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Introduction
Ŝostak introduce the fundamental concept of fuzzy topological 

structure as an extension of both crisp topology and Chang's fuzzy 
topology [1], in the sense that not only the object was fuzzified, but 
also the axiomatic. Chattopdhyay et al. [2,3] have redefined the similar 
concept. In El-Naschie [4-14] and Kim and Ko [15] gave a similar 
definition namely "Smooth fuzzy topology". We must point out that 
[16-19]; the concept of fuzzy topological spaces has been a significant 
concept in string theory and E-infinity theory pertaining to quantum 
particular physics ever since El-Naschie ([4-14]). After that several 
authors [20,21] have introduced the smooth definition and studied 
smooth fuzzy idea topological spaces being unaware of Ŝostak works.

Throughout this paper, let X be a nonempty set I=[0;1] and 
I0=(0;1]: For α∊I; ( )xα α=  for all x∊ X: The family of all fuzzy sets on 
X denoted by IX : For two fuzzy sets we write λqμto mean that is quasi-
coincident (q-coincident, for short) with μ, i.e., there exists at least one 
point x∊X such that λ(x) + μ(x)>1: Negation of such a statement is 
denoted as qµλ :

Definition 1.1

A mapping τ: IX→I is called a fuzzy topology on X if it satisfies the 
following conditions [17]:

( ) ( )0 1 1τ τ= =

( ) ( ), { } X
i i i i i ifor any Iτ µ τ µ µ∈Γ ∈Γ ∈Γ∨ ≥ ∧ ∈

( ) ( ) ( )1 2 1 2 1 2, Xfor any Iτ µ µ τ µ τ µ µ µ∧ ≥ ∧ ∈

The pair ( );X τ is called a fuzzy topological space (for short, fts).

Definition 1.2

Let (X,τ) be a fts, λ, μ∊IX and r∊I0 .

A fuzzy set λ is called r-generalized fuzzy closed (for short, r-gfc) if 
Cγ ( λ;γ)whenever λ≤μ and ( )τ µ γ≥

A fuzzy set λ is called r-generalized fuzzy closed (for short, r-gfc) if 

( );Iτ λ γ µ≥  whenever λ µ≥ and ( )1τ µ γ− ≥

Definition 1.3 

A mapping I : IX→I is called fuzzy ideal on X if :

(I1) I(0)=1; I(1)=0:

(I2) If λ≤μ; then I(λ)≥I(λ); for each λ∊IX :

(I3) For each λ; μ∊IX ; I(λvμ)≥ I(λ)˄ I(μ)[finite additivity].

Lemma 1.1.

Let (X,τ,I) be a fits. The simplest fuzzy ideal on X are I0,I1 : IX→I 
where

( ) ( )0 11, 0 0, if 1
.

0, otherwise, 1, otherwise
if

I I
λ λ

λ λ
= = 

= = 
 

If we take I=I0, for each A∊IX we have A∗
r=Cτ(A,r). 

If we take I=I1, for each A∊Θ’we have 0rA∗ = , where, 1 ′∉Θ be a 
subset of IX [4-14].

Definition 1.4 

Let (X,τ,I) be a fuzzy ideal topological space[16]. Let µ, λ∊IX, the 
r-fuzzy open local function µ∗

r of µ is the union of all fuzzy points xt 
such that if ρ∊Q(xt,γ) and I(λ) ≥ r then there is at least one y∊X for 
which ρ(y)+ µ(y)−1>λ(y).

Theorem 1.1

Let (X,τ) be a fts. Then for each r∈I0, λ ∈ IX we define an operator 
Cτ : I

X ×I0 → IX as follows:

( ) ( ), { : , 1 }xC Iτ λ γ µ λ µ τ µ γ= ∧ ∈ ≤ − ≥

For λ, µ∊IX and r, s∊I0, the operator Cτ satisfies the following 
conditions:

( )C 0, 0τ γ =

( )C ,λ τ λ γ≤
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( ) ( ) ( )C , C , C ,τ λ γ τ µ γ τ λ µ γ∨ = ∨

( ) ( )C , C ,s if sτ λ γ τ λ γ∨ ≤

( ) ( )C C ( , ), C ,τ τ λ γ γ τ λ γ=

Theorem 1.2

Let (X,τ) be a fts. Then for each r ∈ I0, λ ∈ IX we define an operator 
Iτ : IX ×I0 → IX as follows [18]:

( ) ( )( , { I : , }xIτ λ γ µ λ µ τ µ γ= ∨ ∈ ≥ ≥

For λ,µ ∈ IX and r,s ∈ I0, the operator Iτ satisfies the following 
conditions:

( ) ( ) ( )(1 , 1 ( , } 1 , 1 ,I C and C Iτ τ τ τλ γ λ γ λ γ λ γ− = − − = −

( )1, 1.Iτ γ =

( ),Iτλ λ γ≥

( ) ( ), { , } ,I I Iτ τ τλ γ µ γ λ µ γ∧ = ∧

( ), { , } if s.I I sτ τλ γ λ γ∧ ≥

( )( , , ) { , }I I Iτ τ τλ γ γ λ γ=

r-generalized fuzzy closed sets with respect to an ideal
Definition 2.1

Let (X,τ,I) be fuzzy ideal topological space, µ ∈ IX and r ∈ I0. A 
fuzzy set µ is called r-generalized fuzzy closed with respect to an ideal I 
(briefly, r-gfIc) if I(Cτ(µ,γ)\λ) ≥ γ, whenever µ ≤ λ and τ(λ) ≥ r.

Lemma 2.2

Every r-gfc set is r-gfIc.

Proof

Let µ≤λ and τ(λ) ≥ r. Since µ is r-gfc set, then Cτ(µ,γ)≤λ, this 
implies that ( ), 1C µ qτ γ λ− , implies ( )( ) ( )( ), 1   1C µ r x xτ λ+ − ≤ , then 
Cτ(µ,γ)(x)−λ(x) ≤ 0. Thus, I(Cτ(µ,r)\λ) ≥ γ [16-19].

Example

The converse Lemma 2.2 is not true. Let X={a,b} be a set.

µ1(a) =0.4, µ1(b)=0.5; µ2(a)=0.4 µ2(b)=0.6; µ1(a)=0.3, µ1(b)=0.5.

We define fuzzy topology and fuzzy ideal τ, I : IX → I as follows

( ) ( )
1

2

1, if 1, 0 1, if 0
1 1,if , ,if 0.5
2 2
1 1,if ,if 0 0.5
2 2
0, otherwise 0, otherwise

λ λ

λ µ λ
τ λ λ

λ µ λ

= = 
 
 = =
 = = 
 = < <
 
 
 



Then µ is r-gfIc set because,

( )1 1 1 1 0.3
1 1, , 1 \
2 2

C aτµ µ τ µ µ µ µ ≤ ≥ = − = 
 

.

Theorem 2.1

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ ∈ IX and r ∈ I0. If 
µ and λ are r-gfIc sets, then µ∨λ is r-gfIc.

Proof

Suppose µ and λ are r-gfIc sets. If µ ∨ λ ≤ ρ and τ(ρ) ≥ γ, then µ ≤ 

ρ and λ ≤ ρ. By assumption, I(Cτ(µ,γ)\ρ) ≥ γ and I(Cτ(λ,γ)\ρ) ≥ γ and 
hence

I(Cτ(µ∨λ,γ)\ρ=Cτ(µ,γ)\ρ∨Cτ(λ,γ)\ρ) ≥ γ.

Therefore, µ∨λ is r-gfIc.

Remark

The intersection of two r-gfIc sets need not be an r-gfIc set as shown 
by the following example.

Example

The converse Lemma 2.2 is not true. Let X={a,b} be a set.

µ1(a)=0.4, µ1(b)=0.5;µ2(a)=0.4 µ2(b)=0.6;µ1(a)=0.3, µ1(b)=0.5.

We define fuzzy topology and fuzzy ideal τ,I : IX→I as follows:

( ) ( )
1

2

1, if 1, 0 1, if 0
1 1,if , ,if 0.5
2 2
1 1,if ,if 0 0.5
2 2
0, otherwise 0, otherwise

λ λ

λ µ λ
τ λ λ

λ µ λ

= = 
 
 = =
 = = 
 = < <
 
 
 



Then µ is r-gfIc set because,

( )1 1 1 1 0.3
1 1, , 1 \
2 2

C aτµ µ τ µ µ µ µ ≤ ≥ = − = 
 

Therefore, 

1
1 1,  \   .
2 2

C µ µτ  
 

 
≥


I

But μ is not r-gfc set because

( )1 1 1
1 1, , 1
2 2

Cτµ µ τ µ µ µ ≤ ≥ = − ≤ 
 

1µ

Theorem 2.2

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ∊IX and γ∊I0. If µ 
is r-gfIc set and µ ≤ λ ≤ Cτ(µ,γ), then λ are r-gfIc.

Proof

Let µ is r-gfIc set and µ ≤ λ ≤ Cτ(µ,γ). Suppose λ ≤ ρ and τ(ρ) ≥ γ. 
Then µ ≤ ρ. Since µ is r-gfIc, we have I(Cτ(µ,γ)\ρ) ≥ γ. Now λ ≤ Cτ(µ,γ) 
implies that

Cτ(λ,γ)\ρ ≤ Cτ(µ,γ)\ρ,

and hence, I(Cτ(λ,γ)\ρ) ≥ r. Therefore, λ is r-gfIc set [20,21].

Definition 2.2

Let (X,τ,I) be fuzzy ideal topological space, µ∊IX and γ∊I0. A fuzzy 
set µ is called r-fuzzy generalized open with respect to an ideal I (briefly, 
r-gfIo) if 1 µ− is r-gfIc set.

Theorem 2.3

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ, ρ∊IX and γ∊I0. If 
µ is r-gfIo sets if and only if λ\ρ ≤ Intτ(µ,r) for some I(ρ) ≥ r, whenever 
λ ≤ µ and ( )1  τ λ γ− ≥ .

Proof
Suppose that µ is r-gfIo sets. Suppose λ ≤ µ and ( )1   τ λ γ− ≥ . We 

have 1   1 µλ− ≥ − . By assumption,
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and µ ≤ λ, and µ r-gfIo relative to λ and λ is r-gfIo relative to X, then µ 
r-gfIo relative to X.

Proof

Suppose that µ ≤ λ, µ is r-gfIo relative to λ and λ is r-gfIo relative 
to X. Let ρ ≤ µ and ( )1    τ ρ γ− ≥ . Since µ is r-gfIo relative to λ. By 
Theorem 2.5. ρ\ν1 ≤ Int λ(µ,γ) for some Iλ(ν1) ≥ r. This implies that there 
exists τ(ω1) ≥ γ such that

ρ\ν1 ≤ ω1 ∧λ ≤ µ,

for some Iλ(ν1) ≥ λ. Let ρ ≤ λ and ( )1    τ ρ γ− ≥ .Since λ is r-gfIo, we 
have

ρ\ν2 ≤ Intτ(λ,γ)

for some I(ν2) ≥ γ. This implies that there exists τ(ω2) ≥ r such that

ρ\ν2 ≤ ω2 ≤ λ,

for some I(ν2) ≥ γ. Now

ρ\(ν1∨ν2)=(ρ\ν1)∧(ρ\ν2) ≤ ω1 ∧ω2 ≤ ω1 ∧λ ≤ µ.

This implies that ρ\(ν1 ∨ν2) ≤ Intλ(µ,γ) for some I(ν1 ∨ν2) ≥γ.

Thus, µ r-gfIo relative to X.
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( )1 , 1Cτ µ γ ρ− ≤ ∨

For some I(ρ) ≥ γ. This implies

( ) ( )1 (1 ) 1 1Cτλ ρ µ− − ∨ ≤ − −

and hence, λ\ρ ≤ Intτ(µ,γ).

Conversely, assume that λ ≤ µ and τ(1−λ) ≥ γ imply λ\ρ ≤ Intτ(µ,γ) 
for some I(ρ) ≥ γ. Consider τ(ω) ≥ γ such that 1   µ ω− ≤ . Then
1   µω− ≤ . By assumption,

( ) ( )1 \ , 1 1 ,Int Cτ τω ρ µ γ µ γ− ≤ = − −

for some I(ρ) ≥γ. This gives that ( )1 ( ) 1 1 ,Cτω ρ µ γ− ∨ ≤ − − . 
Therefore, ( ),1Cτ µ γ ω ρ− ≤ ∨  for some I(ρ)≥γ. This show that

( )(1 , ) \Cτ µ γ ω γ− ≥I . Hence, 1 µ−  is r-gfIc set.

Recall that the sets µ and λ are fuzzy separated if ( ),C qτ µ γ λ and
( , )qCτµ λ γ .

Theorem 2.4

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ,∈ IX and r∊I0. If µ 
and λ are fuzzy separated and r-gfIo sets, then µ∨λ is r-gfIo.

Proof

Suppose µ and λ are fuzzy separated and r-gfIo sets and ρ ≤ µ ∨ 
λ, and ( )1    τ ρ γ− ≥ . Then ρ∧Cτ(µ,γ) ≤ µ and ρ∧Cτ(λ,γ) ≤ λ. By 
assumption,

ρ∧Cτ(µ,γ)\ν1 ≤ Intτ(µ,γ), ρ∧Cτ(λ,γ)\ν2 ≤ Intτ(λ,γ),

for some I(ν1,ν2) ≥ γ. This means I(ρ∧Cτ(µ,γ)\Intτ(µ,γ)) ≥ γ, and 
I(ρ∧Cτ(λ,γ)\Intτ(λ,γ)) ≥ γ. Thus, I(ρ∧Cτ(µ,γ)\Intτ(µ,γ))∨(ρ∧Cτ(λ,γ)\
Intτ(λ,γ)) ≥ γ.

Therefore,

I(ρ∧(Cτ(µ,γ)∨Cτ(λ,γ))\(Intτ(µ,γ)∨Intτ(λ,γ))) ≥ γ

But ρ=ρ∧(µ∨λ) ≤ ρ∧(Cτ(µ∨λ,γ)), and we have

I(ρ\Intτ(µ∨λ,γ) ≤ (ρ∧Cτ(µ∨λ,γ))\Intτ(µ∨λ,γ) ≤ (ρ∧Cτ(µ∨λ,γ))\
(Intτ(µ,γ)∨Intτ(λ,γ))) ≥ γ.

Hence, ρ\ν ≤ Intτ(µ∨λ,γ) for some I(ν) ≥ γ. This proves that µ∨λ 
is r-gfIo.

Corollary 1.1

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ,∊IX and r∊I0. If 
µ and λ are r-gfIo sets, 1 1andµ λ− −  are fuzzy separated. Then µ∧λ 
is r-gfIc.

Proof

Obvious.

Corollary 1.2

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ,IX and r∊I0. If µ 
and λ are r-gfIo sets, then µ∧λ is r-gfIo.

Proof:

Obvious.

Theorem 2.5

Let (X,τ,I) be an fuzzy ideal topological space, µ, λ,∊ IX and r∊I0. If 
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