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Introduction
Lung cancer is the main reason of cancer death in men and the 

second driving cause of cancer death, after breast cancer, in women [1]. 
At the beginning of the 20th century incidence of lung cancer was very 
low, but now its incidence is increasing rapidly [2,3]. According to the 
GLOBOCAN 2012 report, incidence of lung cancer globally was of 1.8 
million new cases in 2012, representing 12.9% of the total estimating 
cancer incidence in the year 2012. The worldwide lung cancer mortality 
rate amounted to 1.59 million deaths in 2012, accounting for 19.4% of 
total cancer deaths. Lung cancer is the most common cancer in men 
worldwide (1.2 million, 16.7% of the total) with the highest estimated 
age-standardized incidence rates in Central and Eastern Europe 
(53.5 per 100,000) and Eastern Asia (50.4 per 100,000). Notably, low 
incidence rates are observed in Middle and Western Africa (2.0 and 
1.7 per 100,000 respectively). In women, incidences rates are generally 
lower with a geographical pattern little different, reflecting different 
exposure to tobacco smoking. Highest estimated rates are in Northern 
America (33.8) and Northern Europe (23.7) and lowest rates in Western 
and Middle Africa (1.1 and 0.8 respectively) [4].

Four potentially modifiable risk factors, including: smoking, low 
intake of fruits and vegetables, indoor smoke from household use 
of solid fuels and urban air pollution are associated with 74% of lung 
cancer deaths. Moreover, living in a polluted area can negatively affect 
the prognosis and quality of life of lung cancer patients [5,6]. 

The International Agency for Research on Cancer (IARC), recently, 
has classified particulate matter, a wide component of air pollution, as 
carcinogenic to humans, based on adequate evidence that exposure is 
associated with an increased risk of lung cancer [7-9].

Urban particles consist of three modes: ultrafine particles (UFPs), 
accumulation mode particles (which together form the particle mode) 
and coarse particles. UFPs (<0.1 µm diameter) contribute very little to 
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Abstract
Lung cancer is the most widely recognized disease and it is the main reason of cancer demise in men and 

the second driving reason for tumor passing, after breast cancer, in ladies. Recently, the International Agency for 
Research on Cancer (IARC) has categorized particulate matter, a large element of air pollution, as cancer-causing 
to people, supported adequate proof that exposure is related to associate multiplied risk of lung carcinoma. Urban 
particles consist of three modes: ultrafine particles (UFPs), accumulation mode particles and coarse particles. UFPs 
(<0.1 µm diameter) contribute very little to the total mass, but are very high in number in the urban air. The potential 
of particles to cause unfavorable health effects is connected to their capability to enter the lungs, probably carrying 
variety of cytotoxic compounds with them. UFPs have vital health effects as a result of their terribly high alveolar 
deposition fraction, massive extent, chemical composition, ability to initiate inflammation and potential translocate to 
the circulation. Over the previous years there has been an increasing assortment of clinical and medical specialty 
information associated with air pollution health effects and proof linking exposure to urban air pollutants. In particular, 
link between particulate matter (PM10 or PM2.5) with lung cancer is generally consistent, although formal statistical 
significance was not always reached. However, knowledge and awareness remain limited, regarding the carcinogenic 
effects of UFPs and some clinical studies are still unrecognized. Our purpose, during this review, is to review and 
synthesize the literature relating to the malignant neoplastic disease impact of UFPs, particularly the associations 
between the exposure to UFPs and risk for carcinoma.
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the overall mass, but are very high in number in the urban air (Figure 
1). Even though there are a lot of particulate natural sources, the 
smallest one seem made mainly by human activities. With increasing 
road traffic density and emission from automotive combustion engines, 
environmental exposures have become more widespread in the general 
population. In particular, the vehicle traffic represents the main fine 
and ultrafine particulates source, generating the 50-60% of global air 
pollution. Not least is the contribution coming from UFPs inside the 
buildings (called indoor pollutants) where cooking, heating, smoking 
and combustion processes are great pollution producers.

In terms of particle size, the attention of scientific studies has shifted 
from mass (PM 10 or PM 2.5), to surface area and particle number 
concentrations to the last of which is largely comprised of UFPs [10-12].

The potential of particles to cause adverse health effects is linked 
to their capacity to enter the lungs, potentially carrying a number of 
toxic compounds with them. From a mechanistic point of view, UFPs 
have important health effects because of their large surface area, their 
chemical composition, their high alveolar deposition fraction and their 
ability to induce inflammation and translocate to the circulation [13-20].

Particle’s toxicity can be ascribed to compounds bound to it, several 
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particles publications. Additional articles were identified from the 
reference lists of selected relevant articles. The research has been 
delimited to all articles relating to lung cancer over the last 17 years. 
The Collected studies were subsequently reviewed manually, in which 
the authors examined the relevance of the topics through an internal 
grading process. PM10, NO2, SO2, Environmental Air Pollution Particles 
were excluded. The search yielded about 31 articles which were further 
reviewed; at the end of this selection process 9 articles were deemed 
relevant to this review and were examined with a particular emphasis 
on carcinogenic effects of UFPs, in particular the association with lung 
cancer.

Mechanism of Action
Pulmonary and cardiovascular diseases and cancer have been 

associated to exposure to ambient air particulate matter (PM) 
in epidemiologic studies [21,22]. In ambient air, measure of the 
particulate matter (PM) is usually reported as the mass of particles with 
an aerodynamic diameter less than 2.5 μm (PM2.5) or 10 μm (PM10). 
Differently, it may be reported as the number concentration and size 
distribution of UFPs. There has been considerable attention on the 
pulmonary effects of UFPs because it has been showed that they can 
reach the alveoli and translocate to circulation. Particles of larger size, 
instead, deposit mainly in the upper airways and can be cleared by the 
mucociliary system and ingested [23].

In the last years, interest has focused on the UFP fraction with a 
diameter ≤ 0.1 µm, which are abundant in numbers but contribute little 
to particle mass. The deposition of inhaled UFP in the respiratory tract 
is ruled by diffusional processes, but there are notable differences within 
the UFPs size range with respect to the efficiency of their maximal 
deposition in different regions of the respiratory tract [24]. UFPs are 

of which have been classified by the IARC in the Group 1, carcinogens. 
Among these, polycyclic aromatic hydrocarbons (PAHs) and some 
heavy metals (As, Cd, Ni) could be considered major contributors to 
human exposure through the respiratory tract.

Several cohort and case - control studies have indicated higher risk 
for lung cancer in association with different measures of exposure to 
ambient air pollution, in particular to UFPs and nanoparticles (NPs).

Over the past years there has been an increasing collection of 
clinical and epidemiologic data related to ambient air pollution health 
effects and evidence linking exposure to urban air pollutants. In 
particular, link between particulate matter (PM10 or PM2.5) with lung 
cancer is generally consistent, although formal statistical significance 
was not always reached.

However, knowledge and awareness remain limited, regarding 
the carcinogenic effects of UFPs and some clinical studies are still 
unrecognized. 

Our purpose, in this article, is to review and synthesize the literature 
regarding the carcinogenic effect of UFPs, especially the associations 
between the exposure to UFPs and risk for lung cancer.

Methodology
Methods were developed relying on the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) criteria. We 
selected the most relevant contributions to the literature in clinical 
and epidemiologic fields starting with the information retrieved from 
PubMed, Scopus and Web of Science using the following keywords 
“ultrafine particles” OR “UFPs” OR “urban air pollution” AND “health 
effects”, AND “cancer” OR “cancerogenesis” OR “lung cancer” and 
other synonymous terms and our own extensive collection of ultrafine 

Figure 1: Trimodal urban particle size distribution indicating particle sources and coagulation processes (EPA 1996).
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not predominantly retained on the epithelium but penetrate into the 
interstitium [25].

For these reasons it is of great importance to understand mechanisms 
by which UFPs and NPs exert their effect on lung disease and impair 
lung functions. Oxidative stress, inflammation and genotoxicity are the 
pathobiological processes considered most relevant to lung injury.

Oxidative stress is caused by disequilibrium between production 
of reactive oxygen species (ROS) and biological system’s ability to 
neutralize the reactive intermediates. It may be caused directly by 
generating reactive oxygen species (ROS) in the vicinity or inside the 
cell or could indirectly affect mitochondrial respiration or deplete 
antioxidant species within the cell. Severity of the oxidative stress 
may be an important step in triggering some detrimental biological 
processes, like aging. Cells treated with NPs or animal models 
exposed to NPs inhalations have oxidative stress as common endpoint. 
Furthermore, ROS are the main factors involved in inflammatory 
processes. Oxidative stress-responsive signaling pathways can induce 
inflammation, resulting in the expression of pro-inflammatory genes 
involved in the recruitment and activation of cytokines, chemokines, 
and adhesion molecules. Inflammation genes are under control of 
transcription factors such as NF-KB and AP-1, both of which are redox 
sensitive and both of which have been demonstrated to be activated in 
macrophages exposed to carbon black NPs [26]. Both in vivo and in 
vitro studies have shown that NPs of various compositions (fullerenes, 
carbon nanotubes, quantum dots and automobile exhaust) generate 
ROS [27-29].

Reactivity of the surface area itself or the species absorbed to 
the outer surface of the particles (transition metals, organics) may 
contribute to their reactivity and oxidative potency [30]. There are many 
studies demonstrating that NPs and UFPs can trigger inflammatory 
responses. The small size, the shape and the large surface area appear to 
be centrally involved in promoting inflammation. The exact mechanism 
by which NPs induce pro-inflammatory effects is unknown; it has been 
suggested that they generate ROS, and thereby modulate intracellular 
calcium concentrations, activate transcription factors, and induce 
cytokine production [31].

Inoue et al. found that dosing mice with diesel NPs exacerbates 
lung inflammation induced by LPS (endotoxin or lipopolysaccharide). 
Lung homogenates derived from the LPS+NPs mice tended to have an 
increased TNF-α level and chemotaxis activity for polymorphonuclear 
leukocytes [32].

Results on pro-inflammatory effects of NPs have also been reported 

from clinical studies in humans. In a recent explorative analysis, the 
increase of particulate and gaseous air pollution was associated with 
multiple changes in the differential white blood cell count in patients 
with chronic pulmonary diseases. The researchers found an immediate 
decrease of polymorphonuclear leukocytes in response to an increase of 
particulate pollutants. Lymphocytes increased within 24 h in response 
to with all gaseous pollutants but showed only minor effects in regard 
to particulate air pollution. Monocytes showed an increase associated 
with ultrafine particles and nitrogen monoxide. The effect had two 
peaks in time, one 0-23 h before blood withdrawal and a second one 
with a time lag of 48-71 h [33,34].

PM fraction of air pollution contains number of constituents that 
may increase the generation of ROS by a variety of reactions, such 
as transition metal catalyses, metabolism, redox cycling of quinones 
and inflammation. In addition, polycyclic aromatic hydrocarbons 
and volatile organic compounds (e.g. benzene) may be metabolically 
activated to reactive species that form adducts on the DNA. These effects 
are quite easily investigated in cell free systems or cell cultures, while in 
animal experimental models there are other questions to consider when 
interpreting the harmful effect of UFPs and NPs. In particular, some 
factors including dose, dimension, deposition, durability and defense 
systems must be taken into account when interpreting health effects, 
such as lung tumor development [35].

Moreover, UFPs and NPs may cause genotoxicity through 
both primary and secondary mechanisms. A genotoxic substance 
deleteriously impacts the genome of a cell either by direct or indirect 
damage to the cellular DNA including effects on the cellular pathways 
that monitor and protect genome integrity. Primary genotoxicity is 
caused by direct binding of the particle with the DNA or component of 
the cell division machinery such as centromeres or microtubule spindle 
or intrinsic free radical production [36]. Pulmonary exposure to UFPs 
and NPs may cause genotoxicity through the induction of chronic 
inflammation leading to persistent oxidative stress. 

Lung Cancer and Ultrafine Pollution 
Association between exposure to ambient air pollution and risk 

of lung cancer has been evaluated in several prospective studies, 
summarized in Table 1. Despite that statistical significance was not 
always reached, the evidence linking exposure to urban air pollutants, 
mainly PM2.5 or PM10 and lung cancer is generally consistent, while 
they are still poor knowledge on the close association with UFPs. 
Cohorts from the United States as well as from Europe have found 
increased risks for lung cancer with higher exposure to PM and other 

RR: Risk Ratio; CI: Confidence Interval

Table 1: Summary table on prospective study results. Relationship betweewn exposure to air pollution and lung cancer incidence and/or mortality.

First Author, year (Ref) Country Outcome Number of subjects Exposure RR 95% CI
Mc Donnel, 2000 [37] USA Lung cancer mortality 6.338 PM 2.5

PM 2.5-10
PM 10

2.23
1.25
1.84

0.56-8.94
0.63-2.49
0.59-5.67

Turner, 2011 [38] USA Lung cancer mortality 188.699 PM 2.5 NA 1.15-1.27
Laden, 2006 [39] USA Lung cancer mortality 8.096 PM 2.5 1.27 0.96-1.69
Puett, 2014 [40] USA Lung Cancer incidence 1.203.946

person-years
72-month average
exposures to: 
PM 2.5
PM 2.5-10
PM 10

1.37
1.11
1.15

1.06-1.77
0.90-1.37
1.00-1.32

Raschou-Nielsen, 2013 [41] Europe Lung Cancer incidence 312.944 PM 2.5
PM 10

1.18
1.22

0.96-1.46
1.03-1.45

Katanoda, 2011 [42] Japan Lung cancer mortality 63.520 PM 2.5 1.24 1.12-1.37
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substance (PAHs) present in polluted air, with statistically significant 
risk rations (RRs) ranging from 1.11 to 2.23.

McDonnel et al. correlated the risk of cancer mortality with the 
fine (PM2.5) or the coarse (PM2.5-10) fractions of PM10 [37]. They 
concluded that observed associations of long-term ambient PM10 
concentration with mortality for males were best explained by a 
relationship of mortality with the fine fraction of PM10 rather than 
with the coarse fraction of PM10.

Turner et al. examined the association between mean long-term 
ambient PM (2.5) concentrations and lung cancer mortality among 
188,699 lifelong never-smokers, considering controlled confounders 
were age, sex, smoking, educational attainment, BMI, chronic lung 
disease [38]. A total of 1,100 lung cancer deaths were observed during 
the 26-year follow-up period. Each 10 μg/m3 increase in PM (2.5) 
concentrations was associated with a 15-27% increase in lung cancer 
mortality. The association between PM (2.5) and lung cancer mortality 
was similar in men and women and across categories of attained age 
and educational attainment, but was stronger in those with a normal 
body mass index and a history of chronic lung disease at enrollment 
(P<0.05).

Earlier analysis of the Harvard Six Cities adult cohort study showed 
an association between long-term ambient PM2.5 and mortality 
between enrollment in the mid-1970s and follow-up until 1990. Laden 
et al. extended mortality follow-up for 8 y in a period of reduced air 
pollution concentrations [39]. The study showed that PM2.5 exposures 
was associated with lung cancer (RR, 1.27; 95% CI, 0.96-1.69) and 
cardiovascular deaths (RR, 1.28; 95% CI, 1.13-1.44). Improved overall 
mortality was associated with decreased mean PM2.5 (10 µg/m3) 
between periods (RR, 0.73; 95% CI, 0.57-0.95).

Puett et al. examined the relation of lung cancer incidence with 
long-term residential exposures to ambient particulate matter and 
residential distance to roadway, as a proxy for traffic-related exposures 
[40]. During 1,510,027 person-years, 2,155 incident cases of lung 
cancer were observed in the study among 103,650 participants. In 
fully adjusted models, a 10-μg/m3 increase in 72-month average PM10, 
PM2.5, or PM2.5-10 was positively associated with lung cancer. When 
the cohorts was restricted to never-smokers and to former smokers who 
had quit at least 10 years before, the associations appeared to increase 
and were strongest for PM2.5.

Raaschou-Nielsen et al. aimed to assess the association between 
long-term exposure to ambient air pollution and lung cancer incidence 
in European populations [41]. This prospective analysis of data obtained 
by the European Study of Cohorts for Air Pollution Effects used data 
from 17 cohort studies based in nine European countries. They assessed 
air pollution by land-use regression models for particulate matter (PM) 
with diameter of less than 10 μm (PM10), less than 2.5 μm (PM2.5), 
and between 2.5 and 10 μm (PM coarse), soot (PM2.5 absorbance), 
nitrogen oxides, and two traffic indicators. During follow-up (mean 
12·8 years), 2095 incident lung cancer cases were diagnosed. The meta-
analyses showed a statistically significant association between risk for 
lung cancer and PM10. For PM2.5 the HR was 1.18 (0.96-1.46). The 
same increments of PM10 and PM2.5 were associated with HRs for 
adenocarcinomas of the lung of 1.51 (1.10-2.08) and 1.55 (1.05-2.29), 
respectively.

Katanoda et al. enrolled 63520 participants living in 6 areas in 
3 Japanese prefectures between 1983 and 1985 [42]. Exposure to 
particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5), 
sulfur dioxide (SO2), and nitrogen dioxide (NO2) was assessed using 

data from monitoring stations located in or nearby each area. During 
an average follow-up of 8.7 years, there were 6687 deaths, including 
518 deaths from lung cancer. The hazard ratios for lung cancer 
mortality associated with a 10-unit increase in PM (2.5) were 1.24 (95% 
confidence interval: 1.12-1.37) after adjustment for tobacco smoking 
and other confounding factors. In addition, a significant increase in risk 
was observed for male smokers and female never smokers.

Buonanno et al. studied the characterization of lung cancer risk due 
to exposure to polycyclic aromatic hydrocarbons and some heavy metals 
associated with particle inhalation by Italian non-smoking people [43]. 
A risk-assessment scheme, modified from an existing risk model, was 
applied to estimate the cancer risk contribution from both ultrafine and 
super micrometric particles. Exposure assessment was carried out on 
the basis of particle number distributions measured in 25 smoke-free 
microenvironments in Italy. The predicted lung cancer risk was then 
compared to the cancer incidence rate in Italy to assess the number 
of lung cancer cases attributed to airborne particle inhalation, which 
represents one of the main causes of lung cancer, apart from smoking. 
UFPs are associated with a much higher risk than super micrometric 
particles, and the modified risk-assessment scheme provided a more 
accurate estimate than the conventional scheme. Among the chemicals 
considered, heavy metals (in particular, 55% for as, 7% for Cd, and 30% 
for Ni) made a significant contribution to increased cancer risk, while 
PAHs only accounted for less than 10%. 

The purpose of Liao et al. study was to assess lung cancer risk 
caused by inhalation exposure to nano/ultrafine particle-bound PAHs 
at the population level in Taiwan [44]. A probabilistic risk assessment 
framework was developed to estimate potential lung cancer risk. They 
found that 90% probability lung cancer risks ranged from 10-5 to 10-4 for 
traffic-related NPs and UFPs-bound PAHs, indicating a potential lung 
cancer risk. Their work emphasizes the need to consider the NP and 
UFPs particle-bound PAHs data in additional to genetic susceptibility 
and respiration data in order to obtain a more complete picture of 
factors influencing potential lung cancer risk caused by inhalation 
exposure to ambient PAHs. So they showed suggestions of an increased 
risk of lung cancer at the highest exposure levels of fine particle bound 
PAHs.

Conclusion
Recently, airborne UFPs and NPs exposure studies (epidemiologic 

studies and controlled clinical studies in humans, inhalation/instillation 
studies in rodents, or in vitro cell culture systems) have shown that they 
can contribute to adverse health effects both in the respiratory tract and 
in extrapulmonary organs.

Epidemiologic studies have found associations of ambient 
UFPs with adverse respiratory and cardiovascular effects resulting 
in morbidity and mortality in susceptible parts of the population, 
whereas other epidemiologic studies have not seen such associations 
[45-52]. Controlled clinical studies evaluated deposition and effects of 
laboratory-generated UFPs. High deposition efficiencies in the total 
respiratory tract of healthy subjects were found and deposition was 
even greater in subjects with asthma or chronic obstructive pulmonary 
disease.

In addition, effects on the cardiovascular system, including blood 
markers of coagulation and systemic inflammation and pulmonary 
diffusion capacity, were observed after controlled exposures to 
carbonaceous UFPs [45,51,53-57].

Currently, no information on the potential health risk assessment 
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of lung cancer related to environmental Nano/Ultrafine particle is 
available.

Therefore, in light of the mutagenicity, carcinogenicity and ubiquity 
of UFPs in the atmosphere, the setting of air quality standards and 
guidelines to limit human exposure should be of primary concern for 
public health policy. However, setting scientifically based limit values 
is complicated, owing to the difficulties in interpreting heterogeneous 
experimental and epidemiological findings.
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