manufacturing. Determination 
of critical Reynolds number values being also very important for heat 
transfer applications.

Moreover, because fluid mechanics models are more and more 
in use in theoretical physics at both astronomic and atomic scales, we 
tried to find a link between curvature and velocity gradient tensors. 
This approach gave an important relationship between shear rate, 
curvature and momentum diffusivity (the ratio of dynamic viscosity 
and density). Einstein general relativity was then modified in order to 
obtain an equation similar to the rheological equation describing the 
deformation of a Newtonian fluid without volume modification. This 
result allowed the definition of a spacetime dynamic viscosity.

To conclude, recent discoveries like the fluid or liquid nature 
of Einstein spacetime make essential to build the link between fluid 
mechanics and cosmology. The famous Reynolds number could play a 
key role in this approach.
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