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Abstract
Background: Ischemic reperfusion injury (IRI) is a common hazard involved in many human diseases, such as 

cerebral stroke, heart infarction, solid organ transplant dysfunction or failure, and vascular diseases. Understanding 
the molecular bases of this injury is essential for the prevention and control of these life-threatening conditions. 
Ischemic and remote ischemic preconditioning techniques (IPC and RIPC, respectively) have increasing importance 
in the clinical practice to protect against the IRI, however, the exact mechanisms of these techniques are not fully 
understood, which renders their clinical application query. 

Possible effectors: Nitric oxide (NO) has been reported by multiple studies to be an important mediator of 
the protective effects of those techniques. While the physiological concentrations of NO and fibrinogen is known to 
antagonize each other, the circulating levels of both effectors increase in response to RIPC.

Hypothesis: While NO has potential anti-inflammatory effects, non-soluble fibrinogen plays a pro-inflammatory 
effects. However, the soluble fibrinogen (sFB) may have the potential to act synergistically rather than antagonistically 
with NO towards the attenuation of the IRI.

Conclusion: While FB is a risk factor for cardiovascular and inflammatory diseases that is also able to decrease 
the efflux of NO, and increase the NO oxidative metabolites and S-nitroglutathione, the increased sFB during the 
acute phase reaction might have other protective aspects that should be carefully investigated.

Keywords: Ischemic reperfusion injury; Fibrinogen; Nitric oxide;
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Introduction
Fibrinogen (FB) is a gylcoprotein, which is a hexamer, containing 

two sets of three different chains (α, β, and γ), linked to each other 
by disulfide bonds. FB plays an important role in coagulation cascade, 
where it can form bridges between platelets, by binding to their GpIIb/
IIIa surface membrane proteins, in addition to the major role, where 
prothrombin is converted into thrombin, which then converts the 
soluble FB (sFB) into insoluble fibrin strands that are then cross-linked 
by factor XIII to form the blood clot [1].

Role of Fibrinogen in the Pathogenesis of Diseases 
Fibrinogen plays a significant role in the pathogenesis of many 

diseases, mainly the diseases of cardiovascular and inflammatory 
backgrounds. 

Role of fibrinogen in cardiovascular diseases
There is a confirmed agreement that FB is an important contributor 

to the cardiovascular events, including myocardial infarction and 
cerebral stroke. In addition to the traditional cardiovascular risk 
factors, FB has been identified as an additional risk factor that could 
predict new events within 10 years [2]. This may refer to the traditional 
role of FB in blood clotting and platelet aggregates formation.

Role of fibrinogen in inflammatory diseases
Many studies have confirmed FB as a pro-inflammatory effector. In 

addition to its ability to stimulate the proliferation of B-lymphocytes, 
T-lymphocytes and monocytes [3], immobilized FB and fibrin have
high affinity to macrophage antigen 1 (MAC-1) and can activate
neutrophiles and monocytes [4-6]. In neutrophiles, FB/MAC-1
interaction activates the NF-κB pathway, which is an anti-apoptotic
and inflammatory cytokine-inducing pathway [4].

Ischemic and Remote Ischemic Preconditioning
Ischemic preconditioning (IPC) is a technique, where prior 

application of repeated short cycles of ischemia and reperfusion is 
able to attenuate the severity of the subsequent ischemic reperfusion 
injury (IRI). Remote ischemic preconditioning (RIPC) describes the 
ability of the technique to function through distance. For example, 
the application of short, repetitive ischemia-reperfusion cycles of the 
limb would protect distant organs like heart, kidney, brain and liver 
during subsequent IRI. Both phenomena indicate the involvement 
of local, paracrine as well as remote, circulating mediators [7]. IPC 
showed ability to significantly reduce the DNA fragmentation and the 
apoptotic death of the myocytes, usually associated with IRI [7].

During limb ischemia, the diminished flow and shearing stress is 
associated with inhibition of Na+/K+ ATPase and the inward driving K+ 
channels. This leads to increased Na+ influx and persistent membrane 
depolarization. The increased intracellular Na+ activates Na+/Ca++ 
exchanger to let Na+ out and Ca++ in. In addition, the inhibition of K+ 
channels results in the activation of T type Ca++ channels, leading to 
increased Ca++ influx into the endothelial cells. Increased intracellular 
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Ca++ activates Ca++ - dependent endothelial nitric oxide synthase 
(eNOS), which results in increased NO production [8,9].

Xanthine oxidoreductase (XOR) is a complex molybdoflavin 
protein, which catalyzes the terminal two reactions in purine 
degradation (hypoxanthine → xanthine → uric acid) in primates. In 
humans, hypoxia and the inflammatory cytokines TNF-α, IL-1β, and 
IFN-γ induce XOR expression in vascular endothelium, where it can 
be released into the circulation [10,11]. XOR is transcribed as a single 
gene product in the xanthine dehydrogenase (XDH) form, in which the 
enzyme exists intracellular, where substrate-derived electrons reduce 
nicotine amide adenine dinucleotide (NAD+) to NADH. However, 
during ischemia and inflammation, reversible oxidation of critical 
cysteine residues (535 and 992) and/or limited proteolysis converts 
XDH to xanthine oxidase (XO) [12].

In the oxidase form, the affinity for oxygen is significantly enhanced, 
resulting in univalent and divalent electron transfer to O2 generating 
O2

˗ and hydrogen peroxide (H2O2), respectively [13]. Moreover, the 
inhibition of ATP-sensitive potassium channels, and the persistence of 
cell membrane depolarization result in increased activity of NADPH 
oxidase (NOX2), and dysfunction of mitochondrial respiration, leading 
to more increase in the production of the reactive oxygen species 
(ROS) [7,9]. Increased production of both NO and ROS results in NO 
oxidation to produce nitrite (NO2

˗).

Role of NO to Protect the Vascular Endothelium during 
IRI

NO contributes to vessel homeostasis by inhibiting vascular smooth 
muscle contraction and growth, platelet aggregation, and leukocyte 
adhesion to the endothelium. NO acts through the stimulation of 
the soluble guanylate cyclase, which is a heterodimeric enzyme with 
subsequent formation of cyclic-GMP. Cyclic-GMP activates protein 
kinase G, which causes reuptake of Ca2+ and the opening of calcium-
activated potassium channels that play an important role in the 
protection against IRI [14,15].

Several studies documented the important role of NO in mediating 
the protective effect of IPC and RIPC. While the locally produced 
NO can exert its action in case of IPC, it can’t be accused for RIPC 
protective effect because of its short blood half-life (≤ 2 milliseconds) 
[16]. However, it was observed that NO inhalation in human provides 
protection against IRIs, while being associated with a significant 
increase in the circulating levels of nitrite. In addition, NO2

˗ showed 
the ability to protect against IRI, to exert cytoprotective effects, and 
to decrease the infarction size similar to NO [17-24]. Moreover, it has 
recently been confirmed that the application of brachial artery RIPC 
results in the activation of eNOS and increased plasma NO2

˗ levels [25].

In the heart, NO2
˗ can be reduced to NO and N2O3 by myoglobin. 

In addition, mitochondrial amidoxime reducing components 
(mARC1&2) reduce NO2

˗ to NO in various tissues [26,27]. NO and 
S-nitrosothiols formed from nitrite inhibit complex I of the respiratory 
chain during reperfusion. This attenuates the increased production of 
ROS in response to IRI, and indirectly improves the functionality of 
complex II [28,29].

In the vascular endothelium, at low concentrations, NO reacts 
with certain target proteins mainly through post-translational 
S-nitrosylation, thus regulating cell survival, smooth muscle tone and 
immune signaling [30]. Nevertheless, NO reactions in the setting of 
apoptosis appear to be double-faced. The nitrosative stress, similar to 
the oxidative stress, can potentially trigger cell death processes such 

as DNA fragmentation and lipid oxidation [31]. However, it can also 
have a protective role involving nitrosation of caspases and Poly-ADP-
ribose-Polymerase, leading to inhibition of apoptosis [32].

Role of Fibrinogen
On the contrary to the proinflammatory effects of immobilized FB/

fibrin, sFB has the ability to inhibit lymphocytic antigen 1-dependent 
binding to ICAM-1 through a direct interaction with ICAM-1 [7], and 
to reduce IL8-activated neutrophils binding to ICAM-1-expressing 
cells, in addition to reducing the binding of neutrophils to TNFα-
activated endothelium to 40%, under flow conditions [33].

In addition, the interaction between FB and αM βII-integrin 
receptor has been reported to result in the activation of Rap-1, Talin-1 
and CaMKII signalling. Rap1 is activated by adenosine diphosphate, 
hyperosmotic and cold stresses, interleukin-1, adenosine, and TNFα, 
where its active form bind to GTP [34]. The increased expression/
activity of Rap-1 leads to NF-κB induction, while Rap-1 depletion 
leads to NF-κB decreased activity as Rap-1 is also important for the 
phosphorylation of p65 subunit of NF-κB. Remarkably, similar 
to inhibiting NF-κB, knockdown of Rap-1 sensitizes some cells to 
apoptosis [35-37]. 

While Talin-1 interacts with Rap-1 and is essential for adhesion, 
migration and phagocytosis, NF-κB activity is enhanced by ROS, 
TNFα, and interleukin 1-beta (IL-1β). Active NF-κB turns on the 
expression of genes that keep the cell proliferating and protect the cell 
from the conditions that would otherwise initiate apoptosis. Defects 
in NF-κB results in increased susceptibility to apoptosis leading to 
increased cell death. This is because NF-κB regulates anti-apoptotic 
genes especially the TRAF1 and TRAF2 and, therefore, checks the 
activities of the caspase family of enzymes, which are central to most 
apoptotic processes [38,39]. In conclusion, FB has the potential to play 
an anti-apoptotic role, especially during increased ROS production and 
inflammation.

CaMKII is activated by Ca++ and phosphorylation of its Thr287. Its 
inactivation is achieved through the physphorylation of Thr 306/307. 
Independently of Ca++, it can also be activated by ROS via O-linked 
glycosylation of Ser280 by O-linked N-acetylglucosamine and via NO-
dependent nitrosylation of Cys116, Cys273, or Cys290. When activated, 
it activates L Type Ca++ channels, slows the inactivation of Na+ channel 
and activates K+ channels [9]. The activation of K+ channels has been 
strongly suggested to be a key protective mechanism against IRI.

Taken together, NO and the circulating nitrite, which can be 
reduced to NO, have been reported to be involved in mediating the 
action of the IPC and RIPC techniques, and have potential anti-
apoptotic activities. However, according to the above discussed 
findings, the activation of Rap1-NF-κB and CaMKII signaling, by sFB 
during inflammation (acute phase), has potential anti-inflammatory 
and anti-apoptotic activities, in addition to the ability to activate K+ 
channels, which are protective against IRI. 

The Interaction between NO and FB
While the vascular endothelial uptake of FB was reported to 

increase by the inhibition of NO, this effect seems to be related to the 
secondary induced hypertension as the effect was not reproducible 
when the inhibition of NO didn’t alter the normotensive status [40]. In 
addition, the exposure of FB to ProliNONOate, a donor of NO, affects 
the structural formation of the fibrin clot, resulting in lower density, 
but thicker fibers [41]. Such structural variations can have significant 
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impact on embolization and fibrinolysis, where the platelets can retract 
low density more than high density fibrin fibres [42]. On the other side, 
FB has been reported to decrease the efflux of NO from the erythrocytes, 
and increase the NO oxidative metabolites and S-nitroglutathione [43]. 

Conclusion
While FB is a risk factor for cardiovascular and inflammatory 

diseases that is also able to decrease the efflux of NO, and increase the 
NO oxidative metabolites and S-nitroglutathione, the increased sFB 
during the acute phase reaction might have other protective aspects 
that should be carefully investigated. Determining the exact signalling 
and functions of sFB, and the incorporated functional domains 
responsible for various actions, has the potential to open the gate 
for new pharmacological innovations to protect and or treat certain 
vascular and inflammatory diseases.
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