Role of Protein-Based Food (PBF) in Combating Undernutrition; Milk and Eggs as an Example

Ihab Naser*

Program of Clinical Nutrition, Faculty of Pharmacy, Al Azhar University, Gaza Strip, Palestine

Abstract

Provision of Protein-Based Food remains an important strategy for the prevention and treatment of malnutrition and can produce substantial improvements in the functional performance of malnourished individuals and populations. Many potential benefits of Protein-Based Food require further exploration, including its effect on physical and mental development among children. There is strong evidence that Protein-Based Food intake have positive impact on weight gain, bone density, micronutrients repletion and cognition development among vulnerable populations. This review will shed the light on different intervention trials designed to tackle malnutrition by using animal source food provision, particularly, Milk and eggs.

Further work is required to clarify the purpose, delivery and outcomes of animal source food provision among vulnerable and poor individuals and communities.

Keywords: Protein-based food; Milk; Egg; Malnutrition

Introduction

The objectives of most of food intervention programs are optimizing the dietary intake of children and thereby enhancing their nutritional status, reducing the severity of illness and preventing death, diseases and disabilities [1].

Any food-based interventions must take into account these five concepts in order to make it successful; Acceptable, Feasible, Affordable, Sustainable and Safe (AFASS) [2]. It is very important to choose appropriate and cost-effective intervention strategies for the target population and this require pre knowledge about the nutritional status of this population, another important determinant one must take into account is social and cultural factors, food habits and taboos of the targeted community. Intervention program should have answers to the following questions what is fed, how food is prepared and given, the feeding environment (where) [3]. Internationally agreed goals for the reduction of malnutrition and child mortality will be achieved only if families can receive the support and the assistance they need to adequately care for their children’s nutritional needs, thus contributing to improved survival, growth, and development [3,4].

In order to make food intervention programs more successful, strict inclusion and exclusion criteria must be implemented (e.g., only children who are malnourished or have difficult family situations, or continue to falter in growth are enrolled); the duration of food distributed per family or child might be limited, and may include extra food to provide enough for mothers and all children in the family. To attract mothers for other health services and facilities, such as immunizations, growth monitoring, deworming, and vitamin A supplementation and to encouraged caregivers to utilize these services monthly or quarterly food distributions have also been used. In some settings (e.g., day care centres or outpatient facilities), supervised daily feeding may be possible.

Protein-Based Food (BPF) in the food intervention program

Children and mothers of reproductive age comprise the highest risk and most vulnerable groups, particularly in low income and poor countries where nutrient deficiencies are prevalent due to poor dietary quantity and quality as a cost of hunger and deprivation [5,6]. The limited availability and accessibility of Protein-Based Food (BPF) at the household level, as well as the lack of knowledge about their benefits in human diet and health, result in a lower intake that contributes to poor diet quality [7]. In contrast, households spending more money on non-grain food such as ASF prevent their children from being stunted [8-10]. In affluent countries, strict vegetarian diets and fear of red meat dictated by spiritual and health beliefs result in suboptimal levels of macro and micronutrients. Such diet negatively affects the functioning of an increasing number of children [7,11,12].

Consumption of ASF has been strongly associated with better growth, cognitive function, activity, pregnancy outcome, and morbidity in three parallel longitudinal observational studies in different ecologic and cultural parts of the world, namely, Egypt, Kenya, and Mexico [13-15]. Foods of domestic animal origin mainly contribute to diet [16]. Parents who fear to serve eggs and red meat to their children (to control the cholesterol level) are actually keeping them away from the densest sources of proteins, minerals, and vitamins; such sources could help promote growth, bridge the nutrient gap, strengthen the body, and improve the child’s immunity to diseases [17].

Different studies have reported that ASF positively affects weight gain and contributes to a lean body mass. In a Kenyan study, school children who were given milk and meat for 21 months demonstrated growth, cognitive function, activity, pregnancy outcome, and morbidity in three parallel longitudinal observational studies in different ecologic and cultural parts of the world, namely, Egypt, Kenya, and Mexico [7,11,12].

In another study by Grillenberger et al. [18], milk and meat were provided to Kenyan school children for 23 months and achieved the following results. The meat, milk, and energy groups respectively gained...
0.33, 0.19, and 0.27 cm in mid-upper-arm circumference more than the children in the control group. In their mid-upper-arm muscle area, children who received the meat supplement gained 30% to 80% more than the other children, and those who received the milk supplement gained 40% more than children who did not receive any supplement. Wiley showed that younger children in the highest quartile of dairy intake had a higher body mass index (BMI) than those in the lowest two quartiles [19]. On the other hand, several studies did not support the association between ASF consumption and the physical growth of the child [20,21]. In an Indonesian study, milk consumption showed a significantly negative association with a child classified as underweight or stunted, but not with wasted children; meanwhile, the consumption of meat/poultry and eggs revealed no significant impact on all the z scores [22].

Milk

Milk is an important part of the human diet. Different types of milk include varying nutrients. Milk contains carbohydrates, protein, fat, minerals, and vitamins; thus, it is also considered as a complete diet. Each person is advised to consume a certain amount of milk to meet his/her nutritional needs. Milk and dairy products foster the growth of children, reduce the risk of faltering growth, as well as provide a base for strong and healthy bones. Both young children and adolescents need to fulfill their milk consumption recommendations [23]. In comparison, dairy products provide an ideal source of calcium, which is a central element for building strong and dense bones. New Zealand children with a history of avoidance to cow's milk were shorter than those without [24]. Young children and especially teenagers need to eat foods that are good sources of calcium for building healthy bones throughout life [25].

Calcium, including calcium from milk, has been associated with bone mineral accretion in children. In Hong Kong, 9- and 10-year-old children randomized to receive milk powder equivalent to 1,300 mg/day of calcium for 18 months had a significantly greater increase in total hip and spine bone mineral density (BMD) compared with controls, while those randomized to receive 650 mg/day of calcium had a significantly greater increase in whole body BMD compared with controls [26].

Linoleic acid (LA; n-6) and α-linolenic acid (ALA; n-3) are polyunsaturated fatty acids (PUFAs) and precursors for endogenous synthesis of long-chain polyunsaturated fatty acids (LCPUFAs). The LA:ALA ratio of cow’s milk is favourable and may actually facilitate tissue docosahexaenoic acid (DHA; n-3) synthesis [27]. One study comparing breast milk, formula, and cow’s milk fed to full-term infants found the highest levels of DHA in the breastfed group followed by cow’s milk group and lastly the milk formula group [28].

In addition to macro- and micronutrients, an important component of cow’s milk is the insulin-like growth factor (IGF) which stimulates growth factors. IGF-1 is the most abundant in bone and promotes normal bone and tissue growth and development by increasing uptake of amino acids, which are integrated into new proteins in bone tissue [29].

There is reasonable evidence that milk consumption positively related with circulating concentrations of IGF-1. A significant increase in serum IGF-1 was observed in 82 British girls aged 12 years consuming 1 pint (568 mL) of milk daily for 18 months after adjustment for pubertal status [20], and in 24 Danish boys aged 8 years consuming 1,500 mL of milk daily for 1 week [30]. IGF-1 was positively associated with milk or dairy intake in 521 British children 7 and 8 years of age [31] and in 90 Danish children aged 2.5 years [32], but not in 105 Danish children aged 9 months and subsequently aged 10 years [33]. Potential factors in milk that may stimulate IGFs, including IGF-1 and insulin, are casein, branched-chain amino acids, calcium, and zinc [34].

Milk could be consumed either as a drink or in the form of milk-derivatives such as dairy products. Table 1 illustrates the nutritional value of 100 g, one cup, and one school milk carton for one serving. The U.S. Department of Agriculture Food Guide Pyramid recommends two to three servings per day from the milk, cheese, and yogurt group, primarily to promote adequate calcium intake for the prevention of osteoporosis during old age (USDA–Agriculture Research Services) (Table 1).

A total of 83 lactating Zairian mothers suffering from protein malnutrition were provided with cow milk for two months. Milk supplements provide 500 kcal (2093 kJ) and 18 g of protein a day. The mother’s nutritional status significantly improved after two months of receiving the milk supplements. According to the mothers’ nutritional status, the initial and changed milk output showed no significant difference. Breast-fed infants indicated a significant improvement of their mean serum albumin concentration, but their growth was similar to the mean growth of children of the same age [35].

Various studies have suggested that dairy proteins positively give impact on the vulnerable populations. Hoppé et al. examined the evidence on the effects of adding whey or skimmed milk powder to fortified blended foods (FBF) used for malnourished infants and young children or people living with HIV [36]. Adding whey or skimmed milk powder to FBF improves the protein quality and allows for a reduced total amount of protein intake, which could have potential metabolic advantages. This addition also allows for a reduced soy and cereal content, thereby a reduction in potential anti-nutrients. Adding milk could improve weight gain, linear growth, and recovery from malnutrition, but this result requires further studies [36].

Berkey confirmed the positive relationship between milk consumption and weight gain. Children who drank over three glasses of milk a day gained more in BMI than those who drank 1-2 or 0-0.5 glasses of milk a day. Drinking large amounts of milk may likewise provide excess energy to some children [37]. In an investigation of the consumption frequency of milk, cheese, yogurt, dietary protein, and dietary fat on subsequent growth, pre-menarcheal girls who drank over three servings of milk per day indicated larger growth the following year than girls who consumed less than one serving per day [38].

A school-based trial of milk intervention in Chinese girls resulted in body weight improvements and significantly greater linear growth over two years [39]. A longitudinal study of 92 Japanese children

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>100 Grams</th>
<th>1 cup</th>
<th>1 carton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servings</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Servings Weight</td>
<td>100g</td>
<td>244g</td>
<td>244g</td>
</tr>
<tr>
<td>Water (g)</td>
<td>88.32</td>
<td>215.5</td>
<td>215.5</td>
</tr>
<tr>
<td>Energy (kcal)</td>
<td>60</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>3.22</td>
<td>7.86</td>
<td>7.86</td>
</tr>
<tr>
<td>Fat, total (g)</td>
<td>3.25</td>
<td>7.93</td>
<td>7.93</td>
</tr>
<tr>
<td>Carbohydrate (g)</td>
<td>4.52</td>
<td>11.03</td>
<td>11.03</td>
</tr>
<tr>
<td>Sugars, total (g)</td>
<td>5.26</td>
<td>12.83</td>
<td>12.83</td>
</tr>
<tr>
<td>Fiber, total dietary (g)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>10</td>
<td>24</td>
<td>24</td>
</tr>
</tbody>
</table>

Source: USDA–Agriculture Research Services, 2002.

Table 1: Nutritional values of milk.
indicated a greater linear growth and weight gain among children who drank more milk over a three-year period [40].

Numerous studies in literature discussed the association between milk consumption and bone density, but the association between height and the milk consumption remains under investigation. National Health and Nutrition Examination Survey 1999-2002 (NHANES) data indicated significant differences in the effects of milk consumption on height. After controlling for potential confounders, the results implied that adult height was positively associated with milk consumption at ages 5 to 12 years and 13 to 17 years. Milk consumption demonstrated no effect on the height of 5 to 11 years old children [41].

A Malaysian study measured the impact of the school milk program on the nutritional status of children. A significant reduction in the prevalence of protein–energy malnutrition was determined in terms of underweight (15.3% to 8.6%), stunting (16.3% to 8.3%), and wasting (2.6% to 1.7%) from the start of the school feeding program until two years later [42].

Eggs

Eggs have been considered as a powerhouse of nutrition due to their excellent profile as a nutrient-dense food containing a balanced source of essential amino and fatty acids, some minerals and vitamins [43,44] as well as a number of functional defensive factors to protect against bacterial and viral infections. Moreover, eggs are recognized to contain substances with biological functions beyond basic nutrition [45].

Since ancient times, chicken eggs have been used as food by humans. Compared to eggs, no other single animal-based food is eaten by so many people all over the world, and none is served in a wide variety of ways. The popularity of eggs is justified not only because of the ease of production and numerous uses in cookery, but also because of their nutritive quality [46].

Of the three macronutrients essentials (proteins, fats, and carbohydrates), the egg is composed largely of the first two. Furthermore, the nutritive quality of an egg enhances the value of any food in which it is included as an ingredient; it’s widely used in cookery for the purposes of leavening, thickening, binding, and emulsifying considerably improves the human diet [47].

Egg proteins are highly digestible, containing the most important essential amino acids in a profile that is similar to the ideal balance of amino acids needed by both men and women. Eggs are an excellent source of protein. A typical egg would contribute approximately 3% to 4% of an adult’s average energy requirement and approximately 6.5 g of protein. The major albumen proteins are ovalbumin (54%), ovotransferrin (14%), ovomucoid (11%), ovomucin (3.5%), lysozyme (3.5%), and globulins (8%) [48]. Egg protein is of high biological value because it contains all the essential amino acids needed by the human body. Thus, eggs complement other food proteins of lower biological value by providing the amino acids that are deficient in those foods. Approximately 12.5% of the weight of an egg is protein, which both the yolk and the albumen contain. Although protein is more concentrated around the yolk, more protein could be found in the albumen [48]. Eggs likewise provide various minerals, some in significant amounts, and contain major vitamins. For example, a recent U.S. study indicated that eggs contributed 10% to 20% of the daily intake of folate as well as total saturated and polyunsaturated fat, and also 20% to 30% of the daily intake of vitamins A, E, and B12 [49].

Chicken eggs are the most commonly consumed and have around 21 functional uses. The nutritional values of eggs and their contribution to the diet are illustrated in Table 2 (USDA–Agricultural Research Service).

As a high protein food, eggs appear in a food group with beef, poultry, fish, legumes, as well as other animal and vegetable protein sources on the Food Guide Pyramid. Eggs are well recognized among consumers as a top source of protein [43]. A medium egg has an energy value of 78 kcal (324 kJ), and the consumption of one egg daily would contribute only approximately 3% of the average energy requirement of an adult man and 4% for an adult woman.

The association between egg consumption and the physical growth of children was reported when eggs were added to the diet of a test group of Iranian children following the instruction of the nutritional education program. The children in the experimental group who ate more eggs than the control group demonstrated a significant growth improvement [50].

The common belief about the connection between egg consumption and high blood cholesterol remains under investigation, and several studies have dissipated the fear of eating eggs. Egg consumption is negatively associated to the serum cholesterol levels in most individuals [49]. Moreover, latest research has suggested that eating whole eggs may actually result in a significant improvement in one’s cholesterol level. Including eggs in the diet of overweight men consuming a carbohydrate-restricted diet indicated an increased plasma HDL (good cholesterol) [51]. Eating two eggs daily had no significant impact on the children’s ratio of LDL:HDRL, which remained the same. However, the size of their LDL cholesterol increased, which is a highly beneficial change because a larger LDL is much less atherogenic than smaller LDL subfractions [52].

A large population-based study conducted in the United States from 1988 to 1994 reported that subjects who ate ready-to-eat cereal (RTEC), cooked cereal, or quick breads for breakfast had significantly lower BMI compared to skippers as well as eaters of meat and eggs. The meat-and-eggs eaters had the highest daily energy intake and the highest BMI [53]. In another study, children (24 to 60 months) were fed either a high-protein diet with 15% of energy as protein (bread and egg for breakfast, rice and chicken curry for lunch and supper, and a special milk formulation with soy oil every two hours between the major meals) or a standard-protein diet with 7.5% energy as protein (bread and sugar for breakfast, rice and lentil for lunch and supper, and a milk-rice powder-based formula every two hours to provide 7.5% of energy as protein) for 21 days in a metabolic study ward. Children were followed up bi-weekly for six months. A total of 31 children in the high-protein group and 28 children in the standard-protein group completed six months’ follow-up. The increase in height was 5.3 (1.0) cm vs. 4.1 (1.1) cm for high-protein and standard-protein groups, respectively, whereas the increase in body weight was 1.39 (0.58) and

Table 2: Nutritional values of egg without its shell.

<table>
<thead>
<tr>
<th>Constituent of Egg</th>
<th>Amount per Egg</th>
<th>Amount per 100g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight³</td>
<td>51.6</td>
<td>100.00</td>
</tr>
<tr>
<td>Water³</td>
<td>38.8</td>
<td>75.1</td>
</tr>
<tr>
<td>Energy joules/calories</td>
<td>324/78</td>
<td>627/151</td>
</tr>
<tr>
<td>Protein</td>
<td>6.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>Trace</td>
<td>Trace</td>
</tr>
<tr>
<td>Fat</td>
<td>5.8</td>
<td>11.2</td>
</tr>
</tbody>
</table>

Source: USDA–Agricultural Research Service, 2002

Citation: Naser I (2016) Role of Protein-Based Food (PBF) in Combating Undernutrition; Milk and Eggs as an Example. J Nutr Disorders Ther 6: 184. doi:10.4172/2161-0509.1000184
1.29 (0.72) kg for children fed with high-protein and standard-protein meals, respectively. After six months, the proportion of children who were severely stunted decreased from 45% to 29% in the high-protein group compared to 50% to 46% in the standard-protein group [54].

Eggs have considerable amount of vitamin D (15% Daily Value). The action of vitamin D is not limited to the absorption and deposition of bone salts, but that the vitamin has a more widespread effect on organic tissue metabolism, of which increased growth [55].

Conclusion

When choosing a suitable nutrition intervention strategy to address malnutrition, it is important to note that functional deficits may not be alleviated by the provision of single macro or micronutrients. Although the supplementation with milk and eggs did not bring about all the expected effects, several study findings indicate that nutrients contained in high amounts and in a bio-available form in animal source foods are beneficial for growth.

It is concluded that, animal source food is a viable food-based approach to combat malnutrition.

Therefore, is recommended to continue and strengthen the promotion of consuming a diverse diet that includes animal source food in supporting the growth of young children.

References

18. Gillenberger M, Neumann CG, Murphy SP, Bwibo NO, van’t Veer P, et al. (2003) Food supplements have a positive impact on weight gain and the addition of animal source foods increases lean body mass of Kenyan schoolchildren. J Nutr 133: 3957S-3964S.

J Nutr Disorders Ther, an open access journal
ISSN: 2161-0509
Volume 6 • Issue 1 • 1000184

Page 4 of 5

Citation: Naser I (2016) Role of Protein-Based Food (PBF) in Combating Undernutrition; Milk and Eggs as an Example. J Nutr Disorders Ther 6: 184. doi:10.4172/2161-0509.1000184
cow’s milk supplementation on milk output of protein deficient lactating mothers and on their infants’ energy and protein status. Trop Med Int Health 2: 36-46.