Role of Dietary Fat in Ultraviolet Light–Induced Carcinogenic Expression

Homer S Black

Department of Dermatology, Baylor College of Medicine, Houston, Texas 77030, USA

Corresponding author: Homer S Black, Department of Dermatology, Baylor College of Medicine, Houston, Texas 77030, USA, Tel: 832-741-1052; E-mail: hblack@bcm.tmc.edu

Received date: Oct 24, 2014; Accepted date: Oct 25, 2014; Published date: Nov 1, 2014

Copyright: © 2014, Homer S Black et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

The indictment of fat as a dietary constituent that potentiates carcinogenesis arose from a study of Watson and Mellanby in 1930 [1]. Animal diets containing high levels of butterfat (12.5-25%) were shown to enhance coal tar-induced skin tumor formation. After this seminal observation, intense investigations of the effects of dietary fat on chemically-induced carcinogenesis were conducted during the 1930s through the 1950s. There were several conclusions from these studies that are noteworthy [2]. These, however, must be tempered by the fact that many of these early studies failed to control for major dietary parameters, e.g., caloric density. And although much of the exacerbation of fat on tumor formation reported in these early studies could be explained on the basis of increased caloric intake, fat, per se, increased the rate of tumor formation, particularly when total caloric intake was restricted. Also, much of the exacerbation by fat on tumor formation occurred during the post initiation stage of carcinogenesis.

Baumann and Rusch [3] first demonstrated that dietary fat also had an influence on ultraviolet light (UVL) induced carcinogenesis. These investigators employed a high-fat diet that contained up to 30% hydrogenated cottonseed oil. This resulted in a four week shorter tumor latent period than that which occurred in low-fat controls. However, this line of investigation ended with the advent of World War II and was not resumed for nearly 45 years. This was unfortunate as UVL carcinogenesis is the main etiologic agent in skin carcinogenesis. Nearly 90% of all human skin cancers are the result of solar UVL [4].

Thus, studies of skin carcinogenesis employing UVL are the most relevant to the clinical condition. There are other advantages to employing a physical carcinogenic agent over chemical carcinogens in dietary studies. UVL involves no activation/detoxification of the presumed carcinogenic species; no competitive chemical inhibition; no binding to target molecules; and no transport to respective target sites. Changing the cells chemical milieu through dietary modification could have an impact on any of these activities affecting chemical carcinogenesis. UVL allows investigation of the direct underlying mechanisms of dietary modification of the skin cancerization process.

Dietary lipid was further implicated in cancer when Denham Harmon [5] developed the Free Radical Theory of disease. Cognizant of the vulnerability of polyunsaturated fatty acids to free radical attack, he recommended that dietary levels of PUFA be reduced in order to reduce cancer risk [6]. Indeed, the first report on diet and UVL carcinogenesis following the seminal observation in 1939, appeared to be in agreement with Harmon’s recommendation. Mice were fed semi-defined, isocaloric diets containing 0.75 to 4.0 % (w/w) omega-6 fatty acid (Corn oil), and subjected to a UVL regimen. The tumor latent period was dramatically lengthened and tumor multiplicity reduced as the dietary PUFA level was reduced [7]. These tumor parameters were altered in a near linear fashion with dietary lipid level. Further, when animals were fed a diet containing 4% corn oil that was partially hydrogenated (60%), tumor latency was markedly lengthened and tumor multiplicity reduced when compared to the normal 4% corn oil diet. Later, Reeve et al. [8] found that feeding a diet supplying totally saturated sunflower oil (hydrogenated) completely abolished the UVL carcinogenic response, whereas those animals receiving the polyunsaturated sunflower oil exhibited 100% tumor incidence. As noted, these results supported Harman's recommendation of reducing PUFA intake to reduce cancer risk. Further supporting evidence was obtained when it was shown that antioxidants inhibited the level of cutaneous lipid peroxidation and produced an inhibitory effect on carcinogenesis almost equal to the exacerbation of these parameters by increasing dietary lipid level [9].

Earlier studies had suggested that the primary effect of dietary fat on the carcinogenic continuum occurred in the post-initiation phase [2]. The segment, at which dietary fat exerted its primary effect on UVL carcinogenesis, was examined by a cross-over feeding study design. Animals were placed on semi-defined, isocaloric diets containing low (0.75 %) or high (12%) levels of corn oil. Immediately after a cancer causing dose of UVL was administered, but before tumors appeared, some of the dietary groups were crossed to the opposing diet. The resulting tumor incidence plots (tumor latent period) and tumor multiplicity (number of tumor/animal) values provided clear evidence that the principal exacerbation of carcinogenic expression by high levels of omega-6 PUFA occurred during the post-initiation, or promotion, stage of carcinogenesis [10]. Perhaps more important, crossing from a high fat to a low-fat diet, even after a cancer causing dose had been administered, negated the exacerbating influence of the high fat diet and provided a rationale for the undertaking of a clinical intervention trial. Such a trial was undertaken and has been described in more detail [11]. Briefly, 133 skin patients met the inclusion criteria, of which 115 completed the two-year study. Fifty-eight were randomly assigned to the Control arm in which no dietary changes were introduced. The 57 patients randomly assigned to the Intervention arm learned how to adopt low-fat eating habits to their food preferences and lifestyles. Each patient was given a “fat gram goal” that defined the grams of fat that would provide 20% of calories as fat. At four months into the study, patients in the Intervention arm had reduced their % of calories from fat from 39% to 21% where it remained to the end of the two-year study. As this study was designed to determine the influence of dietary fat on non-melanoma skin cancer (NMSC), stability of body weight and calorie intake was maintained in order to prevent confounding effects due to these variables. The influence of dietary fat became apparent early in the study, as a significant number of actinic keratoses (pre-malignant lesions) between groups occurred [12]. Patients in the control arm were found to be at 4.7 times greater risk of having one or more actinic keratoses during the two-year period than similar patients in the low-fat intervention arm. The influence of the reduction in calories from fat on NMSC (squamous and basal cell carcinomas) was observed after 101
patients had completed the study [13] and became even stronger after all 115 patients completed [14]. NMSC occurrence in the control arm, when measured in 8-month intervals of the two year study, did not change significantly from the baseline period. NMSC occurrence in the intervention arm was significantly lower (p < .02) in the last 8-month evaluation period. The cumulative rate of occurrence of NMSC (cumulative skin cancer/patient/time period) was .21 and .19 during the first 8-month period of the study and 0.26 and 0.02 during the last 8-month evaluation period for control and intervention arms, respectively. In this study there was no effort to alter the types of fat consumed by the patient nor the type of PUFA. Effort was made to maintain the polyunsaturated/saturated fatty acid ratio (P/S ratio), however.

With respect to the latter, the degree of unsaturation and the reduction of PUFA level in the diet to reduce cancer risk became moot when studies with omega-3 PUFA demonstrated that these PUFA dramatically inhibited UVL carcinogenesis, compared to the exacerbation of carcinogenesis resulting from high levels of omega-6 intake. [15]. Both linoleic acid (omega-6 PUFA) and eicosapentaenoic acid (omega-3 PUFA) exhibit similar iodine numbers that reflect similar degrees of unsaturation. Assessment of early genotoxic markers in humans indicates that omega-3 PUFA protected against UVL-induced genotoxicity and suggested that longer term supplementation might reduce NMSC occurrence [16]. A population-based case-control study found a consistent tendency for a lower risk of squamous cell carcinoma (SCC) with higher intakes of omega-3 PUFA [17]. Their data also suggested a tendency toward reduced risk of SCC with diets containing high omega-3/omega-6 PUFA ratios.

Recently, a review and meta-analysis was conducted to determine the relationship between skin cancer and dietary omega-3 intake [18]. While the data were limited, the investigators reported that intake of high omega-3 was inversely associated with melanoma (only one estimate) and SCC, although the latter was not significant. The investigators concluded that these data were suggestive but inadequate to support the hypothesis that omega-3 PUFA protects against skin cancer. The most direct approach to address this issue is through intervention trials in populations with high and known risk, for NMSC. It has been proposed that a study design be adopted that is most direct approach to address this issue is through intervention trials in populations with high and known risk, for NMSC. It has been proposed that a study design be adopted that is

References
