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Introduction
Rodent models are designed to help predict functional outcomes 

of neurological disorders and injuries. Many of the behavioral 
outcomes appear to parallel clinical symptoms observed in human 
patients to a remarkable degree. About 11,000 people in the United 
States sustain SCI, leaving over 200,000 people living with debilitating 
levels of chronic paralysis. Further, 62% of these injuries are at the 
cervical level (http://www.uab.edu/medicine/sci/). Unilateral cervical 
spinal rodent models are desperately needed to assess the potential 
of treatments to help patients regain function. Using different injury 
models and sensitive behavioral tests that target the site and extent of 
injury, treatments aimed at improving functional recovery can be more 
adequately evaluated. Some models are considered more clinically 
relevant than others; however, it is important to remember that human 
SCI is very complex and many different injury types occur in human 
patients. 

Understanding the strengths and limitations of the models will 
allow more relevant analysis of the injury, behavioral sequel, and 
therapeutic approaches. 

Injury Models of SCI 
Contusion and compression injuries are the most common forms 

of SCI in humans. Researchers can create these injury types using 
balloon compression, spring-loaded clips, and computer-controlled 
impact. These devices can be controlled for force of impact and dwell 
time that the force is applied. Each model has strengths and weaknesses 
(Table 1). This allows researchers to tailor the injury to their specific 
goals. 

Balloon compression models are advantageous because they can 
precisely control the time and force of the compression and can be 
performed percutaneously, without a laminectomy. This model mimics 
a burst intervertebral disc injury in humans. These injuries are often not 
considered relevant because the decompression occurs much earlier 
than would occur in clinical cases. Spring-loaded clip models also allow 
good control of the time and force of the injury and are easy to perform 
with precise placement. This is one of the most inexpensive options for 
compression or contusion injury models. However, clip compression 
models require extensive decompression of the spinal canal which may 
cause further damage or inflammation. Compression injuries can also 
be performed with modified surgical forceps to create a reproducible 

functional deficit, and are more commonly used in a thoracic injury 
model [1,2]. Static weight compression is another model in which a 
known weight is placed gently on the spinal cord and held there for a 
controlled period of time [3]; because there is less acute damage, this 
model is not as clinically comparable, but still serves an important role 
to assess the damage of compression alone. These models are especially 
useful to assess the most optimal decompression time after injury [4] 
and have helped change the treatment of human patients after SCI. 
Indeed, prior to 1997 surgery was not performed as quickly as possible 
on patients in fear of doing further harm, but currently, patients are 
rushed into surgery to remove pressure from the spinal cord to prevent 
further damage [5]. 

Computer-controlled impactor injury models are generally 
recognized as the most clinically relevant models [6], and are well suited 
for measuring functional deficit. There are many different devices 
available for this model: (1) the MASCIC device uses a weight drop 
technique with different heights to control the severity of the lesion 
and has been well characterized for thoracic SCI [7], (2) the OSU device 
controls the displacement of the head to control severity of the lesion 
[8,9], (3) the PinPoint device from Hatteras that allows control over 
velocity and displacement which was originally described for thoracic 
injury [10], and (4) the Infinite Horizon Impactor controls applied 
force to control the severity of the lesion, which has been thoroughly 
characterized for thoracic [11] and cervical SCI [12]. These approaches 
can all be used to create reproducible lesions; however, the necessary 
equipment can be expensive to purchase and the techniques require 
extensive training for proficiency. These models have been used to 
examine functional deficits and correlate them to histopathology [12], 
to examine demyelination [13], and as a means to assess biomaterial 
delivery [14] and cell delivery [15] for repair and regeneration. 

Transection models are considered less clinically relevant; however, 
they allow researchers to be precise in the tracts affected, and allow them 
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to tailor their behavioral tests to assess the functional recovery most 
accurately. Transection models are usually performed with precision to 
remove specific tracts or areas of tissue. Dorsal hemisection [16], dorsal 
quadrant [17], lateral hemisection [18], dorsal column transection [16], 
and other models have been performed. These models are especially 
useful for assessing axon regeneration because the amount of axon 
sparing should be minimal or controllable, especially if a complete 
transection is performed. Researchers have used transection models 
to examine multiple treatments, including biomaterials [19], drugs or 
growth factors [20], and stem cell transplantation [21]. If researchers 
wanted to compare and assess the ability of various treatment options 
to support regeneration of the rubrospinal tract, then a quadrant or 
lateral hemisection can be very useful to guarantee that no axon sparing 
occurs. SCI lateral hemisection models include a lesion that removes 
half of the tissue laterally and is generally performed manually by the 
experimenter. This model has similar deficits as the human Brown-
Sequard syndrome, in which half of the body loses function, whereas 
the other half of the body retains function [22]. Dislocation [23], and 
ischemia [24], has also been modeled anatomically and behaviorally.

Behavioral Tests 
Researchers also need to determine which behavioral tests are 

most relevant for their species, model, and goals. Just as models will 
show different deficits based on which tracts are affected, behavioral 
tests reveal specific functional deficits? For example, if a model 
damages the corticospinal tract only, the animal’s locomotion should 
not be seriously affected, so behavioral tests examining locomotion 
should not be the only ones used. Similarly, physical therapists and 
physicians examine human patients using the American Spinal Injury 
Association (ASIA) scale to look at specific deficits. This scale is used 
to determine the extent and level of injury for patients (http://www.
asia-spinalinjury.org/). Patients are rated on specific functions that 
are associated with levels of the spinal cord (e.g., C5 is associated with 
bicep strength) and given a score of 0-5 where 0 is complete paralysis, 
and 5 is normal function. Scores of all of the tested functions are then 
combined to give them an overall score from A-E where A is complete 
paralysis (including sensory function) and E is normal function (http://
www.asia-spinalinjury.org/elearning/ISNCSCI_Exam_Sheet_r4.pdf). 

Vibrissae-elicited placing is a commonly used test to examine 
the sensorimotor function after spinal cord injury in rats [18,25]. 

This test involves stimulating the whiskers on a table edge to elicit a 
motor response of the animal placing its forepaw onto the table to 
gain stability (http://homepage.psy.utexas.edu/homepage/group/
schallertlab/Et-1%20placing.mpg). A graded score of 0-4 is assigned 
based on the extent of movement of the limb being tested where 0 is 
complete paralysis, and 4 is normal function. This test can indicate the 
integrity of motor and sensory tracts. This test eliminates the possibility 
of a reflex response being elicited; therefore, this test can reveal that a 
motor tract is intact along the distance it travels. Based on the level of 
function, this test may also reveal the extent of damage to the cross-
sectional area of the motor tract. 

Contact placing is similar to vibrissae-elicited placing and involves 
a light touch to the paw from which the motion is being elicited; this 
test has been performed on rats [26] but is difficult to perform on mice. 
This involves a light touch that does not signal the pressure sensory 
nerves in the skin to elicit a response, and the experimenter must be 
careful to not move the limb or any joints during testing. This test can 
show if there is a reflex; however, it will not differentiate between a 
reflex and a complete tract connection, where the tactile information 
made it to the brain prior to eliciting the response. This test is similar 
to the tests performed for the ASIA scale used for SCI patients to 
determine if they can feel light touch. In human patients, they are asked 
to tell the doctor if they feel the light touch; however, with animals, that 
is not possible, so this test incorporates motor movement as the signal 
to show that the light touch is perceived. 

Proprioceptive placing indicates whether the reflex arc is still 
present. If the animals are able to respond to light touch, this test will 
not work because they will respond before there is motion of the limb. 
The test has been performed on rats [26] but is difficult to perform in 
mice. By stretching the tendon as a joint is extended, a reflex response 
is elicited. This is similar to the reflex tests performed for the ASIA test 
in human SCI patients. 

Limb use asymmetry during vertical-lateral exploration in a 
cylinder (20 cm diameter, 30 cm height for rats; 11 cm diameter, 20 
cm height for mice) is an easy, inexpensive test to determine whether 
the animal has a preference in its limb use; this test has been used 
extensively in rodents [25,27-30]. The cylinder test involves allowing 
the animals to move naturally and vertically explore the walls around 
them while the experimenter records which limbs are used for 

Injury Model Pros Cons Clinical Correlates 
Compression 
•	 Balloon 
•	 Spring-loaded clip 
•	 Modified forceps 
•	 Static weight 

•	 Control of time of application 
•	 Control of force of application 
•	 Useful to assess decompression 

time 
•	 Inexpensive 

•	 Decompression occurs much earlier 
than in clinical settings 

•	 Extensive lamina removal causing 
extensive decompression 

•	 Intervertebral disc burst injury 
•	 Determine optimal 

decompression time 

Computer-controlled 
impactor contusion 

•	 MASCIC 
•	 OSU 
•	 Infinite Horizon 
•	 PinPoint 

•	 Reproducible lesions 
•	 Useful to assess demyelination 

and axon sparing 
•	 Considered most clinically 

relevant model 

•	 Expensive •	 Considered most clinically 
relevant model 

Transection 
•	 Dorsal hemisection 
•	 Dorsal quadrant 
•	 Lateral hemisection 
•	 Dorsal column 

•	 Useful to assess axonal 
regeneration 

•	 Inexpensive 

•	 Considered less clinically relevant •	 Stab or shooting injury 
•	 Brown-Sequard syndrome 

Table 1: Pros and cons of surgical models. Differences in surgical models allow researchers to choose the surgical model to best study their goals.

http://www.asia-spinalinjury.org/
http://www.asia-spinalinjury.org/
http://www.asia-spinalinjury.org/elearning/ISNCSCI_Exam_Sheet_r4.pdf
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http://homepage.psy.utexas.edu/homepage/group/schallertlab/Et-1 placing.mpg
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Citation: Geissler SA, Schmidt CE, Schallert T (2013) Rodent Models and Behavioral Outcomes of Cervical Spinal Cord Injury. J Spine S4: 001. 
doi:10.4172/2165-7939.S4-001

Page 3 of 5

J Spine    Brain & Spinal Cord Injury              ISSN: 2165-7939, an open access journal 

weight supported stepping on the wall (http://homepage.psy.utexas.
edu/homepage/group/schallertlab/CylinderTest.mpg). This allows 
a clear determination of sidedness in natural function. This would 
allow experimenters to determine which side of the animal was more 
affected by the injury, and in the case of unilateral injuries, it allows 
the experimenters to determine the level of use of the ipsilesional vs. 
contralesional limb. 

Swim tests can reveal functional deficits in forelimbs and hindlimbs. 
Normal rodent behavior when swimming to an escape platform is to 
hold both forelimbs forward under their chin in a planing position 
while stroking with the hindlimbs [31]. With a deficit in the forelimbs, 
an animal will not be able to plane their forepaws. This can result in 
one limb dragging. This test is very reliable for cervical SCI injuries to 
determine presence of forepaw planing behavior, the angle of a limb 
that is not planing, and deficits in hindlimb stroking motions [30]. 

Open-field locomotion is used to assess the animal during 
normal functional movement. This involves observing and analyzing 
the position and weight support on individual forelimbs during 
uninterrupted locomotion. These tests are sensitive to the amount 
of limb use when the animals are behaving naturally. One well 
standardized open field test is the Basso, Beattie, and Bresnahan (BBB) 
test. Although, it is better suited for thoracic injuries, it has been used in 
low cervical injuries extensively as well [32]. There are a few open-field 
locomotion tests, including the IBB [33], FLS [34], FLAS [35], and one 
developed by a group at the University of Provence in Marseille, France 
[36] that are more specifically designed for cervical injuries. Each test 
provides a score for different behaviors that are sequential categories of 
forelimb function, including weight support on the limbs, paw position 
and orientation, and swinging motion. These tests observe animals in a 
similar situation to human locomotion because they do not use forced 
motion of the ipsilesional limb and allow the animal to compensate for 
the injury the way they usually compensate while moving on their own. 
Compensation occurs frequently in rodents and humans to increase 
speed, efficiency, or accuracy of a movement but does not exercise or 
demonstrate the functional ability of the ipsilesional limb. 

Forepaw dexterity tests show fine motor movements and reveal 
paw strength and function. Animals can use their paws differently 
based on the model and the tracts affected. Similarly to human deficits, 
some animals cannot grip an object, and some cannot release their 
grip on an object. Some can move individual digits while others have 
only moderate wrist or shoulder function. A few pasta tests have 
been developed to reveal these differences. The Jones and Whishaw 
groups have developed a test to examine individual digit function 
[37,38], while Schmidt group uses a similar pasta type to examine 
overall forelimb function [18]. Other handling tests use different 
types of foods, including macaroni pasta, peanuts, and grapes among 
other types [39] to examine functional deficits. Time to eat the object, 
forepaw use, and individual digit motion are all examined in these 
tests. Improvement can be quantified as the animals increase use of the 
ipsilesional limb. These are similar to human SCI patients’ abilities to 
grip and manipulate objects. The ASIA exam includes finger strength 
and abduction assessment to determine injury level (http://www.asia-
spinalinjury.org/). 

Forced motion tests have been developed to assess the functional 
abilities of each forelimb while preventing compensation with the 
other limb. The postural instability test (PIT) (http://homepage.psy.
utexas.edu/homepage/group/schallertlab/PIT1.mpg) and a forelimb 
alternation test (http://homepage.psy.utexas.edu/homepage/group/
schallertlab/alt.v.nonalt_mpg.mpg) have been used to examine 

forelimb function during forced forward motion [18]. These tests are 
scored by determining the distance before motion is elicited while 
the animal is moved forward with only forelimb support, showing 
improvement as the score aligns with the pre-op distance. These tests 
allow researchers to examine an animal’s ability to use the limbs while 
removing the chance for compensation with the other limb, giving the 
experimenter an understanding of actual functional abilities whether 
or not the animal has been compensating for that same motion. This 
is more comparable to clinical tests, as most of the tests performed on 
patients examine a patient’s ability when they consciously attempt to 
make individual movements. 

This is by no means a comprehensive review, and many other 
behavioral tests exist such as the Montoya staircase food-retrieval [12, 
25], grooming [12,27], automated walkway [12,27], inclined plane 
[32,40-42], and horizontal ladder [27] tests. Each of these tests can 
reveal specific functional recovery and researchers should consider 
which tests are most relevant for their goals and expectations. Further, 
we did not describe many sensory tests here and these should also be 
considered. The dot patch removal test [16,25,30], Von Frey hairs [42], 
and heat test [43] can all elicit responses to sensory input and may 
provide insight to hyperalgesia [44]. 

Considerations 
When determining which animal model and behavioral tests to use, 

researchers have many factors to consider, including goals, species-
specific differences, cost, and analysis time and ability. The detail that 
can be attained using many behavioral tests should not outweigh the 
importance of standardized measurement between research groups 
with similar goals. Comparability of the models and assessment is 
critical to translate treatment to the clinic. Further, it is important 
to recognize the importance of planning. Researchers should choose 
models to meet their goals rather than performing a barrage of tests 
and reporting the most significant findings. 

The therapeutic goals should match the damage expected by 
the model [7]. For example, if a treatment is designed to specifically 
connect rubrospinal tract neurons, a moderate midline contusion 
injury will not suffice to cause much damage to that region. The region 
of interest also needs to be chosen wisely to achieve specific deficits and 
to allow for recovery.

To determine which species and strain to use for the study, 
researchers must also consider what their goals are. Rats exhibit similar 
physiological changes to humans after SCI in that a cavity forms within 
the area. Mice do not exhibit this physiology; however, genetically 
controlling mice is much easier and physiological changes can be 
examined more easily using specific mouse strains. Such differences 
in rodents can provide powerful analysis if the correct animal model 
is chosen. Researchers have also used larger animals such as cats 
[44,45], dogs [46], and primates [47], or smaller animals, such as eels 
[48], zebrafish [49], and lamprey [50]. The regenerative capacity in 
each species varies and provides a platform for examining different 
characteristics of injury based on the experiment. 

With each of these considerations also comes cost. Different injury 
models may be much more expensive to implement. The Infinite 
Horizon Impact or is much more expensive than a set of aneurysm 
clips, and a transection model can be performed with standard surgical 
instruments, making it even less expensive. Further, the cost of the 
species used, and the cost of post-operative animal care should be 
considered. 

Anatomical analysis of the histopathology can be time 
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consuming. Tract tracing can elucidate which specific tracts were 
spared or regenerated after injury, and specific staining can inform 
researchers about myelin damage and glial responses. However, 
physiological examination does not speak to the function of the tissue. 
Electrophysiological assessment would be very valuable to determine 
functionality of specific regions; however, it is very difficult to carry out. 
Behavioral assessment should be performed to assess functional deficit 
and recovery in combination with histological assessment. Behavioral 
assessment can elucidate the influence of the damage and repair of the 
tissue on overall function. Different models can make some analysis 
more easily performed or relevant; for example, transection models 
can be advantageous to eliminate axon sparing, but sprouting and 
axon sparing are more relevant in a contusion model. Transection 
models create a space for placement of pre-formed biomaterials, but 
if a treatment is injectable, a contusion model may be chosen to more 
closely mimic clinical injuries. 

It is important to consider the leading causes of morbidity and 
mortality among rodent test subjects. Autophagia is common for all 
injury models [51,52]. Respiratory tract infections and decubitus are 
also concerns for researchers working with cervical spinal cord injury 
[53]. Urinary tract infections are less prevalent with cervical than with 
thoracic SCI models but should still be monitored [53]. 

Conclusion 
Rodent models cannot predict exactly how human patients 

respond to SCI physiologically or functionally; however, they provide 
an early assessment platform for treatment and physiological damage 
after SCI. Human SCI is very complex and there is an appreciation 
among researchers that the models cannot mimic the injuries perfectly, 
nor can they expect all behavioral symptoms observed in humans to 
have correlates in animals, or vice versa. It is important to examine 
behavioral deficits in rodents, even without a human correlate, to 
determine if there is a functional change. Although humans may not 
show an obvious vibrissae-elicited placing reaction, this test can reveal 
a loss, and a return, of sensory and motor communication between 
the brain and spinal cord. An animal’s ability to perform in different 
tasks can reveal specific tracts that are regenerating, even if they are 
not in the same location in the human spinal cord. This can reveal a 
promising treatment that can then be tested further on higher species 
or directly on humans in a hope to help with recovery. It must be kept 
in mind that treatments that rescue neurons from degeneration may 
sometimes have an adverse effect on functional outcome [54]. 

Many surgical models exist to study SCI in rodents; however, it 
is important to assess the goals and expectations of the experiment 
before choosing a model. Similarly, behavioral tests need to be chosen 
carefully to ensure that a researcher is examining a relevant function. It 
can be tempting to use a barrage of tests and use the tests that show the 
most promising or significant results; however, this is not a scientifically 
sound way to determine the recovery after SCI. Each aspect of a study 
should be planned before the experiment is begun and a pilot study is 
recommended to provide insight into what is expected from each model 
and treatment to minimize animal use and unnecessary experimental 
time during the experiment. 
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