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Abstract
Santilli’s prime chains: 1j jP aP b+ = ± , j=1,,k−1, (a,b)=1, 2|ab. If 11 n n

na P Pλ λ− =  , P1 Pn|b, we have
J2(ω)→∞ as ω→∞. There exist infinitely many primes P1 such that P2,, Pk are primes for arbitrary length k. It is the 
Book proof. This is a generalized Euclid-Euler proof for the existence of infinitely many primes. Therefore Euclid-
Euler-Jiang theorem in the distribution of primes is advanced. It is the Book theorem.

Keywords: Generalized; Arithmetic; Prime; Euclid; Arbitrary;
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Introduction
A new branch of number theory: Santilli’s additive isoprime theory 

is introduced. By using the arithmetic function Jn(ω) the following 
prime theorems have been proved.

It is the Book proof. [1-10].

1. There exist infinitely many twin primes.

2. The Goldbach’s theorem. Every even number greater than 4 is
the sum of two odd primes.

3. There exist finitely many Mersenne primes, that is, primes of the 
form 2P–1 where P is prime.

4. There exist finitely many Fermat primes, that is, primes of the
form 22 1+

n
.

5. There exist finitely many repunit primes whose digits (in base
10) are all ones.

6. There exist infinitely many primes of the forms: x2+1, x4+1, x8+1,
x16+1, x32+1, x64+1.

7. There exist infinitely many primes of the forms: x2+b, x3+2, x5+2,
x7+2

8. There exist infinitely many prime m-chains, Pj+1=mPj±(m−1),
m=2,3,, including Cunningham chains.

9. There exist infinitely many triplets of consecutive integers, each
being the product of k distinct primes, (Here is an example: 1727913=3 
× 11 × 52361, 1727914=2 × 17 × 50821, 1727915=5 × 7 × 49369.)

10. There exist infinitely many k-tuples of consecutive integers,
each being the product of m primes, where k>3, m>2.

11. Every integer m may be written in infinitely many ways in the
form.
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Where k=1,2,3,, P1 and P2 are primes.

12. There exist infinitely many Carmichael numbers, which are the
product of three primes, four primes, and five primes.

13. There exist infinitely many prime chains in the arithmetic
progressions.

14. In a table of prime numbers there exist infinitely many k-tuples
of primes, where k=2, 3, 4, , 105.

15. Proof of Schinzel’s hypothesis.

16. Every large even number is representable in the form P1+P2Pn.
It is the n primes theorem which has no almost-primes.

17. Diophantine equation
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, has infinitely many prime solutions.

18. There are infinitely many primes of the forms: x2 + yn, n ≥2 and
3 3

1 2+mP nP  (m,n)=1, 2|mn, n≠±b3.

19. There are infinitely many prime 5-tuples represented by
P6−426=(P−42)(P+42)(P2+42P+1764)(P2−42P+1764)

20. There are infinitely many prime k-tuples represented by Pm ± Am.

In this paper by using the arithmetic function J2(ω) santilli’s
prime chains: Pj+1=aPj ± b are studied. It is a generalization of santillis 
isoprime m-chains: Pj+1=mPj ± (m−1) [6].

Santilli’s Prime Chains: Pj+1=aPj±b
Theorem 1

An increasing sequence of primes P1, P2,,Pk is called a Santilli’s 
prime chain of the first kind of length k if

Pj+1=aPj+b

for j=1,,k−1, (a,b)=1,2|ab.

We have the arithmetic function [6]

( ) ( )( )2
3 iP P

J P Pχ
≤ ≤

ω = −∏

Where 
2 iP P

P
≤ ≤

ω = ∏  is called the primorials, Pi the last prime of the
primorials.

We now calculate χ(P). The smallest positive integer such that,

as=1(mod P), (a, b)=1.
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χ(P)=k if k<s; χ(P)=s if k≥s; χ(P)=1 if P|ab

If J2(ω)=0, there exist finitely many primes P1 such that P2,, Pk are 
primes for arbitrary length k. If J2(ω)→∞ as ω→∞, there exist infinitely 
many primes P1 such that P2,, Pk are primes for arbitrary length k. It 
is the Book proof. This is a generalization of the Euclid-Euler proof for 
the existence of infinitely many primes.

We have the best asymptotic formula of the number of primes 
P1≤N,

( )
( ) ( )( )

1
2( ,2) 1 1

log

k

k k k

J NN O
N

π
φ

−ω ω
= +

ω
,

Where ( ) ( )
2

1
iP P

Pφ
≤ ≤

ω = −∏  is called the Euler function of the
primorials.

The Pj+1=aPj−b is called a Santilli’s prime chain of the second kind 
of length k. Both Pj+1=aPj±b have the same arithmetic function J2(ω). If 
a=m and b=m−1, it is Santilli’s isoprime m-chains [6].

Theorem 2

Pj+1=2Pj±b, j=1,,k−1 , b is an odd number.

We have the arithmetic function [6].

( ) ( )( )2
3

0
P Pi

J P Pχ
≤ ≤

ω = − ≠∏ .

We now calculate χ(P). The smallest positive integer s such that,

2s≡1(mod P),

χ(P)=k if k<s; χ(P)=s if k≥s; χ(P)=1 if P|b.

Since J3(ω)→ as ω→∞, there exist infinitely many primes P1 such 
that P2,,Pk are primes for arbitrary length k. This is the Book proof.

We have the best asymptotic formula of the number of primes P1 ≤ N.

( )
( ) ( )( )
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2( ,2) 1 1

log
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N

π
φ

−ω ω
= +

ω
.

The Pj+1=2Pj ± 1 are Cunningham prime chains [6].

Example 1: Pj+1=2Pj+7, j=1,2,3,4,5.

We have the arithmetic function,

( ) ( )( )2
11

6 0
P Pi

J P 6 Pχ
≤ ≤

ω = − − ≠∏ .

Where χ(31)=−1, χ(p)=0 otherwise.

Since J2(ω)→ as ω→∞, there exist infinitely many primes P1 such 
that P2,,P6 are primes.

We have the best asymptotic formula of the number of primes 
P1≤N,

( ) ( )( )
( )

( )( )
5 5

6 6 6
11

61 35N,2 1 1
8 8 log1P Pi

P P P N O
NP

χ

≤ ≤

− − π = + 
  −

∏

Theorem 3

Pj+1=3Pj±b, j=1,,k−1, (3,b)=1, 2|b.

We have the arithmetic function,

( ) ( )( )2
3

0
P Pi

J P Pχ
≤ ≤

ω = − ≠∏ .

We now calculate χ(P). The smallest positive integer s such that,

3s ≡1(mod P),

Since J2(ω)→∞ as ω→∞, there exist infinitely many primes P1 such 
that P2,,Pk are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes P1 ≤ N,

( )
( ) ( )( )
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= +
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Example 2: Pj+1=3Pj±4, j=1, 2, 3, 4, 5.

We have the arithmetic function,

( ) ( )2
17

96 6 0
P Pi

J P
≤ ≤

ω = − ≠∏ .

Since J2()→∞ as ω→∞, there exist infinitely many primes P1 such 
that P2,,P6 are primes.

We have the best asymptotic formula of the number of primes 
P1≤N.

( ) ( )( )
( )

( )( )
5 5

6 6 6
17

61 1001N,2 1 1
60 192 log1P Pi

P P P N O
NP

χ

≤ ≤

− − π = + 
  −

∏ .

Theorem 4

Pj+1=4Pj±b, j=1,,k−1, b is an odd number.

(1) 3|b, we have the arithmetic function,

( ) ( )( )2
3

0
P Pi

J P Pχ
≤ ≤

ω = − ≠∏ .

We now calculate χ(P). The smallest positive integer s such that,

4s≡1(mod P).

χ(P)=k if k<s; χ(P)=s if k≥s; χ(P)=1 if P|b.

Since J2(ω)→ as ω→∞, there exist infinitely many primes P1 such 
that P2,,Pk are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes 
P1≤N,

( )
( ) ( )( )

1
2( ,2) 1 1

log

k

k k k

J NN O
N

π
φ

−ω ω
= +

ω
.

(2) b≠3c , k=3, we have J2(3)=0.

(3) b3c , k=2 , we have P2=4P1 ± b. Since J2(ω)→∞ as ω→∞, there
exist infinitely many primes P1 such that P2 is a prime.

Theorem 5

Pj+1=5Pj±b, j=1,,k−1,(5,b)=1, 2|b is an odd number.

We have the arithmetic function,

( ) ( )( )2
3

0
P Pi

J P Pχ
≤ ≤

ω = − ≠∏ .

We now calculate χ(P). The smallest positive integer s such that

5s≡1(mod P).

χ(P)=k if k<s; χ(P)=s if k≥s; χ(5)=1; χ(P)=1 if P|b.

Since J2(ω)→ as ω→∞, there exist infinitely many primes P1 such 
that P2,,Pk are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes 
P1≤N,

( )
( ) ( )( )
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Theorem 6

Pj+1=6Pj±b, j=1,,k−1,(3,b)=1, b is an odd number.

(1) 5|b, we have the arithmetic function

( ) ( )( )2
3

0
P Pi

J P Pχ
≤ ≤

ω = − ≠∏

We now calculate χ(P). The smallest positive integer s such that

6s≡1(mod P).

χ(P)=k if k<s; χ(P)=s if k≥s; χ(3)=1; χ(P)=1 if P|b.

Since J2(ω)→ as ω→∞, there exist infinitely many primes P1 such 
that P2,,Pk are primes for arbitrary length k.

We have the best asymptotic formula of the number of primes 
P1≤N,

( )
( ) ( )( )

1
2( ,2) 1 1

k

k k

J
N Oπ

φ

−ω ω
= +

ω
.

(2) b≠5c , k=5, we have J2(5)=0.

(3) b≠5c, k≤4 , we have J2(ω)→∞ as ω→∞.

Theorem 7

Pj+1=7Pj±b, j=1,,k−1 , (7,b)=1, 2|b.

(1) 6|b, we have J2(ω)∞ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) 6|b, k=3, we have J2(3)=0.

(3) 6|b, k=2 , we have J2(ω)→∞ as ω→∞.

Theorem 8

Pj+1=8Pj±b, j=1,, k−1 , b is an odd number.

(1) 7|b, we have J2(ω)∞ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠7c, k=7, we have J2(7)=0.

(3) b7c, k≤6 , we have J2(ω)→∞ as ω→∞.

Theorem 9

Pj+1=9Pj±b, j=1,, k−1 , (3,b)=1,2|b.

We have J2(ω)→ as ω→∞, there exist infinitely many primes P1 
such that P2,,Pk are primes for arbitrary length k.

Theorem 10

Pj+1=10Pj±b, j=1,, k−1 , b is an odd number. (5,b)=1.

(1) 3|b, we have J2(ω)∞ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠3c, k=3, we have J2(7)=0.

(3) b3c, k=2, we have J2(ω)→∞ as ω→∞.

Theorem 11

Pj+1=11Pj±b, j=1,, k−1 , 2|b, (11,b)=1.

(1) 5|b, we have J2(ω)∞ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠5c, k=5, we have J2(5)=0.

(3) b5c, k≤4, we have J2(ω)→∞ as ω→∞.

Theorem 12
Pj+1=12Pj±b, j=1,, k−1, (3,b)=1, b is an odd number.

(1) 11|b, we have J2(ω)→∞ as ω→∞, there exist infinitely many 
primes P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠11c, k=11, we have J2(11)=0.

(3) b11c, k≤10, we have J2(ω)→∞ as ω→∞.

Theorem 13

Pj+1=16Pj±b, j=1,, k−1, b is an odd number.

(1) 15|b, we have J2(ω)→∞ as ω→∞, there exist infinitely many 
primes P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠3c, k=3, we have J2(3)=0. k=2, we have J2(ω)∞ as ω→∞.

(3) 3|b, k=5, we have J2(5)=0. k=4, we have J2(ω)→ as ω→∞.

Theorem 14

Pj+1=17Pj±b, j=1,, k−1, 2|b, (17, b)=1 is an odd number.

We have J2(ω)→ as ω→∞, there exist infinitely many primes P1 
such that P2,,Pk are primes for arbitrary length k.

Theorem 15

Pj+1=(2λ+1) Pj±b, j=1,, k−1, 2|b, ((2λ+1), b)=1.

We have J2(ω)→ as ω→∞, there exist infinitely many primes P1 
such that P2,,Pk are primes for arbitrary length k.

Theorem 16

Pj+1=(3λ+1) Pj±b, j=1,, k−1, 2|b, ((3n+1), b)=1 b is an odd number..

(1) 3|b, we have J2(ω)→ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) 3|b, k=3, we have J2(3)=0. k=2, we have J2(ω)→ as ω→∞.

Theorem 17

2
1 2 3 1( )j jP P bλλ

+ = ⋅ + ± , j=1,, k−1, 2|b, ( )2( ), 12 3 1 bλλ ⋅ + = .

(1) 6|b, we have J2(ω)→ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠6c, k=3, we have J2(3)=0. k=2, we have J2(ω)∞ as ω→∞.

Theorem 18

1 2
1 3 5( )1j jP P bλ λ

+ = ⋅ + ± , j=1,, k−1, b is an odd number.

( )1 2( )5 1 , 13 bλ λ⋅ + =

(1) 15|b, we have J2(ω)∞ as ω→∞, there exist infinitely many primes 
P1 such that P2,,Pk are primes for arbitrary length k.

(2) b≠3c, k=3, we have J2(3)=0. k=2, we have J2(ω)∞ as ω→∞.

(3) b3c, k=5, we have J2(5)=0. k≤4, we have J2(ω)→∞ as ω→∞.

Theorem 19

31 2
1 3 5 7 1( )j jP P bλλ λ

+ = ⋅ ⋅ + ± , j=1,, k−1, b is an odd number.

( )31 23 5 7 1( ), 1bλλ λ⋅ ⋅ + =
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(1) 105|b, we have J2(ω)∞ as ω→∞, there exist infinitely many
primes P1 such that P2,,Pk are primes for arbitrary length k.

(2) 3|b, k=5, we have J2(5)=0. k≤4, we have J2(ω)→∞ as ω→∞.

(3) 3|b, k=3, we have J2(3)=0. K=2, we have J2(ω)→∞ as ω→∞.

Theorem 20

31 2 4
1 3 5 7 11 )1(j jP P bλλ λ λ

+ = ⋅ ⋅ ⋅ + ± , j=1,, k−1, b is an odd

number.

( )31 2 43 5 7 1 , 11( )1 bλλ λ λ⋅ ⋅ ⋅ =+ .

(1) 1155|b, we have J2(ω)∞ as ω→∞, there exist infinitely many
primes P1 such that P2,,Pk are primes for arbitrary length k.

(2) 3|b, k=5, we have J2(5)=0. k≤4, we have J2(ω)→∞ as ω→∞.

(3) b3c, k=3, we have J2(3)=0. K=2, we have J2(ω)→∞ as ω→∞.

Theorem 21

31 2
1 7 19 31 1( )j jP P bλλ λ

+ = ⋅ ⋅ + ± , j=1,, k−1, b is an odd number.

( )31 219 3(7 1) 11 ,bλλ λ⋅ ⋅ + =

(1) 4123|b, we have J2(ω)∞ as ω→∞, there exist infinitely many
primes P1 such that P2,,Pk are primes for arbitrary length k.

(2) 7|b, k=19, we have J2(19)=0. k≤18, we have J2(ω)→∞ as ω→∞.

(3) b7c, k=7, we have J2(7)=0. K≤6, we have J2(ω)→∞ as ω→∞.

Theorem 22

Pj+1=aPj ± b, j=1,, k−1, (a, b)=1,2|ab.

If 1
111 , |n

n na P P P P bλ λ− =   , we have J2(ω)∞ as ω→∞. There 
exist infinitely many primes P1 such that P2,,Pk are primes for 
arbitrary length k [6].

Euclid-Euler-Jiang Theorem
Around 300BC by using the equation

(ω+1,ω)=1 as ω→∞,

Euclid proved that there are infinitely many primes.

In 1748 by using the equation

( ) 11

1 11
i ni

P nφ

∞ ∞

==

 ω
= = = → ∞ 

ω  
∑∏  as ω→∞,

Euler proved that there are infinitely many primes.

By using the equation [1-10].

J2(ω)→∞ as ω→∞.

Jiang has proved that there exist infinitely many primes P1 such 
that P2,,Pk are primes [1-10]. It is a generalization of Euclid-Euler 
theorem. Therefore Euclid-Euler-Jiang theorem in the distribution of 
primes is advanced. It is the Book theorem.

From ref. [6] we have:

( )
1

2

11
logiP N

C
P Nφ

≤ ≤

 ω
= 

ω  
∏ 

Therefore we have the prime number theorem.

( )
log

NN
N

π 

Where  π(N) denotes the number of primes ≤N.

From ref. [6] we have:

( )2 2
1 1

logk
k P N

J k BB
P N≤ ≤

ω  = ω  ∏ 

Therefore we have the prime k-tuples theorem:

( ),2
logk k k

NN C
N

π  ,

Where πk(N,2) denotes the number of primes P1≤N.

If the arithmetic constant ( )
( )

1
2 0

k

k k
J

C
φ

−ω ω
≠

ω
, that is J2(ω)0, there 

exist infinitely many primes P1 such that P2,,Pk are primes. πk(N,2) have 

the same form 
logk

N
N

 but differ in Ck.
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