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Introduction
Binary and multinomial regressions are commonly used by 

medical scientists and researchers for analysis of binary or polytomous 
outcomes. These methods are routinely used as diagnostic tools in 
all areas of medicine including oncology and cardiology. Zhou et al. 
[1] used logistic regression to relate the gene expression with class
labels. They also used logistic regression for their microarray-based
analysis of cancer classification and prediction. Sator et al. [2] applied
a logistic regression model to identify enriched biological groups in
gene expression microarray studies. Majid et al. [3] performed logistic
regression analysis to predict endoscopic lesions in iron deficiency
anemia when there are no gastrointestinal symptoms.

Morris et al. [4] applied multinomial regression technique to 
analyze the sub-phenotypes by allowing for heterogeneity of genetic 
effects. Richman et al. [5] investigated the association between European 
ancestry and renal disease when compared with African Americans, 
East Asians, and Hispanics. They concluded that European ancestry is 
protective against the development of renal disease in systematic lupus 
erythematosus. Their data had some outliers but they were excluded in 
their final analysis. Timmerman et al. [6] used the logistic regression 
to distinguish between benign and malignant adnexal mass before 
surgery. Merritt et al. [7] used the binary and multinomial logistic 
regressions to investigate the role of dairy food intake and risk of 
ovarian cancer. The validity of estimation and testing procedures used 
in the analysis of binary data are heavily dependent on whether or not 
the model assumptions are satisfied. The maximum likelihood method 
of estimating binary regression parameters using logistic, probit and 
many other methods is extremely sensitive to outliers and influential 
observations. 

There is a large literature on the robustness issue of the binary 
regression. Most of the existing methods attempt to achieve robustness 
by down weighting observations which are far from the majority of 
the data, that is, outliers. The reader is referred to papers published 
by Pregibon [8], Carroll and Pederson [9], and Bianco and Yohai [10]. 
Bianco and Martinez [11] modified the original score functions of the 
logistic regression to obtain bounded sensitivity, which is a concept 
introduced by Morgenthaler [12] using the L1-norm instead of the 
L2-norm in the likelihood, resulting in a weighted score function of 
the original score function. Cantoni and Ronchetti [13] focused on 

robustness of inference rather than the model. Pregibon [8] suggested 
resistant fitting methods which taper the standard likelihood to reduce 
the influence of extreme observations. Kordzakhia et al. [14] introduced 
a robust logistic regression by minimizing the mean-squared deviance 
for the worst case contamination. Bergesio and Yohai [15] introduced 
projection estimators for generalized linear model. These estimators 
have the same asymptotic normal distribution as the M-estimators. 
Hobza et al. [16] introduced a median estimator to estimate the 
parameters of the logistic regression. 

Robust binary and multinomial regression estimators for analysis 
of biomedical data are proposed. This robust method has a bounded 
influence and high breakdown point and efficiency under normal 
distribution and is able to estimate the parameters of logistic and probit 
regression models. The proposed model is computationally simple and 
can easily be used by researchers. 

Binary Regression Model
Consider the model yi=π(xi;β)+εi where ε1,ε2,…, εn are independent 

random variables with E(εi)=0 and Var(εi)=π(xi;β)(1−π(xi;β)), and 
y1,y2,…,yn are n independent Bernoulli random variables with 
Eyi=π(xi;β) and Var(yi)=π(xi;β)(1−π(xi;β)) such that the conditional 
success probability is given by P(yi=1| xi)=π(xi;β) and xi=(xi0,xi01,…
,xip)

t; 1≤i≤n is a p+1 dimensional vector of predictor variables with 
β=(β0,β1,…,βp)

t as the parameters vector. 

There are various estimation methods for the estimation of the 
parameter vector β. The most commonly used method is the logistic 
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Abstract
In this paper we introduce new robust estimators for the logistic and probit regressions for binary, multinomial, 

nominal and ordinal data and apply these models to estimate the parameters when outliers or influential observations 
are present. Maximum likelihood estimates don’t behave well when outliers or influential observations are present. One 
remedy is to remove influential observations from the data and then apply the maximum likelihood technique on the 
deleted data. Another approach is to employ a robust technique that can handle outliers and influential observations 
without removing any observations from the data sets. The robustness of the method is tested using real and simulated 
data sets.
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regression which is used to analyze the effects of explanatory variables 
on the binary response y. In the logistic regression the link function 
πL(xi;β) is assumed to have the following functional form 
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The logistic transformation of πL(xi;β) is called the logit function 

and is given by
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The probit function is a link function of the form 
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The tabaistic model introduced by Tabatabai and Argyros [17] has 

the link function: 
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Where arcsinh (.) represents the inverse hyperbolic sine function. 

The tabaistic transformation function is called the tabit function 
and is defined as

0
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Where Csch (.) denotes the hyperbolic cosecant function and the 
complementary log-log model link function has the form
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with the complementary log-log transformation function (cllogit) 

defined as
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Figure 1 shows the graph of πL, πCLL, πP and πT where of πL, πCCL, πP 

and πT take values between zero and one. The solid curve is the graph of 
πL function, the dotted curve is the graph of πP function, the dot-dashed 
curve is the graph of πCLL function, and the dashed curve is the graph 
of πT function. Figure 2 shows the graph of logit (πL). cllogit (πCLL), 
probit(πP), and tabit(πT). The solid curve, the dotted curve, the dot-
dashed curve and the dashed curve are the graph of logit (πL) function, 
the graph of probit(πP) function, the graph of cllogit (πCLL) function, and 
the graph of tabit(πT) function, respectively. The principle of maximum 
likelihood is ordinarily used to estimate the model parameters by 

maximizing the log-likelihood function of the form

1
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In other words, the estimate β̂  of β is 
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Although the maximum likelihood estimator is asymptotically 
efficient, it is not recommended as a method of choice when outliers 
are present. The alternative techniques are robust statistical methods.

Tabatabai et al. [18] defined the one parameter family of 
differentiable functions ρω(x) of the form ρω(x)=1−Sech(ωx), where the 
positive real number ω is called the tuning constant. 

The bounded function ρω: R→ R is a differentiable function satisfying 
the following properties:
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Under the normality assumption for the error term εi, the asymptotic 
efficiency (Aeff) is defined as

' 2
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Where ψω is the derivative of ρω and is equal to 

 ( ) ( ) ( )x Sech x Tanh xωψ ω ω ω= ,

Where Sech and Tanh represent the hyperbolic secant and 
hyperbolic tangent, respectively. 
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The tuning constant ω can be calculated by solving the following 

equation (1) for ω. The numerical values for ω at the efficiency levels 
0.80, 0.85, 0.90, and 0.95 are approximately 0.721, 0.628, 0.525 and 
0.405, respectively. Although the choice for tuning constant ω is left 
for the investigator to decide, we do recommend an efficiency of 
approximately 90 percent which corresponds to ω=1/2. We now 
consider the hat matrix of the form
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For j=1,2,…,k, define
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If the model has intercept, then the column vector X0 has the form
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Figure 1: Graphs of πL, πCLL, πP and πT functions.
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Figure 2: Graphs of logit (πL). cllogit (πCLL), probit (πP), and tabit (πT) functions.
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and for i=1,2,…,n, define 
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and for ω>0 define the function Gω(u) as
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Where H(k1,k2,k3,t) is the Gauss hypergeometric function 2F1 with 
parameters k1,k2 and k3. If ω=1, then we have
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and if ω=1/2, then we have
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Define the Hessian matrix Hb for binary data as 
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Then an estimate of the variance-covariance matrix for vector β̂  is
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−= −  with an estimated variance σ2 given by
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To perform hypothesis testing, we let pRΩ ⊆  be 

the parameter space and 
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To test the following hypothesis

 0 0:H β ∈Ω  against the alternative 1 0: cH β ∈Ω ,

one can use the Wald type test statistic which is defined as
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The null distribution of the statistic 2
nW  is asymptotically a chi-

square distribution with q degrees of freedom. 

Robust Multinomial Logistic Regression Model
In this section we generalize the robust binary method to 

multinomial regression where the response y includes k categories. 
When k=2, this model reduces to the binary regression. Now, consider 
the response matrix Y given by
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This means that yij=1whenever the ith response is in category j. 

For i =1,2,…,n, 
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dimensional space with β=(β0,β1,…,βk-1)
t. The multinomial likelihood 

function of parameter vector β is defined by
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and the multinomial log- likelihood function is
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For the generalized logit when the first category is the designated 

reference category and the intercepts are β01,β02,…,β0k-1, we get
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and for j = 1,…,k−1 the logit function ηj(xj;β) is the log-odds of 
membership in category j versus the reference category 1 and is equal to
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The principle of maximum likelihood can be used to estimate model 
parameters. The maximum likelihood estimate of the parameters vector 
β is 
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The robust estimate of the model parameters is given by
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Define the Hessian matrix Hp as 
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For the cumulative logit model for ordinal k-category response, 
the cumulative probability for the ith response belongs to the response 
category less than or equal j is
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and for j=1,…,k−1 the ordinal logit Oj(xj;β) is the log-odds of falling 
into or below category j against falling above it and is given by
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called the proportional odds model.

Let ( ; ) ( ; )O
j i i ix P y j xπ β β= = . Then we have

 

1

1

1

1 1
1 [ ( ; )]

1 1( ; ) 2 1
1 [ ( ; )] 1 [ ( ; )]

11
1 [ ( ; )]

i

O
j i

j i j i

k i

if j
Exp O x

x if j k
Exp O x Exp O x

if j k
Exp O x

β

π β
β β

β

−

−


=

+ −
= − ≤ ≤ − + − + −


= −
+ −

and for the ordinal probit we have
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Application
Vasoconstriction example

Vasoconstriction and vasodilation are two important physiological 
mechanisms used to control the circulation of blood throughout the 
body. These mechanisms directly affect both the blood pressure and 
the distribution of the blood in the body. Vasodilation refers to the 
expansion of blood vessels through relaxation of smooth muscles in the 
vessel walls. This allows increased flow of blood through these vessels 
and also decreases the blood pressure. Contraction of the same muscles 
tightens the blood vessels, which decreases blood flow and increases 
pressure. Thus, vasodilation and vasoconstriction work in opposition 
to adjust both blood flow and blood pressure. The usual controls for 
vasoconstriction and vasodilation are done by smooth muscles and 
autonomic nervous system, triggered by the medulla. These responses 
can also be affected by drugs promoting either constriction or dilation. 
Furthermore, there is a means of control by circulating hormones 
in the bloodstream, as well as control by intrinsic mechanisms to 
vasculature, called the myogenic response. The antagonistic operation 
of vasoconstriction and vasodilation is used by the body for numerous 
purposes. Primary among these is regulation of the supply of oxygen 
and nutrients to the cells of the body, to meet their needs. Furthermore, 
this regulation of blood flow is also needed for thermoregulation within 
the body. At times of increased metabolic needs or needs for oxygen in 
certain organs or systems in the body, the blood flow to these regions 
will also be modulated. Finally, vasoconstriction is also important in 
restricting blood flow to regions of the body in cases of traumatic injury. 

The data set was analyzed originally by Finney [19]. It consists of 39 
observations where the binary response variable y=1 or y=0 represent 
the presence or absence of vasoconstriction of the skin respectively. This 
experimental data set considers the effect of inhalation of air in a single 
deep breath on the presence or absence of vasoconstriction in the digits. 
Presence or absence of vasoconstriction is considered as a categorical 
variable, and the study considers the effect of two variables, the volume 
of inhaled air and the rate of inhalation. (Data has hidden outliers 
so that the robust logistic regression will be useful in its analysis.) In 
the remainder of this work, we denote by ML and BY, the Maximum 
Likelihood and Bianco-Yohai methods, respectively. By examining 
Table 1 we conclude that the new robust estimator has produced the 
closest parameter estimates to the maximum likelihood estimates when 
the outliers were removed. In addition, the 2

arcχ is the lowest for the new 
robust method. The 2

arcχ is defined by Kordzakhia et al. [14] as

2 2

1

4(arcsin arcsin ( ; ) )
n

arc i i
i

y xχ π β
∧

=

= −∑
Plasma example

The erythrocyte sedimentation rate (ESR) is very important. It is 
a common hematology test which is simple and inexpensive but can 
be used to detect infection or acute phase response, which can alert 
physicians to a wide variety of conditions. The test is very versatile and 
can assist physicians in detecting conditions from rheumatoid arthritis 



Citation: Tabatabai MA, Li H, Eby WM, Kengwoung-Keumo JJ, Manne U, et al. (2014) Robust Logistic and Probit Methods for Binary and Multinomial 
Regression. J Biomet Biostat 5: 202. doi:10.4172/2155-6180.1000202

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 6 of 8

Volume 5 • Issue 4 • 1000202

to systemic lupus erythematosus to multiple myeloma; however it is 
non-specific and is usually combined with other tests. In practice, ESR 
is used widely to test for a range of conditions, including inflammation, 
trauma, and malignant disease. Studies have also suggested the utility 
of the ESR among the elderly as a general indicator of level of sickness 
or disease. Recently ESR has also attracted attention for a potential role 
as a predictor for the development of cardio-vascular disease and heart 
failure.

The ESR simply measures the rate at which red blood cells 
precipitate during a period of one hour. Anticoagulated blood is placed 
in an upright tube, and the rate at which the erythrocytes settle is 
measured in mm per hour. Although the test is a direct measurement 
of rate of sedimentation, the balance between factors stimulating 
sedimentation and factors resisting sedimentation allows for a number 
of clinically relevant factors to influence this rate. Fibrinogen is the 
most important factor promoting sedimentation, and the high level of 
fibrinogen in the blood during the inflammatory process makes this 
test sensitive to inflammation. High levels of fibrinogen in the blood 
decrease the repulsive forces experienced between the negatively 
charged erythrocytes and favor the formation of rouleaux. These stacks 
of erythrocytes that stick together will settle faster and lead to an 
increased ESR. Other acute phase reactants, or other large molecules, 
especially when positively charged, can have a similar effect, although 
fibrinogen has been observed to have the largest effect.

A recent focus on the inflammatory nature of artherosclerosis has 
been accompanied by a recent study of increased levels of ESR and 
elevated risk of coronary heart disease. Erikssen et al. [20] observed 
that elevated ESR is a strong predictor of mortality from heart failure, 
suggesting it may serve as a marker for aggressive forms of coronary 
heart disease. Andresdottir et al. [21] observed an increased risk of 
coronary heart disease among the top quintile or ESR rates, with a 
hazard ratio of 1.57 for men and 1.9 for women. The 2005 paper of 
Inglesson et al. [22] also observes a significant association between 
elevated ESR and heart failure, suggesting both that inflammation is 
involved in the processes leading to heart failure and that the ESR may 
be used in evaluating this process. In addition to the well-established 
uses of ESR, Saadeh [23] mentions some potential new applications 
of this test such as bacterial otitis media, acute hematogenous 
osteomyelitis, AIDS, pelvic inflammatory disease, prostate cancer, and 
early prediction of stroke severity.

Although the ESR usually detects acute phase response from 
fibrinogen in blood in conditions such as those mentioned above, in 
certain cases there are factors which decrease the rate of sedimentation. 
One important factor that can slow the rate of sedimentation is 

irregularity in the erythrocytes, either in shape or unusually small size. 
As a consequence, ESR can detect certain blood diseases (including 
sickle cell anemia and spherocytosis) which lead to a lower than normal 
rate of sedimentation, as observed in Bridgen [24]. Other conditions 
that may also lower ESR include the extreme levels of white blood cells 
as observed in chronic lymphocytic leukemia. Furthermore the surplus 
of erythrocytes found in patients with polycythemia makes rouleau 
formation difficult and decreases the ESR.

In clinical applications the erythrocyte sedimentation rate may in 
many cases be treated as a categorical variable, with a normal ESR for 
values less than some given α and an elevated ESR for values greater 
than α. When representing such a set of data where ESR depends on one 
or more variables the logistic regression may be used. For instance in 
the data set from Collett [25], the ESR is considered as a function of two 
variables, the level of fibrinogen and the level of γ-globulin. The data for 
32 individuals represents the levels of fibrinogen and γ-globulin in the 
blood and whether the ESR level is healthy (< 20 mm/hr) or unhealthy 
(≥ 20 mm/hr), and the logistic regression is used to describe how both 
fibrinogen and γ-globulin affect the ESR variable. Since this data set 
contains (hidden/influential) outliers, both the probit method of 
regression and the logit method do not give accurate results. However 
we observed that our new methods for robust logistic regression do 
represent the data accurately. The logit, when all 32 observations are 
included in the study, is given by

 ˆ( ( )) 6.845 1.827i iLogit X fπ = − +

When one removes the influential observations 15, and 23, the logit 
model becomes

 ˆ( ( )) 59.62 17.46i iLogit X fπ = − +

The level of γ-globulin was not a statistically significant variable to 
be included in the model. Thus only the level of fibrinogen f is used in 
the variable selection.

Again, examining Table 2 reveals that the new robust estimator has 
produced the closest parameter estimates to the maximum likelihood 
estimates when the outliers were removed as well as the lowest value 
for the 2

arcχ .

Mental health example

The following example involves the ordinal multinomial regression. 
The data comes from a mental health study for a random sample of adult 

    Methods         Coefficients 
        b0              b1             b2

            Standard Error
         b0           b1           b2

ML

ML (Influential 
observations
removed )

  -2.887           5.191         4.578      

(
2
arcχ =48.3118)

  -24.590        39.539      31.928

(
2
arcχ =32.0159)

1.324      1.869       1.843  

        
13.974    23.153   17.687    

BY 
c=1.25

-5.3214      8.4454     7.4801

(
2
arcχ =43.1853)

9.7647   14.1903   12.3199

New Robust 
c=0.5

-24.1191   38.4639  30.9608

(
2
arcχ =32.2671)

15.3232   24.9410   19.2365

Table 1: Parameter estimates for Vaso Data Using ML, BY and New Robust 
Method.

Methods Coefficients 
b0                   b1            

 Standard Error
b0               b1          

ML

ML (Influential 
observations
removed )

   -6.8451            1.8271      

   (
2
arcχ =38.9405)

-59.62               17.46      

(
2
arcχ =29.1415)

2.7703      0.9009 

45.51       13.50

BY

c=1.25
           

-8.3774            2.2870

(
2
arcχ =37.0421)

5.4383      1.6632

           

New method
c=0.5

 -60.5094  17.7654

 (
2
arcχ 29.2719)

49.7325   14.7409

Table 2: Parameter Estimates for Plasma Data Using ML, BY and New Robust 
Method.
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residents of Alachua County, Florida. This data was appeared in Agresti 
[26]. The mental impairment is divided into four categories (well, mild 
symptom formation, moderate symptom formation, and impaired). 
The explanatory variables are life events index X1 and socioeconomic 
status X2, where X2 is binary and takes high and low levels. There is no 
outlier in this data. We just want to show how the method works even 
when outliers are not present. The logit is given by

( ) 1 1 2 2   jlogit P Y j X Xα β β ≤ = + + 
Table 3 gives the parameter values using maximum likelihood 

method as well as the new robust ordinal multinomial method. The R 
program for this example is provided in the Appendix.

Simulation
To evaluate the performance of the new robust method for logistic 

regression we conduct a Monte Carlo simulation. In the first round 
of our simulation, we use one explanatory variable and in the next 
round, we increase the number of explanatory variables to two. We first 
generate an independent random sample of size 100 from the standard 
normal distribution with mean 0 and standard deviation equal to 0.5. 
We call the variable x. Then we generate a sample of error terms εi of 
size 100 from the logistic distribution with mean zero and standard 
deviation equal to 1. The dependent variable y is generated using the 

Parameter Estimated Standard Error Robust estimate Standard Error
Intercept 1 -0.2819 0.6423 -.2374 0.7265
Intercept 2 1.2128 0.6607 1.1923 0.7507
Intercept 3 2.2094 0.7210 2.2981 0.8364

Life -0.3189 0.1210 -.3181 0.1618
Socioeconomic status 1.1112 0.6109 1.1423 0.7789

Table 3: Parameter estimates for Mental Health data using robust ordinal method.

formula 

1 3 01
1 3 00

i i
i

i i

if x
y

if x
ε
ε

+ + >
=  + + ≤

.

The model parameters are 1 (intercept) and 3 (coefficient for x). 
We then select a random sample (5%) from the generated sample x 
and contaminate the selected sample by multiplying each x value by a 
factor of 10. Then we repeat the above procedures 1000 times. Finally, 
we estimate both the bias and mean squared errors using the following 
equations



1

m

l
lbias

m

θ
θ== −

∑
,

where m is the number of iterations in the simulation. The mean 
squared error is estimated by 

( )21 
ˆm

lMSE
m

θ θ
=

−
=
∑

For the two explanatory variables, we generate two independent 
normal random samples of size 100 from a normal distribution with 
mean 0 and standard deviation 0.5 and call them x1 and x2 respectively. 
Then we select 5% of this random sample (3% from x1 and 2% from x2) 
and multiply the selected samples by 10. Then we generate a sample 
of error terms εi of size 100 from the logistic distribution with mean 
zero and standard deviation equal to 1. The dependent variable y is 
generated using the formula

1 2

1 2

1 .5 2 01
1 .5 2 00

i i i
i

i i

if x x
y

if x x
ε
ε

+ + + >
=  + + + ≤

We calculate the parameter estimates and continue the iteration 
1000 times. In addition, we calculate the bias and mean squared errors. 
Tables 4 and 5 show the results of simulations using ML, BY and the new 
robust method with one and two explanatory variables, respectively. 
For binary logistic regression the simulation results indicate that our 
new robust method is as good as the BY method. The BY method only 
covers binary logistic regression whereas our method not only covers 
binary but also covers multinomial regression for both nominal and 
ordinal responses. 

Discussion and Conclusions 
In this work we have proposed a new robust method to analyze 

binary and multinomial regression models. We believe that these new 
robust methods for binary and multinomial regressions have potential 
to play a key role in modeling categorical data in medical, biological 
and engineering sciences. We have shown the lack of robustness of the 
maximum likelihood technique when outliers are present. In both real 
examples and simulated ones and when the outliers are present, the new 

Method Bias MSE Bias  (5% x) MSE (5%)
ML  

b0 0.0430 0.0876 0.08065 0.07938

b1 0.1784 0..6310 1.00777 2.16368
BY

b0 0.0463 0.0923 0.0027 0.0842

b1 0.1857 0.6662 0.2336 0.8885
New Robust

b0 0.0342 0.0897 0.0125    0.0779
b1 0.1125 0.5321 0.2642    0.9771

Table 4: Simulation Results for Logistic Regression (b0=1, b1=3, N=100, m=1000).

Method  Bias MSE Bias (5%) MSE (5%)
ML      
b0 0.04283 0.08152 0.00312 0.07526
b1 0.01071 0.25287 0.19770 0.23694
b2 0.10448 0.38209 0.36612 0.75513
BY
b0 0.0485 0.0856 0.0232 0.0788
b1 0.0128 0.2650 0.1711 0.2456
b2 0.1143 0.4028 0.0909 0.5125

New Robust                     
b0 0.0410 0.0786 0.0270 0.0755
b1 0.0255 0.2799 0.1045 0.2676
b2 0.1034 0.4037 0.0553 0.5032

Table 5: Simulation Results for Logistic Regression (b0=1, b1=0.5, b2=2, N=100, 
m=1000).
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robust method performed well. In conclusion the motivation was to 
introduce a new robust loss function of residuals which can attain high 
breakdown value. The method has high efficiency and high breakdown 
points with bounded influence function. 
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