Scalable Nanomanufacturing of Nanoparticle Films: A Continuous Automated Langmuir-Blodgett Assembly and Deposition Method

Xue Li*

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA

Nanoparticles (NP) of different materials keep capturing attention of researchers for several reasons. First, they may have properties that differ from the bulk material. Even if that is not the case, producing materials in nanoparticle form (especially by solution methods) can be advantageous if synthesis of bulk material is complicated and/or costly. Irrespective of the motivation behind making the nanoparticles, Nanoparticle in the form of thin film has attracted ever-increasing attention due to its practical application and scientific importance in numerous fields such as nanodevices [1], electronics [2], functional coatings [3]. Therefore, a great number of publications have studied the deposition of nanoparticle thin film.

Most commonly used techniques include: Langmuir-Blodgett (LB) technique [4], dip coating, spin coating, colloidal evaporation, electrostatic adsorption, chemical vapour deposition (CVD). The most common processes for fabrication of colloidal monolayers and colloidal crystals is using Langmuir-Blodgett deposition, convective deposition, and spin coating. Langmuir-Blodgett deposition [5,6] is well known for its ability to transfer amphiphilic molecules from a stagnant liquid interface onto a solid substrate, and has been extended to transfer other macromolecules and particles trapped at an air-liquid interface. While this process can be scaled to large troughs, it is not particularly continuous and the rate of deposition must be coordinated with the surface pressure by moving one or more walls of the trough. Convective deposition, which takes advantage of the evaporative flux of the solvent, can be scaled but the rate of deposition and assembly is highly limited by the solvent properties. Likewise, larger scale coatings can succumb to streaks formed by local instabilities. These streaks can be inhibited by using binary colloidal suspensions [7] or vibration-assisted convective deposition [8]. For monolayer deposition, convective deposition is limited to tens of microns per second. Peng and coworkers [9] have demonstrated fabrication of larger scale colloidal crystals using spin coating. However, the area coated is limited to the size of the wafer and cannot be translated to a roll-to-roll platform.

Most recently, Chokprasombat et al. [10] claimed preparation of long-range magnetic particles monolayers, the largest area they obtained is about 3 mm². Xia [11] successfully created macroscopic freestanding close-packed gold nanoparticle monolayer film by water/alcohol interfacial self-assembly, but their films are not larger than 1 cm². A even Larger area of 200 cm² hydrophilic citrate-stabilized Au nanoparticles films on solid substrate at liquid/alcohol interfaces over a large area. Due to its independence of the particles chemical nature, this approach can be applied to a large variety of particles and surfactants for the formation of macroscopic particle films. And thus it is a "scalable nanomanufacturing" which has promising practical industrial application including electronics, biomedical devices, food science, water treatment, and smart packaging.

The automated Langmuir-Blodgett technique offers a facile and general way to fabricate macroscopic, dried, closely-packed nanoparticles films on solid substrate at liquid/alcohol interfaces over a large area. Due to its independence of the particles chemical nature, this approach can be applied to a large variety of particles and surfactants for the formation of macroscopic particle films. And thus it is a "scalable nanomanufacturing" which has promising practical industrial application including electronics, biomedical devices, food science, water treatment, and smart packaging.

References

*Corresponding author: Xue Li, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA, Tel: +1 4105180800; E-mail: xue0214h@gmail.com

Received July 07, 2016; Accepted July 07, 2016; Published July 14, 2016

Copyright © 2016 Li X. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

