
Volume 5 • Issue 3 • 1000198
J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Open Access

Shyr and Li, J Biomet Biostat 2014, 5:3 
DOI: 10.472/2155-6180.1000198

Open Access

     
Research Article

Keywords: Next generation sequencing; RNA-sequencing; Tumor
cancer genome atlas; Cancer; sample size; Power; Simulation

Abbreviations: NGS: Next-generation sequencing; RNA-seq:
RNA-sequencing; TCGA: Tumor Cancer Genome Atlas 

Introduction
NGS has given scientists the ability to characterize and view the 

genome at a high resolution. With the development of several NGS 
applications, including whole-genome, whole-exome, chromatin 
immunoprecipitation, and others, scientists have uncovered various 
mutations and variations in the genome, such as point mutations, 
small indels, copy number variations, gene fusions, alternative splicing, 
etc. As NGS continues to produce an enormous volume of data at a 
fast rate and economic price, scientists are currently applying these 
data to experiments to not only gain a better understanding of certain 
biomarkers and genes, but also discover possible target therapies for 
diseases like cancer [1-4]. 

Scientists are publishing their results among the top journals of 
the world and providing new ideas for drug development. While the 
idea of translating research to bedside therapies is ideal, clinical success 
has been particularly low for cancer. Compared with other therapeutic 
areas, cancer clinical trials have the highest failure rate. These failures 
have been attributed to the quality of published preclinical data given 
that drug development relies heavily on these findings. Among fifty-
three cancer papers that were published in high-impacting journals 
and known as "landmark" studies, only six of them were reproducible 
[5,6]. Given these results, there's a strong need to raise the quality 
of preclinical studies by having more rigor in experimental design. 
Among the six reproducible results, the studies paid attention to bias, 
controls, randomization, and other important factors that can make an 
impact on the reliability of the results [5,6].

A lack of understanding the statistical concepts of type I error 
and type II error has also contributed to the number of irreproducible 
results. While scientists emphasize the importance of having a low type 
I error probability or the false positives probability, some do not realize 
that type II error or the false negatives also play a significant factor 
in determining the outcome of an experiment. The probability of true 
positives, also known as the power, is equivalent to (1–type II error 
probability); thus, in order to ensure that most of the experiments’ 
significant findings are actually correct, the type II error probability 
must be low [6-8]. Power of the test depends on the number of subjects 

assigned in an experiment. As one increases the number of subjects, the 
amount of power increases [7]. 

In NGS research, RNA-seq has proven to be useful to many 
researchers who have generated multiple research questions from 
discovering and profiling RNA transcripts with novel transcripts, 
alternative splicing, and other variations [9]. Because thousands of 
genes are examined in a RNA-seq experiment, differential expression 
among those genes is tested simultaneously, requiring the correction 
of error rates for multiple comparisons. For the high-dimensional 
multiple testing problem, several such corrected measures have been 
proposed, such as family-wise error rate (FWER) and false discovery 
rate (FDR). In high-dimensional multiple testing circumstances, 
controlling FDR is preferable because the Bonferroni correction for 
FWER is often too conservative. For the multiple testing problem, the 
FDR is defined as 

FDR = E(R0/R | R > 0),

where R0 is the number of false discoveries and R is the number of 
results declared significant. In addition, the cost per study sample is 
related to the number of total reads generated for that sample. The 
higher the number of reads, the greater the chance of detecting low 
expression genes. Given a fixed number of subjects, the highest power 
will be achieved if these subjects are used to sequence with the greatest 
read depth possible. Thus, the number of subjects and sequence depth 
are key aspects in power calculation.

As researchers try to understand these data with experiments, 
paying close attention to the experimental design and the number of 
biological replicates will be essential in order to have reproducible 
results in their study. This decision depends on the amount of power 
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Abstract
Power and sample size calculation is an essential component of experimental design in biomedical research. For 

RNA-sequencing experiments, sample size calculations have been proposed based on mathematical models such as 
Poisson and negative binomial; however, RNA-seq data has exhibited variations, i.e. over-dispersion, that has caused 
past calculation methods to be under- or over-power. Because of this issue and the field’s lack of a simulation-based 
sample size calculation method for assessing differential expression analysis of RNA-seq data, we developed this 
method and applied it to three cancer sites from the Tumor Cancer Genome Atlas. Our results showed that each cancer 
site had its own unique dispersion distribution, which influenced the power and sample size calculation.

Journal of Biometrics & Biostatistics            Jo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180



Citation: Shyr D, Li CI (2014) Sample Size Calculation of RNA-sequencing Experiment-A Simulation-Based Approach of TCGA Data. J Biomet Biostat 
5: 198. doi:10.4172/2155-6180.1000198

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 2 of 5

Volume 5 • Issue 3 • 1000198

that the researcher hopes to achieve in his or her experiment [8]. 
Typically, researchers try to aim for a power around 80%. While it 
would be ideal to have as many subjects as possible to ensure the quality 
and reproducibility of the results, costs must also be considered.

Material and Methods
Past methods for calculating RNA-seq sample size

Methods of calculating sample size for RNA-seq gene differential 
expression experiments have been and are being developed. Unlike 
data sets like microarray that have continuous data, RNA-seq has count 
data and a skewed distribution. One of the distributions that have been 
used to model RNA-seq is the Poisson distribution. In [10], sample 
size formulas based on likelihood ratio test and score test were derived 
and the procedure of calculating sample size while controlling the false 
discovery rate (FDR) based on the Poisson distribution was developed. 
While Poisson may seem to be an appropriate model, the issue of the 
distribution lies with its critical assumption that the mean and variance 
must be equal. This assumption has proven to be problematic due to 
RNA-seq's over-dispersion (variance greater than mean); thus, the 
Poisson model for RNA-seq has the risk of underestimating the needed 
sample size, causing the study to be underpowered [10]. An alternative 
distribution has also been presented: negative binomial. Unlike Poisson, 
a special case of negative binomial, this distribution can not only model 
count data, but also have unequal mean and variance, allowing for 
over-dispersion. In [9], the paper's comparison between the Poisson 
and negative binomial distribution for the Transcript Regulation 
data set, which had significant over-dispersion, showed that the latter 
required a larger sample size than the former. This difference appeared 
to be more significant as the fold change increased, which, as a result, 
may signify negative binomial's flaw in overpowering an experiment's 
sample size. Other analytical methods for estimating RNA-seq 
sample size have also been developed. For example, [11] derived an 
explicit sample size formula by using the score test under generalized 
linear model framework. In this paper, we evaluated the sample size 
estimations of [10] and [9] by developing a simulation-based approach. 
Because our method is an empirical approach, we are not limited by 
any assumptions that the Poisson and negative binomial distribution 
require. Thus, our method can easily accommodate various RNA-seq 
data structure based on the data’s over-dispersion and fold change. 

Power simulation

While closed-form equations for predicting sample size based 
on the Poisson and negative binomial distribution exist for gene 
differential expression in RNA-seq, neither distribution can guarantee 
that their calculated sample size is absolutely correct. Thus, the focus of 
the study is to develop a simulation-based approach that calculates the 
power of RNA-seq experiments and estimates the needed sample size 
and apply the simulation to several TCGA data sets. This approach, 
known as power simulations, usually follows a series of steps. First, a 
distribution of parameters, such as sequencing depth and fold change, 
must be established from some data set that could be from published 
literature or study. From that data, estimates of the model, including 
the mean, variance-covariance matrix, and other parameters, can be 
obtained to help calculate the power. Second, a count data needs to 
be randomly generated from the distribution with the parameters 
estimated from step one. Finally, the count data is used to determine 
whether the sample has sufficient evidence to reject the null hypothesis 
and be statistically significant [12,13]. Once this is done for each 
sample, the power of the experiment can be calculated for that 
particular sample size.

Data sets 

Launched in 2006 with funding from the National Cancer Institute 
and National Human Genome Research Institute, the TCGA was 
created so that research teams around the world could pool their distinct 
project results together for public access. With the goal to explore the 
genomic changes in human cancers, TCGA currently holds more than 
20 sequenced tumor types and gives researchers the opportunity to 
make important discoveries from the sequenced data. Because TCGA 
continuously collects and characterizes various tumor types from 
various resources and has a strong infrastructure in pooling cancer 
genome results from around the world [14-16], choosing data sets 
from here would have the potential of showing an accurate estimate of 
each cancer site's estimated power and sample size. In our study, RNA-
seq data of three cancer organ sites–lung (LUSC), colorectal (COAD), 
and breast (BRCA)–were chosen from the TCGA, containing 459, 411, 
and 1026 samples, respectively, and applied to our power simulation. 
Our simulation focused on the sequencing data’s number of reads; 
therefore, we only downloaded level 3 data. The data were organized 
into a matrix with rows representing genes and columns as samples.

Method

All the simulations were conducted with R version 3.0.2. In order to 
create a simulation that would imitate a gene differential expression of 
RNA-seq experiment, the following steps were taken in our approach.

A function (Figure 1) was created so that one can input the sample 
size, RNA-seq data, group values (e.g. 0 and 1, representing no tumor 
and tumor, control and treatment, etc.), minimum number of reads, 
FDR cutoff, fold change boundaries, and the number of random 
samples. The RNA-seq data must be organized into the format that 
was described above in order for the code to work. Next, the number 
of genes are stored and the mean count value of each gene for the 
control is calculated. The genes that have a count value greater than the 
minimum set for the function are then selected. The edgeR package is 
then used to analyze the expression values of the selected genes from 
the RNA-seq data by returning the dispersion values and applying the 
exact test in order to calculate the fold change values of the samples. 
After organizing the fold change values based on the set boundaries 
and randomly selecting them based on the number of genes at the 
site, the desired sample size, mean, dispersion, and fold change values 
are used in a loop to create a list of important values. The SimCount 
function is implemented and produces raw counts using the negative 
binomial distribution based on the input parameters of the loop. 
These count values are arranged based on the control and treatment 
groups and then input into particular edgeR functions, which output 
the p-adjusted values. Based on the FDR cutoffs and the group of the 
samples, the false positives, true negatives, true positives, and false 
negatives are calculated and stored into a matrix. The function, at the 
end, outputs a list containing the matrix, fold change, dispersion and 
the number of genes. 

To calculate the power from the simulation and display the 
simulation results with graphs and csv files, another function was 
created to perform these tasks. Our function provides two different 
methods of calculating power. The first method uses the sensitivity 
formula, which is the number of true positives divided by the sum of 
the number of true positives and false negatives. The second method 
takes the number of true positives divided by the total number of 
genes. Both types of powers are compiled with corresponding sample 
size and the run time as a csv file. The function then produces a scatter 
plot of the sample size vs. power (sensitivity method) as a pdf file. The 
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dispersion and fold change of the data are also saved as csv files and 
the violin plot is provided to display the dispersion results. Because the 
violin plot is a combination of a box plot and a kernel density plot, it is 
able to capture the details of the dispersion.

Results
TCGA data set

Simulations were conducted for the three cancer sites of the RNA-
seq data from TCGA and the plots of the sample sizes and powers 
were produced. Figure 2 shows the violin plots of dispersion for three 
cancer sites. Similar to what other papers, such as [10] and [9], have 
mentioned, all three sites of the RNA-seq data have similar dispersion 
distributions that were heavily skewed to the right. From Table 1, it 
is interesting to note that the dispersion value was between 2 and 2.5 
for all three cancer sites at the 95th percentile while the maximum 
dispersion ranges from 9.686 to 15.88. Therefore, there were relatively 
few samples in these three cancer sites that had a large dispersion. A 
simulation was conducted with a FDR of 0.05 and minimum read of 5 
and a graph, Figure 3, showing the samples size and power relationship 
or each cancer site was made when the desired minimum fold change 
was 2.0. From the results, we found that at 80% power LUSC required a 
sample size of approximately 18, COAD 20, and BRCA 25, respectively. 
For COAD, the power values reached a plateau of about 85% as the 

sample size increased to 38 and greater; on the other hand, LUSC and 
BRCA reached the highest power of 90% as the sample size increased 
to 70 and 85, respectively. These sample size results are appropriate 
given that the variances for BRCA and LUSC are greater than COAD. 
Note that power should tend to 100% as the sample size increases. 
Although there is a slow increasing  trend in power in Figure 3, it is 
expected that the power will tend to 100% when the sample size is 
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Figure 1: Flow Chart of Function.  
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Figure 2: Violin plots of dispersion for three cancer sites.

Summary statistics Breast Lung Colorectal
Min. 0.0329 0.0393 0.0384

1st Qu. 0.1143 0.1657 0.1534
Median 0.2283 0.3141 0.2690
Mean 0.5770 0.6720 0.5707
3rd Qu. 0.6036 0.7914 0.6724

90th Percentile 1.3376 1.6607 1.3910
95th Percentile 2.1355 2.4612 2.0697

Max 15.8800 15.0000 9.6860

Table 1: Summary statistics of dispersion for three cancer sites.

Power=80% Power=85%
FDR FDR

*m Cancer sites 0.01 0.05 0.1 0.01 0.05 0.1
  5 LUSC 26 18 15 37 25 24

COAD 28 20 17 49 38 35
BRCA 34 25 20 45 35 30

 10 LUSC 25 19 15 40 30 25
COAD 29 22 18 65 50 40
BRCA 31 25 20 49 35 33

*m=the minimum number of reads 

Table 2: Power vs. Cancer Site Sample Size Estimation.
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Figure 4:(a) The plot of sample size and power for kidney data set (b) The plot of sample size and power for transcript regulation data set.

sample size and power for the kidney and transcript regulation data 
when the desired minimum fold change was 2.0. From [9], their study 
showed that the kidney dataset required about 15 samples to attain 
a power of 80% based on the Poisson and negative binomial model. 
From Figure 4a, a sample size of 15 reached at least a power of 90%, 
which indicates our method has a higher chance of detecting the true 
positives at a reduced cost of experimental design. For the transcript 
regulation dataset, [9] required a sample size of 79 and 31 for the 
negative binomial model and Poisson model, respectively. Using our 
method, Figure 4b showed that the same sample sizes of 79 and 31 
reached a power of 95% and 90%, respectively. These results indicated 
that the required sample size based on our method was smaller than 
Poisson and negative binomial models, which was as expected. While 

sufficiently large. We also ran simulations with different parameters for 
FDR and minimum reads and found the sample size values, which can 
be found in Table 2. From these various parameters, COAD was the 
only cancer site that could not reach 90% power, even at a sample size 
of 150. The sample size estimation results between minimum reads of 5 
and 10 were quite similar, with the latter requiring a few more subjects 
occasionally as expected.

Kidney data set and transcript regulation data set

[9] considered kidney data set and transcript regulation data set as 
pilot data to test the performance of their method. Here we used this 
dataset to test our simulation-based method and calculated the sample 
size under the same settings as [9]. Figure 4a and 4b show the plot of 
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[9] and [10] provided a conservative estimate of the required sample
size, our method is an empirical approach which integrates all the
information from the data.

Discussion
In this study, we developed a simulation-based approach to 

estimate the sample size for RNA-seq gene differential expression 
experiments. Unlike past sample size estimation methods that have 
relied on mathematical formulas and distributions which require many 
assumptions, our empirical approach can accommodate the structure 
of data based on the data’s over-dispersion. Thus, it is recommended 
to conduct a pilot or feasibility study to generate the preliminary data 
for sample size calculation if there is no similar existing data that can 
be used. However, the preliminary data from the pilot study may 
not be available. In such a situation, we suggest that the parameters 
of distributions of over-dispersion can be estimated based on the 
researcher’s prior knowledge. From the TCGA data sets, sample 
size estimations varied among the three cancer sites because of the 
differences in dispersion and fold change values. Because BRCA had 
the largest dispersion compared to COAD and LUSC, the number of 
biological samples required at a power of 80% were greater than the 
other sites. This remained true even when the FDR and minimum 
number of reads were adjusted. Our results also showed that each of 
these three cancer sites had its own unique dispersion distribution, 
causing the sample size estimation to vary accordingly. Reasons for why 
COAD could not reach a power of 90% remain uncertain, although its 
low number of samples in TCGA could be an explanation. 

When researchers construct an experimental design, it’s important 
to have preliminary data on the number of biological replicates needed 
for their experiment. While researchers criticize power analyses for 
having too many mathematical assumptions, our method overcomes 
this issue and simply requires RNA-seq data for power and sample size 
estimation. The flexibility of our method also allows users to modify 
the proposed procedure of the simulation by using packages other 
than edgeR, such as DeSeq2 [17], baySeq [18], ShrinkSeq [19], NBPSeq 
[20], and SAMseq [21], for calculating power or sample size. From 
our simulation-based approach, researchers will not only have a better 
idea in designing their experiments, but also have more faith that their 
findings accurately represent the story behind their data. To facilitate 
implementation of sample size calculation, R code is available from the 
corresponding author. 
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