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Introduction
The muscle crossbridge structure is a highly efficient molecular 

machine. An understanding of the dynamics of crossbridge 
conformational changes are central to our understanding of the 
mechanism of chemo-mechanical transduction by motor proteins. The 
purpose of this report is to investigate the molecular dynamics of the 
skeletal muscle crossbridge, in particular, the contribution of thermal 
fluctuations of the S1 and S2 components of myosin. Basically an 
articulated molecule, as shown in Figure 1a, the myosin S1 segment 
is usually modelled as a 2, 3, or 4 position ratchet, similar to the 
escapement mechanism on a mechanical pendulum clock, generating 
force by rocking forward, as shown.

Reviews

Theories are many and varied in terms of explaining how the 
crossbridge generates axial force. Cooke [1] reviews various theoretical 
models for muscle crossbridge mechanics. Nie et al. [2] analyze 
the effect of Brownian motion on force generation in the muscle 
crossbridge. Greene [3-5] calculates thermal fluctuation effects on 
force generation and stiffness, finding values of 2 × 10-12 to 5 × 10-12 
N/XB. Muscle physiology and crossbridge dynamics are reviewed by 
Cooke [1], McMahon [6], Carlson and Wilke [7], and McMahon and 
Greene [8].

Flexibility

Gittes et al. [9] measure the flexibility of actin filaments by 
analyzing the thermal fluctuations in shape. Yoshimura et al. [10] 
measure torsional flexibility of F-Actin. Kishino and Yanagida [11] 
measure the force required to stretch F-actin filaments. Nagashima 
and Asakura [12] measure the end-to-end length changes of F-actin 
due to thermal fluctuations. Liu [13] measure the distribution of S1-S2 
flexible angles concluding that both positive and negative crossbridge 
forces are found in the rigor state. Using fast freezing, Liu et al. [14] 
measure S1 strain displacements as large as 45 A˚ in stretched rigor 
fibers. Davis and Harrington [15] report temperature effects on muscle 
force generation and stiffness, relevant to the thermodynamics of the 

S2 chain, suggesting that the S1 segment rocks backwards during the 
powerstroke.

Tension and compression

Adamovic et al. [16] measure directly the stretching and flexible 
bending stiffness of the LMM domain of myosin from scallop, finding 
values of 60-80 pN/nm and 0.010 pN/nm respectively, i.e., relatively 
compliant in bending. Kaya and Higuchi [17] using optical techniques 
measure directly the compression and tension characteristics of 
myosin, finding a small buckling load when strained negatively, with 
a working power stroke of 80 A˚. Finer, Simmons and Spudich [18] 
measure a working step length of 110 A˚ and axial force per crossbridge 
of 3-4 pN. Dobbie et al. [19] measure the contribution of the S1 myosin 
head region to crossbridge compliance, using X-ray diffraction finding 
displacements of 20-27 A˚. Stewart McLachlan and Calladine [20] 
model the S2 portion of myosin, finding axial displacements of 30-40 
A˚. Seo, Krause and McMahon measure S2 buckling characteristics 
[21] in muscle fibers during quick release tension experiments.

Computer calculations

Huxley [22] reviews the mechanics of the muscle crossbridge. 
Slawnych, Seow, Huxley and Ford [23] develop a computer program 
to predict crossbridge performance. Billington et al. [24] report the 
thermal effects on lever-arm flexibility of the S1-S2 junction, with 
values of 0.37 pN/nm stiffness. Golji et al. [25] model the molecular 
dynamics of α-Actinin (similar to but larger than F-actin) applying 
bending forces in the range 8 to 200 pN and torques of 50-500 pN-
nm over a rapid time scale of 10 to 100 picosecs. Pang [26] performs 
molecular dynamics calculations on a time scale of femtosecs.
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Materials and Methods
Basic equations for bending and buckling of the myosin rod include 

actin F1 and myosin S2 bending and buckling, S2 mode amplitudes, 
and equipartition energy per mode [6]. As shown in Figure 1a, the 
x-axis is parallel to the developed force, the y-axis is vertical, and the 
z-axis is perpendicular to the xy-plane. Axial force Fx and power stroke 
Δx is produced by transverse in-plane fluctuations of S2 along the y 
and z axes. The origin of the coordinate system is at the S1-S2 junction. 
Myosin S2 buckling load is assumed minimal, Figure 1b, as measured 
[10a, 10b, 17a].

In-plane Δy and out-of-plane Δz fluctuations are independent of 
each other. The individual contributions are found by calculating the 
r.m.s. average,

Δx=sqr [Δxy2+Δxz2]         				                 (1)

Developed axial force results from integrating the Boltzmann 
distribution with the S1 spring stiffness in tension,

Fx=Co ∫ (Kx) exp (-0.5 Kx2 / kT) dx 	 0<x<∞                    (2)

where axial force F=Kx in tension for x>0, and F=0 for x<0 in 
compression, Figure 1b. The F-actin thin filament is also flexible in 
torsional mode [3]. The amplitudes Θn are found to scale as n-1, (EI)-1/2, 
and L1/2, where n is mode number, EI is actin bending stiffness, and L 
is filament length. Depending on conditions, the twisting modes can be 
as large as +/- 150. Similar scaling laws are found here for S2 bending, 
Table 1, showing scaling laws for S2 amplitude depends on filament 
length, mode number, and stiffness, Table 1.

Results
Harmonic mode amplitude for the over-tone sequence scales as 

(#n)-2, (L)2, and (EI)-1 (Table 1; Figures 1 and 2). Power stroke for mode 
#n scales as

Δx/Lo=2.5 (An / L)2     				                  (3)

The first 3 principle modes (n=1, 2, 3) are shown in Figure 2 below, 
A1=+/-100 A˚. Figure 3a shows the equipartition distribution of S1 
axial position about its equilibrium point, calculated from Eq. (4) 0.5 
kT=0.5 K <x2>. Figures 3b, 3c and 3d show force and displacement for 
the single and doubly-attached S1 myosin head depends strongly on 
crossbridge stiffness.

Crossbridge force is estimated at Fxy=1.0 pN for the in-plane 
component, Fxyz=1.4 pN for both in-plane and out-of-plane combined. 
Crossbridge power-stroke is estimated at dxy=40 A˚ for the in-plane 
component, dxyz=56 A˚ for both the Δy and Δz fluctuations included. 
Minimal assumptions include [1] S2 link is inextensible with minimal 
buckling load and [2] experimental crossbridge compliance K is given 
by Eq. 4:

dF/dx=4 × 10-4 N/m, K=8 × 10-4 N/m for S1 double-head 
configuration                                                                                                  (4)

It is provided by S1 (Huxley and Simmons [27]). Muller et 
al. [28] calculate flexural details of the S2 link. An IBM PC-XT was 
used for the calculations, running MicroSoft Basic 3.2 at 4.77 MHz, 
then re-confirmed with an online Windows compatible version of 
QBasic, running at 500-1,000 MHz, distributed by JustBasic.com [29]. 
Original calculations were made on an Apple II Computer running 
at 1 MHz. Modern computers, now 1,000 times faster, can perform 
the integrations in Eq. 2 in just 1-second, whereas previously 15-20 
minutes were required.

Figure 1b: Diode tension characteristic curves for myosin S1 single-head, 
stiffness K=4 × 10-4 N/m, and S1 double-head configurations, K=8 × 10-4 N/m.

 

Figure 2: Myosin rod harmonic bending modes for n=1, 2, 3, drawn to scale.

Mode # n Length (L) Stiffness (EI)
Torsion n-1 L1/2 (EI)-1/2

Tension n-2 L2 (EI)-1

Table 1: Scaling Effects for Thermal Oscillation Amplitude.

 

Figure 1a: Crossbridge schematic shows thin filament F1, thick filament M1, 
and x-y-z coordinate system.
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∫ sqr[(dx)2+(dy)2]=Lo	 0<x<L       		                 (5)

The length reduction was confirmed with a 12” spline (Dietzgen Corp.).

Discussion
Spider-Web monofilament model

Results presented here do not only apply to microscopic systems. 
For instance, a spider web stretched between two trees over a distance 
of 6 to 10 feet (2 to 3 meters) will fluctuate in the wind. The author has 
observed the n=1, 2, and 3 modes of these mono-filaments, buffeted 
by eddies in the wind on a still day, and the resulting bending of the 
leaf to which the filament is attached. This experimental observation, 
demonstrating the “clothesline effect”, may be important, as it 
represents the limiting case of zero bending stiffness, similar to the S2 
segment of myosin. In other words, amplified axial force is developed 
by transverse flexing of the S2 filament.

Doubly attached myosin S1 head

The purpose of the second myosin (Figure 1a) head is still unknown 
[29-31]. Under some circumstances, both heads can co-attach, either to 
the same actin filament, or adjacent actin filaments, which effectively 
doubles the stiffness of the bridge, Figures 1b, 3b, 3c and 3d. From a 
thermodynamic point of view, the second head represents another 
½ kT degree of freedom of the system. AC Power cable comparison. 
While power from random motion seems counter-intuitive, a familiar 
example serves to illustrate: fluctuating (+) and (-) voltages, after 
passing through a diode bridge, result in an average net (+) positive 
voltage. Likewise, AC power cables, in a wind-driven turbulent velocity 
field, result only in (+) positive cable tension, because cables cannot 
sustain buckling force in compression. Results presented here are a uni-
directional tension-only mechanical model, hence the name “Myosin 
Diode Model”, because only positive forces can be transmitted through 
the S2-linkage.

Equipartition energy

The thermal fluctuations of the S1 motor head alone result in 
fractional pico-Newton forces on the S2 myosin and the actin filaments, 
considerably “under-powered” compared with the experimentally 
observed force per crossbridge. These force and displacement values 
correspond to ~ 0.5 kT of thermal energy and are comparable to the 
natural thermal fluctuations of the system. Note that the additional 
degrees of freedom of the S2 segment result in additional axial force 
from each independently oscillating mode, summed as per Eq. 1.

Applications

Results presented here show that during transverse thermal 
fluctuations of the myosin molecule, a significant axial crossbridge 
force and power stroke is developed from random transverse thermal 
motion (Figures 3b-3d). Practical applications include the effects of 
temperature on the flexibility of the myosin molecule [32,33]. Man-
made fabrication of muscle is now possible, using micro-machines, so 
it is of interest to specify the role of Brownian motion on the mechanics 
of miniature molecular motors similar to the crossbridge [34,35]. 
In terms of the bioengineering design of these synthetic muscles, 
design objectives include determining the optimum length filament 
(equivalent to myosin), optimum stiffness, harmonic mode number, 
and optimum inter- filament spacing, for maximum crossbridge force, 
power stroke, and thermodynamic efficiency.

Figure 3a: Boltzmann distrib., S1 position, σ=+/-32 A˚.

Figure 3b: Crossbridge force F [pN] vs. dX [A˚].

Figure 3c: Power-stroke dX [A˚] vs. K [N/m].

Interestingly, the n=2 harmonic mode is particularly efficient at 
generating a power stroke, because the axial shortening of S2 scales as 
~ n2, approximately 30 A˚ power stroke for a lateral mode amplitude 
of 25 A˚. This is important because the available steric space varies 
with inter-filament spacing. This n2 effect offsets the mode amplitude 
reduction, which scales as n-2. In addition to evaluating the arc-length 
integral, given by Eq. 5:
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Nomenclature

Δx=Crossbridge power stroke=40 to 100 A˚

K=Crossbridge stiffness=4 × 10-4 N/m to 8 × 10-4 N/m (chevron)

F/XB=2 to 4 × 10-12 N/XB=2 pN to 4 pN

Lo=resting length of myosin=600 A˚ 

0.5 kT=Equipartition energy, k=1.38 × 10-16 ergs/K0=1.38 × 10-23 J/ K0

exp(-U/kT)=Boltzmann factor, U=0.5 K × 2 elastic energy

Co=∫ exp(-0.5 Kx2/kT)dx, Boltzmann constant
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