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Introduction 
Nowadays, the mass concept seems to be well understood and is 

mainly associated to particles of matter. However, several problems still 
remain unexplained. First, astrophysical observations [1,2] lead to the 
conclusion that some dark matter could exist to explain, for example, the 
rotation curve of galaxies as proposed on galaxy clusters by Zwicky [3] 
and proved on several observed galaxies by Rubin [4]. This dark matter 
has several explanations either baryonic or non-baryonic, but none is 
definitively accepted, meaning that matter is eventually not well known. 
In the same way, the concept of dark energy has no more convincing 
explanation. Second, mass can be explained by different theories that 
will be reminded in the present article. However, few of them lead to 
predictions that can be experimentally tested. Some mechanisms are 
nowadays identified and experimentally verified, such as the mass 
acquisition of massive bosons Z and W through the Higgs process 
[5,6]. Last but not least, mass is still the last physical unit based on a 
physical standard bulk material subjected to inherent difficulties [7,8]. 
We can definitively wonder what mass means. In the present article, 
the possible origins of the mass of physical systems are reminded with 
different explanations according to the different physical theories. Too 
exotic theories are not considered (such as negative mass). Therefore, 
the proposed list is not exhaustive but shows the main explanations, 
through some examples. Leading to a no-way road, we suggest and 
build another theory. This paper is thus an attempt to calculate the 
masses of both fundamental and composite particles from a master 
formula containing several parameters. The developments are based 
on a Lagrangian approach with a variational principle. It is consistent 
with the developments in physics over the last 50 years. Indeed, field 
theory is the based of actual physics, for which the present theory is 
derived using the classical tools of differential geometry. This theory 
is based on arguments already considered but not in the same way 
as presently. We base our theory on few simple assumptions. That 
theory for mass calculation is then described and more specifically the 
assumed interaction of matter with a real scalar field. The parameters of 
this model are then investigated. The use of that model on fundamental 
and composite particles enables to quantify explicitly these parameters. 
Relations between those parameters lead to predictions of particles 
masses. The investigation of one of those parameters according to the 
energy level of different families of particles leads to some observable 
energy density, which is eventually interpreted.

Review of Possible Mass Explanations
Mass is mainly associated to matter. Viewing at the classification of 

particles, we can see that fermions and bosons may have a mass. It is 
worth noting that all fermions have a mass, including neutrinos, whereas 
only some bosons have. For physical body, mass is usually separated in 
active gravitational mass, passive gravitational mass and inertial mass 
[9]. Reciprocity of the gravitational action leads to the equality between 
the active and passive masses [9]. The strong equivalence principle leads 
to the equality between the gravitational and inertial masses according 
to the Einstein’s theory of General Relativity [10,11]. In addition, 
Einstein proposes the equivalence between the total mass and total 
energy in the framework of Special Relativity [12]. This last equivalence 
will be systematically used further. Besides, mass definition is clear for 
closed systems; whereas for open systems where energetic interactions 
take place with the surrounding environment through boundaries, it is 
always more difficult to define it clearly.

Global energy balance

Mass may be defined through the balance of total energy of a physical 
system (according to the equivalence between the total mass and total 
energy). It means a global definition of the corresponding mass. There 
are several examples. First, let us consider the relativistic scattering of 
particles. When energy thresholds are reached, particles may be created 
with specific masses. These thresholds and masses are defined according 
to the global balance of energy [11]. This “mechanism” applies during 
collisions in labs, stars or during the Big Bang. The last one may be 
considered as the fabric of particles defining their masses once forever in 
specific conditions that are no more accessible. In such examples, each 
system is constituted of several particles without interaction (or weakly 
interacting) with the outside of the system. Second, during nuclear or 
chemical reactions, the separated and thus non-interacting constituents 
have a different energy to an interacting system when constituents 
are closer. Global balance of energy between both configurations 
(interacting and non-interacting) enables to calculate the bounding 
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It is quite easy to extend eqn. 4 for Special Relativity by using the Lorentz 
factor γ, provided that temperature is correctly coupled to γ [17]. It is 
more difficult to extend it for General Relativity. For example, a heated 
and massive gas leads to an increase of its mass. However, its numerical 
value depends on the chosen equation for mass definition (Komar or 
others). Moreover, when the system is dynamic (gas exploding...), these 
mass definitions are quite useless because the calculations are easy only 
for stationary metric tensor.

Third, when extending to open systems with external weak 
interactions, any physical effect can contribute to the total mass using 
a similar way. For example, if we consider the same single particle as 
previously with an internal structure and specific magnetic properties, 
then interaction with an external magnetic vector field of component 

k
extB  can contribute to the total mass, such as:

2

0 1 2 22 2
d B extn k T B Vm m m

c cµ
≈ = + + 			                  (5)

where V is the volume of the particle and µ is its magnetic permeability. 
Any other energy may contribute to the total mass. This last example 
ought to be placed in section 2.4 as a case of mass due to an interaction 
mechanism. We see that the contribution depends on the square of the 
inverse of the speed of light. Consequently, the numerical contributions 
of those effects to the total mass are often very small.

Last, another decomposition is possible when considering a 
composite system, based on the additivity of energy when independent 
parts of this system are assumed. Indeed, let us consider a complex 
system composed of nP parts.

If the different parts do not interact, or weakly such as it can be 
neglected, then the total mass can me written as:

0
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m m m
= =

= ≈∑ ∑ 				                   (6)

Last approximation corresponds to the non-relativistic limit. For 
continuous media, the sums in eqn. 6 are replaced by integrals.

Quantum effects and interpretation

Quantum mechanics leads to some specific interpretation of the 
mass due to the duality between particles and waves. Indeed, the energy 
of a particle is related to the angular frequency of its wave; whereas 
the group speed vector of contravariant component is related to the 
variation of this energy E to the wavenumber vector of covariant 
component ki. It leads to a quantum explanation of the rest mass of the 
wave group, according to (at non-relativistic limit) [18]:
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where  is the reduced Planck constant. This “mechanism” can be 
used, for example, to calculate the mass contribution in a lattice with 
electrical charges moving within. Indeed, we can calculate in a more 
general way the effective second-order mass tensor of particles useful 
in solid-state physics [19,20]:
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Let us consider the case of a cubic lattice of lattice spacing a with 
an energy 

3 2 2
0 1

( ) ( ( ) )l ll
E k E Aa k

=
= +∑ , where A is the amplitude of 

the energy of particles moving on this lattice. With equations 7 or 8, we 
obtain the same result for the isotropic effective mass of the particles: 

energy [13]. This “mechanism” is much more important (106 times) 
for nuclear interactions than for chemical interactions, because of the 
amplitude and characteristic length of nuclear interactions compared 
to the electromagnetic ones. Third, Komar made an attempt to define 
mass in the context of General Relativity, especially when exists a 
gravity field [14]. Other mass definitions exist such as Bondi or ADM 
masses [15,16]. This approach can be interpreted as a generalization 
of the equivalence between total mass and total energy in the context 
of General Relativity, by using the global energy balance with the 
momentum-energy tensor of contravariant component Tµv and the 
metric tensor of contravariant component gµv. The Komar mass MK is 
a definition of the total mass of the system based on its total energetic 
content, according to the relation [14,10]

( )( )444
1 2 v v

K v
V

M g T g T g u u dV
c

µ µ αβ
αβ µ= ∫ ∫ ∫ −  	               (1)

where c is the speed of light, V is the space volume, uµ is the covariant 
component of the quadrivector speed of particles such that uµuµ=c2, 
and g44 is the covariant “time” component of the metric tensor. Greek 
subscript or superscript runs from 1 to 4 in the present article.

Total energy decompositions

There is another way to define the mass of physical systems: by 
decomposing their different parts due to different physical effects. 
In such a decomposition, it is assumed that the different parts are 
independent and can be associated additively. There are several 
examples. In Special Relativity, the link with the total mass is given by 
the equivalence E=mc2, where E is the total energy and m is the total 
mass.

First, at non-relativistic limit, the total energy of a single and 
isolated particle without internal degrees of freedom is the sum of 
its energy at rest m0c

2 and its kinetic energy. The total mass of this 
particle for an observer is thus the sum of its mass at rest m0 plus a 
mass depending on the speed of the particle to the observer (supposed 
to be inertial/Galilean) (see eqn. 3). This decomposition is the first-
order expansion of the general equivalence between mass and energy. It 
can be also interpreted as a consequence of the fourth-component (on 
time direction) of the relation between the quadrivector momentum-
energy of con-travariant component pµ and the quadrivector speed of 
contravariant component :uµ

4 4
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where γ is the Lorentz factor [10] depending on the spatial norm of 
the speed v2. Second, when taking into account for internal degrees 
of freedom of a single and isolated particle, it is necessary to add an 
internal energy, for which a statistic assumption is often performed. We 
consider that internal thermalization is reached. Each internal degrees 
of freedom nd has thus the same equi probable energy [16]. It enables 
to decompose the total mass as the sum of a constant part m1 (different 
throughout this article), plus a contribution depending on temperature T:

0 1 22
d Bn k Tm m m

c
≈ = + 				                (4)

where kB is the Boltzmann constant. A similar relation was proposed by 
De Broglie in 1955 to explain the mass from a domain at temperature T. 
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these relations can also be applied to the quantum tunnelling or to the 
cyclotron motion. It is also possible to have quantum contribution due 
to degenerate states. For example, we can mention the case of degenerate 
fermions gas and degenerate bosons gas for which quantum effects lead 
to a specific relation for the effective mass of those ”almost ideal” gases 
[21]. For example, the degenerate Fermi gas with repulsive interaction 
of amplitude Ua and interaction characteristic length

 1
24
a

a
mUL
π

=


2 3
2
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30.59 am m m L ζ = +  π 

			                  (9)

where ζ is the volumic concentration of particles. Quantum effects are 
required to explain the masses of subatomic particles and more precisely 
at a scale below the Compton wavelength. Some attempts to explain the 
light hadrons masses can be found [22]. The quantum theory offers an 
interesting framework for quantification of masses. Formulas based on 
the resonance theory of elementary particles as de Broglie waves have 
been proposed, such as for example m0,n ≈ 137 n me where n is the mode 
and me is the electron mass [23]. At the opposite, the masses of leptons 
(electron, muon and tau) may be described with an empirical relation, 
known as Koide formula [24]:

( )22
3e em m m m m mµ τ µ τ+ + = + + 		                (10)

Some authors have tried to applied it to the prediction of the 
neutrinos masses or extended it for other particles [25-27]. Eventually, 
we have also to focus on the seesaw mechanism as a possible explanation 
for masses of neutrinos [28]. Indeed, because of the quantum 
probabilities, each neutrino can transform into each other. It is known 
as neutrinos oscillation [29,30]. Their mass could be then explained 
thanks to a super-partner particle for which the mass is big enough to 
correlate with the small observed masses of neutrinos [28,30,31]. More 
explanations and details for the neutrino masses can be found [32].

Mechanisms of interaction

From the previous explanations, some cases correspond to local 
effect due to interactions with the different fields. There are several 
examples for such open systems. First, such an effect is not limited to 
microscopic scale and can be observed at macroscopic scale. We can 
mention the hydrodynamic interaction of a sphere of finite volume V 
accelerating in a fluid of mass density ρ [33]. The local interaction of 
such a finite solid with the environing fluid leads to a contribution of 
the mass as:

0 1 2
Vm m m ρ

≈ = + 				                  (11)

Second, at microscopic field, similar mechanisms may be 
considered. For example, the mass of massive bosons Z and W can 
be explained through the local interaction with a complex scalar field 
[5,6]. This mechanism leads to the acquisition of particle mass thanks 
to the Higgs boson, through the broken symmetry in the scalar field 
[5,6]. Such a mechanism may be generalized to any particles (Goldstone 
model [34]). However it presents different limitations, such as the 
number of necessary coupling constants as numerous as the existing 
particles.

Third, there exists different possible couplings with scalar field. 
The present article focuses especially with a specific coupling between 
matter and a real scalar field (see in section 3).

Last, we can discuss the case of interacting systems through 

gravitation. Boratav and Kerner [35] have presented an interpretation 
of mass as the interaction with the far distant universe. This mechanism 
is consistent with the Mach principle that has oriented Einstein for 
the construction of the General Relativity. Different assumptions 
are assumed: finite radius of the universe; constant mass density of 
the universe ρU at the observed scale; only gravitational interaction 
(without magneto-gravitational effect, but with radiative gravitational 
terms); expansion of the universe according to the Hubble law. It can 
be then proved that mass emerges from the radiative gravitational 
force of the far distant universe on a test particle. The inertial mass 
and the gravitational mass are equal provided that ρU GH-2=1, where 
G is the Newtonian gravitational constant. Actually, the experimental 
evaluations of the Hubble constant H ≈ 73km· s-1 ·Mpc-1 and of the 
mass density ρU ≈ 10-26to 10-25 kg m-3 suggest that this relation could be 
numerically verified.

Mechanisms of self-interaction

Self-interaction is also a kind of interaction that could also explain 
the mass for open or closed systems. The most famous development 
has been made for electrodynamics. Several relations can be proposed 
based on different approximations: with or without relativistic 
assumption, with or without quantum assumption [36-39]. For some 
of those relations, the mass depends on the inverse of the length scale r:

0
0 1

0
lim T

r

m Lm m m Cste
r→

 ′≈ = +  
 

			                 (12)

where LT is the Thomson scattering length and Cste′ s a numerical 
parameter depending on the considered geometry. A strong divergence 
problem occurs for non-quantum approach (relativistic or not) [36,37] 
or for quantum and non- relativistic approach [38]. It is only with a 
simultaneous relativistic and quantum theory that the mass of particles 
can be renormalized with a logarithmic dependence on the length scale [39]:
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This process of renormalisation is done in quantum electrodynamics 
and can be performed for all order of the expansion of interaction 
terms with Feynman diagrams [40]. This is possible because: the theory 
depends on only one parameter Λr related to the length scale; the 
electromagnetic energy is local; the coupling constant αe ≈ 0.0073 is 
a small parameter to unity. Such a renormalisation explains mass as a 
result of the self-interaction, but does not enable to calculate a priori 
the observable mass. 

Observable mass is the total mass. In the most general case, it 
corresponds to the Komar mass (eqn. 1), whose definition can also be 
applied to the calculation of the electromagnetic charge when taking 
into account of its local gravitational field; it leads at first order to the 
same relation as eqn. 12. We can wonder if such an explanation for mass 
by considering self-interaction could be experimentally checked. If we 
consider a macroscopic ball of electrical charge Q and finite radius r, 
the total mass is:

2
0

0 1 4
m m m Cste

r
µ
π

′′≈ = +
Q 			               (14)

where 2 -1 7
0 = ( ) 4 10c USIπµ =  is the vacuum permeability and Cste′′ 

is a numerical parameter depending on the considered geometry ∈ 
[1/2; 3/5]. For an electrical charge Q of some Coulomb, a radius r of 
some mm and for an uncharged mass m1 around some mg, it should 
be possible to measure an effective increase of the charged mass m0. 
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However, because of the additional electrostatic interaction of the 
charge with the surrounding environment (long-distance and strong 
interaction), it is more difficult to define clearly the mass of this open 
system and what is really weighted with a weighing machine. In other 
words, it is not sure that eqn. 14 is still valid. Accurate experimental 
tests would be required to separate the different effects. Eventually, 
the same developments can be proposed for gravitation and quantum 
chromodynamics. However, it has been demonstrated that gravitational 
interaction cannot be renormalized [10, 41].

Thermodynamics mechanism

Thermodynamics arguments may also be used to define mass. 
There are several examples. First, let us start with the proposition of 
Verlinde based on entropic considerations [42]. He has proposed 
that gravitation is a consequence of the holographic principle due to 
Bekenstein and would be an entropic force [43]. The gravitational mass 
”emerges in the part of space surrounded by a screen where the energy 
is evenly distributed over the occupied bits of information” [42]. He 
proves then that the inertial mass may be related to the entropy S of this 
information as:

( )0 2
i

i
B

m m n S
k c

≈ = ∇
π
 				                 (15)

Where ni is the contravariant component of a unitary space vector 
and ∇i is the covariant component of the space differential operator. 
Second, we can also directly applied thermodynamics principles [16]. 
Let us propose a very simple but innovative example at microscopic 
scale for an atomic nucleus without detailing the inside nuclear 
interactions, using non-quantum and non-relativistic arguments. We 
suppose that a thermodynamic dissipation occurs at local scale because 
of the different particles inside the nucleus of global temperature T, 
where diffusion may occur. Indeed, thermal equilibrium is assumed, 
whereas ”chemical” equilibrium is not within this nucleus. The created 
volumic heat power rv is dissipated for example through thermal 
radiation R

Q at the surface. This volumic heat is related to the flux of 
particles, through a linear electrochemical-like coupling that is built to 
respect the Clausius Duhem inequality [16]. It is then supposed that 
diffusion of particles in the nucleus follows the Fick’s first law. The Fick 

diffusion coefficient can be 
6

B
F

k TD
Lπη

= . Electrical charges could be also 

taken into account through a factor (z+1) in the diffusion coefficient. 
Using eqn. 4 with m1=0, it leads then to the mass of the nucleus of 
characteristic length L.
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where β=β0 + kB T ln ζ is the “chemical” potential of the nuclear fluid 
and ji is the contravariant component of flux of particles relatively to the 
barycenter of the system. ζ is the volumic concentration of particles ≈ 
nN /L3 in this nuclear fluid. σSB is the Stefan-Boltzmann constant. First 
equality can also be derived from general Ohm’s relation and Nernst-
Einstein relation [16]. Advanced developments on viscosity of nuclear 
fluid can be found [44,45]. From bibliography, we can use either the 
viscosity in common nuclei around 2 10-8 kg/(m · s) or in quark-gluon 

plasma around 5· 10-11 kg/(m·s). Numerical calculations have been 
done for nN=3 and L=1 Fermi. It leads respectively to the masses of a 
nucleon 1.3 · 10-18 kg (in common nuclei) and 2.4 · 10-28 kg (in quark-
gluon plasma). According to the considered assumptions, alculation is 
more valid for a gas than for a liquid. It seems thus logical to obtain 
a correct magnitude for the mass of a nucleon with the viscosity of 
quark-gluon plasma. For a viscosity around 1010 kg/(m·s), we obtain a 
more accurate value for the mass. Mass and viscosity appear in general 
simultaneously with fundamental interactions [15], and seems here to 
be directly related.

From this short review, it has been shown that mass depends 
on kinematics quantity (through the speed), on thermodynamics 
quantities (with temperature or entropy), on scale transition (according 
to eqn. 6), on interactions or self- interactions. The mass is eventually 
difficult to understand because it involves modern physical theories 
that are difficult to merge. Moreover, the use of such an ultimate theory 
has interest only at the Planck scale. Without matter, the only reference 
mass is the Planck mass ≈ 2.176 · 10-8 kg=1.221 · 1019 GeV /c2, built with 
the system of units (c, G, 


). However, the corresponding energy seems 

to have no practical interest for determining the mass of most of the 
“common” observed particles.

Nevertheless, one conclusion can be drawn: when the system is 
closed, the mass is intrinsic; when the system is open, part of the whole 
mass may be linked to interactions with the surrounding medium. 
Because none part of the universe is strictly isolated, then it could be 
extrapolated that mass of those parts are not intrinsic properties for 
any considered local matter. Only a global point of view should be 
thus considered to define clearly mass. Eventually, except relations 
between physical variables (v, T, S...) or general definitions (Komar, 
Verlinde), there are few mechanisms to explain mass: Higgs process for 
bosons Z and W, hypothetic seesaw process for neutrinos, hypothetic 
far distant gravitational interaction for all particles... This list is far to 
be exhaustive. Some other theories for mass generation can be found 
in literature, which involve gravity or not. None of them are really 
satisfying for all particles. Only one has been verified experimentally 
with huge difficulties (Higgs process). Consequently, it is appropriated 
to look for a more general mechanism.

Theory for Mass Calculation
In the present article, it is proposed to develop a general theory 

enabling to calculate the mass of all particles. As previously said, 
different contributions may be considered for this mass calculation. 
Only three contributions will be further considered based on some 
general assumptions.

Assumptions

The proposed model aims to predict and calculate the rest mass of 
physical systems m0 (corresponding to the total mass in a rest frame). 
In the following development, this mass is simply noted m. We assume 
that mass can be additively decomposed. This assumption is directly 
linked to an additive decomposition of the Lagrangean functional that 
is supposed to exist. In this decomposition, we consider three terms 
(not necessarily independent):

ref Qm m m mΦ= + + 				                 (17)

For non-relativistic approximation, this theory is based on the 
following total Lagrangian functional:
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We suppose that mref + mQ do not depend explicitly on Φ, scalar 
field that will be detailed in section 3.2, or Φ , its mass derivative, and 
thus correspond to constant terms to these fields. Moreover, we assume 
that the parameter Cste does not depend on the total mass m.

First, we define a mass level denoted as reference mass mref , 
meaning that particles are associated to this energy level. Its value may 
a priori depend on the considered family of particles. The concept of 
family of particles will be detailed at the end of this section. Second, 
from a macroscopic point of view, particles seem to access all the 
positions of space. However, accessing small positions requires 
high energies according to quantum effects. Moreover, a threshold 
is presently supposed around the Planck limit. Particles cannot then 
access smaller distance than the Planck length. It means that space is no 
more continuous and can be regarded as a lattice with a step related to 
the Planck length LP. Consequently, the quantum mass contribution mQ 
can be calculated according to eqns. 7 and 8. For a cubic lattice of lattice 
spacing LP , we have:

2

2 2
P

cm C C
L mc Gm

= =
 

Q Q Q

where m is the mass, G is the Newtonian gravitational constant and 
C
≈

Q  is a dimensionless parameter linked to the real length to the ideal 
Planck lattice. This parameter can be expressed as a function of other 
dimensionless parameters such as parameters of coupling. Indeed, at 
the Planck length, one expects that gravitational interaction occurs 

with a coupling constant associated to the reference mass
2
ref

G

Gm
c

α =


 
that leads to the quantum mass contribution:
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The last equality is written to simplify the interpretation of the 
dimensionless parameter C

≈

Q  as a ratio of a characteristic length to 
twice the Planck length. This parameter is further denoted as Planck 
lattice spacing. The ideal Planck lattice spacing is 0.5, meaning that 
the particle can access distance equal to the Planck length. This mass 
contribution is also supposed to be negative.

Third, we consider the existence of a real scalar field Φ with a 
contribution mass mΦ. Generally, physical fields are assumed to depend 
on space xj and time t=x4/c. We suppose here that this field is uniform 
and stationary, i.e. its values are assumed to be constant for all time and 
space. For a given family of N particles, masses are distinct and can be 
related to a mass vector mk associated to the ground state at rest of these 
N particles, where k runs from 1 to N. As an example to illustrate a 
family of particles, we have just to consider the electron, muon and tau 
particles. This scalar field is supposed to depend only on a mass vector 
variable, such that Φ(mk).

Scalar field equation

The field equation can be obtained from a variation principle, 
especially the Lagrangean approach. Let us consider the simple case for 
a single particle of mass m, we have a Lagrangean functional 

Lfield (Φ, Φ , m) where d
dm
Φ

Φ = . The scalar field corresponds to 

the functional that minimizes the action, with adapted boundary 
conditions, such that:

( )( ), , 0fieldL m dmδ ∫ Φ Φ =  			               (21)

It leads to the Euler-Lagrange equation:

0field fieldL Ld
dm

∂ ∂ 
− = ∂Φ ∂Φ 

 				                 (22)

Considering the chosen Lagrangean of Eq. 18, we assume the 
simplest form for the Lagrangean of the scalar field:

2
field 1 2

1
2 L LL Cste Cste= Φ + Φ +   			                   (23) 

As previously said, we assume that the parameter CsteL1=0.5Cstev2 
does not depend on the total mass m, leading to the equation:

( )( ) ( ) 0d m m
dm

= Φ = Φ =   			                  (24)

For non-single particles, the scalar mass is replaced by a mass 
vector of contravariant components mk. Therefore, the second-order 
differential equation is replaced by considering a covariant derivative in 
the mass space instead of a simple derivative:

( ) 0k
j

j

D D m
Dm Dm

 Φ = 
 

 				                     (25)

The expression of the covariant derivative is interesting for some 
simple cases:

1
| g | jj

D
Dm m

∂
=

∂
 and | g |j

j

D
Dm m

∂
=

∂
 and |g| is the determinant 

of the metric tensor, when orthogonal coordinate systems in the mass 
space are considered as further.

This Laplacian equation in the mass space has to be solved to obtain 
the field dependence Φ(mk). Assuming isotropy of this function to its 
argument |m| and g|m||m|=1, we can replace equation 25 by the simplified 
one:

( ) ( )2

2
k
m k

d m d m
d md m

Φ Φ
+ Γ 			               (26)

where k
m kΓ  is the Christoffel symbol. For dimension N=2 ("polar" 

coordinates), its value is 1
| |m

 For dimension N=3 ("spherical" 

coordinates), its value is 
2

| |m . For higher dimension N ("hyper-

spherical" coordinates), its value is in general 1
| |
N

m
− . It leads to the 

equivalent equations:

( )
( ) ( )1

1

1 0N

N

d dm m
d m d mm

−

−

 
Φ =  

 
 		                (27)

( ) ( )
2

2

1 0N d dm m
m d m d m
−

⇔ Φ = Φ =  		                 (28)

( ) ( )1 0N dm m
m d m
−

⇔ Φ + Φ =  			                    (29)

where |m| is the Euclidean norm of mk. The vector dimension is N. 
Because of this assumption of isotropy throughout the article, the norm 
will be simply written by using m instead of |m|. The solution of eqn. 
29 is then:

( ) ( )1N

Cm
m

Φ
−

Φ =  				                   (30)
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where CΦ is a parameter. However, we can wonder whether this 
parameter can depend on other parameters or is really a “universal” 
physical constant (for a given choice of the units system). For example, 
that parameter could depend on the configuration of the system, i.e., its 
scale, geometry or number of particles.

Matter coupling

It is now necessary to consider the coupling of Φ and/or  with 
matter. This coupling can be performed through the definition of an 
adapted Lagrangean functional. The latter has not to depend on an 
undetermined level of field, but should only depend on its derivative. 
Thus we assume a coupling with Φ. This is the same argument as using 
electrical potential gradient instead of the electrical potential for the 
electrical force construction. For example, in a four-dimensional 
formalism, we have eventually to couple Φ  and the 4-speed uµ of a 
material point to obtain a scalar functional. The simplest coupling is 
performed by multiplying Φ  with Consequently, a contribution to the 
total mass is simply, according to eqn. 18

Φ Φm =Cste  					                   (31)

At this step of the derivation, a choice on the unit of Φ is possible. 
Consequently, the Cste parameter in eqn. 31 is chosen equal to 22CΦ . 
For the specific solution of eqn. 30, the mass contribution is then:

2 2

(N 1)

2CΦ
Φ −



m =
m

 					                  (32)

In the international units system, for all N, the scalar field Φ  is 
homogeneous to kg-N/2-1=2 m-2 .s1 and the parameter CΦis homogeneous 
kgN/2-1=m-2. It is possible to define a quantity homogeneous to a mass 
with the parameter CΦ, and thus independent on N, as:

2 2 1/ N(2 )CµΦ Φ= 

 				                  (33)

(N 1)

NµΦ
Φ −⇒m =

m
 				               (34)

As said before, CΦ could also depend on specific parameters of the 
system. For instance, we can assume that CΦ may be related to mref. For 
a M-power dependence of this scalar charge, the scalar field parameter 
may be then expressed as:

1
M
refC cΦ = m  					                  (35)

(2 / )
2

M N
refcµΦ⇔ = m  				                 (36)

In the present theory, because the field Φ does not depend on the 
space and time coordinated, the mass of particles can be explained 
everywhere and every when by the same mechanism with the same 
parameters leading to the same mass. From a space time point of view, 
the present theory is non-local. The proposed mechanism is global.

Solutions for identical particles

Identical particles mean here a priori for a family of particles with 
the same quantum numbers (total angular momentum, spin, magnetic 
momentum, electrical charge, leptonic number, baryonic number...), 
but with a different mass. It is supposed that these particles interact 
isotropically with the scalar field. By taking eqns. 32 and 20 in eqn. 17, 
we obtain the following relation:

2 2 2

(N 1)
2

1 2

4

ref
ref

C

C

Φ
≈ −= − +



m
m m

m m
Q

 			                 (37)

2
(N 2) 2 2

2
2 0

4

refN
ref C

C

−
Φ≈⇔ − + − =

m
m m m

Q

 	                             (38)

This last equation depends on 4 parameters N, C
≈

Q , CΦ the number 
of particles in a family, the Planck lattice spacing, the parameter of 
scalar interaction and the reference mass. The number of particles can 
be chosen a priori for a given family. For example, let us consider the 
case for 1, 2 or 3 particles. For the first case N=1, we have:

2
1 2 2

2
2 0

4

ref
ref C

C

−
Φ≈+ − =

Q

m
m -m m  			                (39)

2
2 2 2

2
2 ) 0

4

ref
ref C

C
Φ ≈⇔ + +

m
m -(m m =

Q

 		               (40)

If 2 22CΦ , one particle can exist if and only C
≈

Q >1 Else, it is not 
possible to have strictly one single massive particle with the present 
theory. There exists another possibility if mref=0, for which the two 
solutions of Eq. 40 are m =0 and m =µΦ(N =1)= 2 22CΦ . One single 
massive particle can exist associated to a second one as a non-massive 
particle. For N=2 and N=3, the equations are respectively:

2
2 2 2

2
2 0

4

ref
ref C

C
Φ≈

 
 ⇔ − 
 
 



Q

m
m -m m =  		                (41)

2
3 2 2

2
2 0

4

ref
ref C

C
Φ≈ − 

m
m -m m m =+

Q

 			                 (42)

For specific conditions on the different parameters, 2 or 3 massive 
particles are expected, corresponding respectively to the solutions of the 
second-order algebraic equation (eqn. 41) or the third-order algebraic 
equation (eqn. 42)

Simplified influence of the reference mass mref

Except N, three other parameters have to be considered that are 
supposed to be independent. The Planck lattice spacing C

≈

Q is supposed 
to have values more or less around unity. However, each family of 
particles will strictly have a different value of this parameter because 
of their nature. With the present theory, it is not a priori possible to 
explain and calculate accurately these values. The parameter of scalar 
interaction CΦ may have a value for the considered particles depending 
a priori on the number of particles N and/or other parameters. Here 
for simplicity and illustration, CΦ is supposed to be independent of 
mref . For the present calculation of this subsection, a constant value of 
10-9kg-N/2 · m-2 · s1 is thus chosen. The only parameter that remains to 
be investigated is the reference mass mref . It depends on the nature of 
particles and on the number of particles N in a family. The  influence of  
the  reference  mass  is  illustrated respectively for N=2, N=3, N=4 and 
N=5 (Figures 1-4).

It is worth noting that these diagrams present different behaviours. 
For N=2 (Figure 1),  for  low  reference  mass  (below ≈ 2 · 10-15mPr) the  
number  of  particles is asymptotically 1, whereas for high reference mass 
(above ≈ 2 · 10-15mPr) the number of particles is 2. For N=3 in Figure 2, 
for low reference mass (below ≈ 0.5mPr)  there  are  strictly 2 particles, 
where as  for  high  reference  mass (above ≈ 0.5mPr) the number of 
particles is 3. For N=4 in Figure 3, for low reference  mass (below ≈ 7 · 
106mPr) there are strictly 3 particles, whereas for intermediary reference  
mass (between ≈ 7 · 106mP r and ≈ 107mPr) the number of particles is 4, 
and for high reference mass (above ≈ 107mPr) the number of particles 
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tends asymptotically to 3. For N=5, the behavior is similar to N=4 
because two of the solutions are identical. Differences only occur on 
the limit of ranges of the reference mass. First we can conclude that 
a family of 5 particles is not possible for  the considered values of 
the parameters of this theory. Second we can suggest that a family of 
4 particles is possible to be observed only in a restrictive domain of 
reference mass corresponding to very high values to the proton mass 
mPr. Therefore, for particles of “common” reference mass (i.e., around 
the proton mass), only families of 2 or 3 massive particles should be 
theoretically observed. This is relevant with experimental observations. 
In the present theory, it is also worth noting that the mechanism to 
obtain mass for particles is a kind of seesaw mechanism (for N=1).

Application to Massive Constituents
Now the present theory is going to be applied to different kinds 

of particles either fundamentals (leptons, quarks, massive bosons) or 
composites (baryons, mesons).

Assumptions

We assume that for any kind of particles the theory of section 3 
can be applied according to the assumptions (additivity of mass 
contributions, existence of a quantum mass contribution linked to 
a lattice at the Planck scale, existence of a scalar field contribution). 
We consider groups of N=2 or 3 particles, denoted as family. For the 
different kinds of particles (fundamentals or composites), there can 
exist differences such as the parameter CΦ, which may be related to the 
reference mass mref . This can be easily understood by doing analogy with 
electromagnetic field theories where interaction parameter depends 
on the number of electrical charge and their relative geometries. This 
dependence is supposed to be related to the number of particles N and 
to the scale of description (fundamental or composite particles), but 
not on the quantum numbers of the system (total angular momentum, 
electrical charge...). It is also important to emphasize that we expect to 
obtain a general theory. However, with triplet of particles, it is always 
possible to obtain a set of three parameters from a third-order algebraic 
equation. It is only if some links between those parameters and/or if 
predictions may be done that the present theory can be assessed to 
experimental observations.

Leptons masses

Two families of leptons should be described: electronic and 
neutrino ones. The triplets are easy to identify. First, we consider the 
family constituted of electron, muon and tau particles. In this triplet, 
all the particles have the same quantum numbers [46]. Moreover, the 
experimental masses are quite well-known. It is first interesting to 
question how such leptons are created. For example, for electrons, they 
can be created from neutrons by beta decay or from gamma radiation 
annihilation, for which nucleons are intermediaries [13]. Consequently, 
the reference mass for this kind of reference should be a multiple of the 
nucleon mass. Considering the order of magnitude of the tau, we expect 
to have the reference mass around 2 mPr. Because of the slight difference 
between the neutron and proton masses, it is better to let vary this 
parameter. It is thus possible to identify the different parameters of eqn. 
42, which are related in Table 1.

As expected, the ratio of reference mass to proton mass is very close 
to 2. This parameter ought to be considered as known. Moreover, the 
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Planck lattice spacing C
≈

Q  very small, meaning that this family may 
access distance close to the Planck length (≈ 4.3LP ). The last parameter 
CΦ may depend on the particles family and especially on the mass of 
reference. This will be investigated further in section 4.5. Second, to 
complete it should be theoretically possible to express the masses of 
neutrinos with the present theory. One main problem is that some of the 
parameters change to the electronic family, such as the reference mass. 
Moreover, the experimental values of masses of those particles present 
huge uncertainties. Consequently, identification of the parameters that 
depend on the considered family would have a too weak accuracy. 
This is consistent with the explanations proposed in section 2. Indeed, 
neutrinos can be seen roughly as electrons without electrical charge; 
thus renormalisation may also be used to explain the link between the 
masses of those two families, according to the relation:

2

2

, , , ,
, ,

e e v C
e

e
Lµ µ

µ
−= + 



m m  		               (43)

where Le,µ,τ is the characteristic length of self-interaction (proportional 
to the length scale r used in Eq. 12) and e2=Q2/(4πE0). We expect those 
lengths are strictly positive. However, for each particles of those families 
(electron and e-neutrino, muon and µ-neutrino, tau and τ-neutrino), 
there is a priori a different value for Le,µ,τ. In other words, there are 
always three unknown parameters Le, Lµ, Lτ as in the proposed theory, 
which are difficult to identify because of the huge uncertainties of the 
experimental values for the neutrinos masses.

Quarks masses

Two families of quarks could be described. First, we consider 
the family constituted of down, strange and bottom particles. In this 
triplet, all the particles have not strictly the same quantum numbers: 
the isospin, strangeness and bottomness are not equal [47]. We suppose 
that these properties do not affect the mass of quarks at first order of 
approximation. Contrarily to leptons, it is harder to induce the reference 
mass for quarks because they do not exist freely [13]. It is nevertheless 
possible to identify the different parameters of Eq. 42, with a higher 
uncertainties, which are related in Table 2.

The ratio of reference mass to proton mass is around 4.56. Its 
interpretation is not trivial. Similarly to the electronic family, the 
parameter C

≈

Q  is very small, meaning that this family may access 
distance close to the Planck length. The last parameter CΦ may depend 

on the particles family and especially on the mass of reference. This 
will be investigated further in section 4.5. Second, it is also possible 
to describe the other quark family constituted of up, charm and top 
quarks. In this triplet, all the particles have again not strictly the same 
quantum numbers: the isospin, charm and topness are not equal [47]. 
We suppose again that these properties do not affect the mass of quarks 
at first order of approximation. Similarly to the first quark family, it is 
harder to induce the reference mass for quarks because they do not exist 
freely [13]. It is nevertheless possible to identify the different parameters 
of eqn. 42, with a higher uncertainties, which are related in Table 3.

The ratio of reference mass to proton mass is around 186. Its 
interpretation is definitively not trivial. Similarly to the electronic 
family, the parameter C

≈

Q is very small, meaning that this family may 
access distance close to the Planck length. The higher the reference 
mass is, the higher this parameter is. For the second quark family, it 
is twice the value found for the first quark family. The last parameter 
CΦ may depend on the particles family and especially on the mass of 
reference. This will be investigated further in section 4.5. Its uncertainty 
is quite important, because of the bigger uncertainties for the masses of 
that family.

Massive bosons

Nowadays, it has been clearly evidence the masses of bosons W 
and Z of the electroweak theory, as discussed in introduction of this 
article. Let us imagine that the Higgs mechanism is not a significant 
part of the mass contribution of these bosons (meaning that the 
Higgs mass could not to be as important as expected). Let us also 
suppose that the difference of electrical charge effect between this 
two bosons is neglected, meaning that no renormalisation process 
contributes significantly to the mass of these particles. The latter is a 
strong assumption only to see if the present theory is able to describe 
consistently the mass of those two particles. However, because W+ and 
W− are usually assumed to have the same mass, the latter depends only 
on even power of the electrical charge, so that it should be a second 
order effect to the total mass provided that this contribution is a small 
parameter. Two possibilities may be considered for this family, either 
N=3 or directly N=2. For the first case, the reference mass should be 
inferior to 0.5 mPr, but this is not possible because values for the boson 
masses are superior. Consequently, the solution has to be searched directly 
for the case N=2 supposing that W and Z form a doublet. It is possible to 
identify the different parameters of eqn. 41, which are related in Table 4.

Particles Electron Muon Tau
Experimental mass [46]
(MeV/c2)

0.510998928 ± 0.000000011 106.6583715 ± 0.0000035 17776.82 ± 0.16

Calculation (MeV/c2) 0.510998928 106. 1777.
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 2.00687 ± 0.00017 2.16738 ± 0.00009 4.943062. 10-9 ± 2.23. 10-13

Table 1: Input and output data for electronic family.

Particles Electron Muon Tau
Experimental mass [46]
(MeV/c2)

4.8 ± 0.8 95 ± 5 4180 ± 30

Calculation (MeV/c2) 4.8 95 4180
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 4.561 ± 0.038 3.311 ± 0.0081 2.203.10-8 ± 2.50.10-9

Table 2: Input and output data for the first quark family.

Particles Up Charm Top
Experimental mass [47] 
(MeV/c2)

2.3 ± 1.2 1275 ± 25 173210 ± 1220

Calculation (MeV/c2) 2.3 1275 173210
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 185.967 ± 1.328 5.86 ± 0.039 3.516. 10-7 ± 1.021. 10-7

Table 3: Input and output data for the second quark family.
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The ratio of reference mass to proton mass is around 182.9. Its 
interpretation is once more not trivial. This value is close to the one 
obtained for the second quark family. More than the electronic and 

quarks families, the parameter C
≈

Q  is very close to unity (1.002), 
meaning that this family moves quasi strictly on a Planck lattice of twice 
the Planck length. It seems logical that bosons may access distance 
values smaller than fermions, because the exclusion principle does 
not limit the position of bosons but only the one of fermions. For the 
parameter of scalar field, the value is not the same as the ones found 
for the quark and electronic families. This last parameter depends 
definitively on the particles family and/or on the mass of reference. 

Possible link between fundamental particles masses

First, we are trying to link the scalar field interaction to the 
reference mass. Indeed, the parameter CΦ does not appear as an 
universal constant. From Tables 1-3, we can plot µΦ versus the reference 
mass. This quantity is more interesting to plot, because its unit does 
not depend on N (eqn. 33). The massive bosons (N=2) have not been 
considered, mainly because it does not correspond to the same case as 
the others (N=3). The graph is presented in Figure 5.

The points are roughly aligned (in log scale) according to the 
relation:

10log10 30.40 0.71log refµΦ = − + m  			                 (44)

31 0.713.97.10 refµ −
Φ⇔ = m  				                    (45)

12 1.061.68.10 refC −
Φ⇔ = m  				                  (46)

When fitting the data without the error bars, the linear relation (in 
log scale) is slightly better and the fitted parameter are slightly different. 

Errors are 0.63 and 0.19 respectively on the intercept and on the slope 
(in log scale). This non- linear relation links the reference mass with 
a coupling parameter according to Eq. 35, with M=1.06. CΦ is thus 
quasi linear to mref. In this case, we may rewrite the equation for mass 
determination as:

2
3 3

2
0

4

ref
ref

C
µΦ≈ − =

m
m -m m m+

Q

 			               (47)

2
3 93 2.13

22 62.57.10 0
4

ref
ref

C

−
≈⇔ − + − =
Q

m
m mrefm m m  	               (48)

Second, we may think that it would be possible to use this relation 
to extrapolate the values for the neutrinos family. It reduces the number 
of unknown because of the dependence. Only two parameters are now 
required: the reference mass mref and the Planck lattice spacing C

≈

Q

The latter could be numerically taken equal for both leptonic families 
(≈ 2.17). Only the reference mass remains then eventually unknown, 
but it is difficult to choose a value leading to results compatible with 
the experimental conditions imposed to those particles. This aspect 
remains to be investigated.

In conclusion of this section, we have obtained a theory that can 
describe the mass of fundamental particles. For the three considered 
families for N=3, there exists a priori 9 unknown parameters. It is 
possible to give a power law relation for the scalar mass of coupling 
as a function of the reference mass. Moreover, the reference mass of 
electronic family can be a priori given (=2 mPr). Consequently, there 
exist only 7 unknown parameters to calculate the 9 masses of those 
particles with the considered universal mechanism.

Composite particles masses

It is now interesting to look for the masses of composite particles. 
Indeed, the present theory should and can be adapted to any particles: 
baryons, mesons. For baryons, it is quite easy to define the different 
families. A given family consists on a common root added to one of the 
fundamental quark family or the other. For mesons, it is more difficult 
to define a priori a family. We will look for the following considered 
families of N=3 particles, where J is the is the total angular momentum 
and Q is the electrical charge. For a given family (mesons or baryons), 

Particles Z° W+ or W  
Experimental 
mass [48](GeV/ c2)

91.1876 ± 0.0021 80.385 ± 0.015  

Calculation (GeV/ c2) 91.1876 80.385  
Parameters ref

Pr

m
m

C
≈

Q

CΦ( m-2. s1)
 

Fitted values 182.861 ± 0.018 1.00199 ± 0.00001 5.3632.10-8 ± 3.15. 10-10

Table 4: Input and output data for the massive bosons.
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Figure 4: Influence of the reference mass for the case N=5 corresponding 

to the solutions of Eq.38 for N=5; CΦ=5·10-9kg-5/2·m-2·s1 and C
≈

Q =2; the 
normalization mass m0 has been arbitrarily chosen to 1012mPr .

Figure 5: µ
Φ versus the reference mass mref for the three fundamental consid- 

ered families (electrons, first quarks and second quarks families).
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we assume to have only the same Q and J. This is consistent with 
previous assumptions considered for the quark families. We work with:

•	 Proton, Sigma, bottom Sigma, for J=1/2 and Q=1

In this triplet of baryons, all the particles have not strictly the 
same quantum numbers: the isospin, strangeness and bottomness are 
not equal. We suppose that these properties do not affect the mass of 
composites at first order of approximation. The results are summarized 
in Table 5.

•	 Delta, Sigma, bottom Sigma, for J=3/2 and Q=1

In this triplet of baryons, all the particles have not strictly the 
same quantum numbers: the isospin, strangeness and bottomness are 
not equal. We suppose that these properties do not affect the mass of 
composites at first order of approximation. The results are summarized in 
Table 6. In this triplet of baryons, all the particles have not strictly the same 
quantum numbers: the isospin, strangeness and bottomness are not equal. 
We suppose that these properties do not affect the mass of composites 
at first order of approximation. The results are summarized in Table 7.

•	 Neutron, Lambda, bottom Lambda, for J=1/2 and Q=0 In this 
triplet of baryons, all the particles have not strictly the same 
quantum numbers: the isospin, strangeness and bottomness are 
not equal. We suppose that these properties do not affect the 

mass of composites at first order of approximation. The results 
are summarized in Table 8.

•	 π0, η, ηl, for J=0 and Q=0

This regroupment has been considered according to their specific 
quantum numbers and because they belongs to the same octet. In this 
triplet of mesons, all the particles have not strictly the same quantum 
numbers: the isospin is not equal. We suppose that these properties do 
not affect the mass of composites at first order of approximation. The 
results are summarized in Table 9.

•	 ρ0, ω, φ, for J=1 and Q=0

This regroupment has been considered according to the same 
reason as previously. In this triplet of mesons, all the particles have 
not strictly the same quantum numbers: the isospin is not equal. We 
suppose that these properties do not affect the mass of composites at 
first order of approximation. The results are summarized in Table 10.

We have considered that any triplet can be evaluated by the 
present theory, providing the electrical charge Q and the total angular 
momentum J are similar per family. At first order of approximation, 
we consider that the flavor quantum numbers does not affect the mass 
value. Whatever the family, the present theory is able to reproduce the 
experimental results with consistent values of the three parameters.

Particles quarks content Proton p+ u- u- d Sigma∑+ u-u-s Bottom Sigma
b

+∑ u-u-b

Experimental mass [46]
(MeV/c2)

938.272046 ± 0.000021 1189.37 ± 0.07 5811.3 ± 1.9

Calculation (MeV/c2) 938. 1189. 5811.
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 8.4613 ± 0.0021 1.08114 ± 0.00009 1.28520 - 10-6 ± 2.5. 10-10

Table 5: Input and output data for the u-u-x family, for J=1/2 and Q=1.

Particles quarks content Delta ∆+u - u - d Sigma ∑*+u-u-s Bottom Sigma 
b

+∑ u - u - b

Experimental mass [46]
(MeV/c2)

1232 ± 2 1382.80 ± 0.35 5832.1 ± 1.9

Calculation (MeV/c2) 1232 1382.80 5832.
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 9.0026 ± 0.0045 1.02574 ± 0.00015 1.59078. 10-6 ± 1.75. 10-9

Table 6: Input and output data for the u-u-x family, for J=3/2 and Q=1.

Particles quarks content Delta ∆‑  d-d-d Sigma Σ*- d-d-s Bottom Sigma  d - d - b
Experimental mass [46]
(MeV/c2)

1232 ± 2 1387.2 ± 0.5 5835.1 ± 1.9

Calculation (MeV/c2) 1232 1387.2 5835.1
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 9. 0105 ± 0.0047 1.02547 ± 0.0002 1.59372. 10-6 ± 1.84. 10-9

Table 7: Input and output data for the d-d-x family, for J=3/2 and Q=¡1.

Particles quarks content neutron n° u - d - d Lambda Λ° u-d-s
Bottom Lambda 0

bΛ  u- d-b
Experimental mass [46]
(MeV/c2)

939.565379 ± 0.000021 1115.683 ± 0.006 5619.4 ± 0.6

Calculation (MeV/c2) 939.565379 1115.683 5619.4
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 8.1796 ± 0.0006 1.08115 ± 0.00003 1.22487. 10-6 ± 6.87. 10-11

Table 8: Input and output data for the u-d-x family, for J=1/2 and Q=0.
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The results for composite particles show that the reference masses 
ratios are between 8 and 9 for baryons, whereas for mesons smaller 
values are obtained between 1 and 3. The parameter C

≈

Q is very close 
to unity (between 1.025 and 1.082) for baryons, meaning that these 
families may access distance close to the Planck length. It is interesting 
to note that mesons families have a value for this parameter slightly 
inferior to unity (0.961 and 0.870), and thus closer to Planck length 
than baryons. The last parameter CΦ may depend on the particles family 
and especially on the mass of reference. This will be investigated further 
in section 4.7

Possible link between fundamental particles masses

Because the experimental data are not necessarily available for 
all the triplets, it is impossible to perform identification for all the 
existing families of particles. But the identifications performed in 4.6 
are sufficient to find a possible relation between CΦ and the reference 
mass mref. Indeed, the parameter CΦ does not appear as an universal 
constant. From Tables 5-9, we can plot µΦ versus the reference mass. 
Only the family of mesons with the less experimental uncertainties 
have been used for the further step. The quantity µΦ is more interesting 
to plot because its unit does not depend on N. The graph is presented 
in Figure 6.

The points are correctly aligned (in log scale) according to the 
relation:

10log10 30.30 0.98log refµΦ = − + m  			                (49)
31 0.985.03.10 refµ −

Φ⇔ = m  				                 (50)

12 1.482.39.10 refC −
Φ⇔ = m 				                 (51)

When fitting the data without the error bars, the linear relation 
(in log scale) is similar and the fitted parameter are the same. Errors 
are 0.12 and 0.03 respectively on the intercept and on the slope (in log 
scale). This non-linear relation links the reference mass with a coupling 
parameter according to the equation 35, with M=1.48. In this case, we 
may rewrite the equation for mass determination as:

2
3 2 3

2
0

4

ref
ref

C
µΦ≈ − =

m
m -m m m+

Q

			                  (52)

2
3 2 93 2.95

2
127.26.10 0

4

ref
ref ref

C

−
≈⇔ − =

m
m -m m m m+

Q

 	              (53)

Predictions for composite particles masses

Even if it not possible to identify the parameters for all the particles, it 
is interesting to make some prediction based on triplets, for which only 2 
masses are known. However, it can be done only if one parameter can be a 
priori calculated. This can be done by using eqn. 51 during the identification 
process. This has been performed for the following list of families:

Neutron, charmed Sigma, top Sigma, for J=1/2 and Q=0

Calculations for the uncertainties of CΦ do not take into account 
for a possible uncertainty on the exponent of the power law. All other 
origins for the uncertainties have been transported. The results for those 
composite particles show that the references masses ratios are between 
9 and 16. The Planck lattice spacing CQ is very close to unity (between 
1.017 and 1.058), meaning that this family may access distance close 
to twice the Planck length. Those results are consistent with the ones 
obtained in section 4.6. Consequently, we can have good confidence. As 
a consequence of this identification, Tables 11-17 proposes a predicted 
value for the third member of each family that remains now to be 
experimentally verified.

Masses at macroscopic scale

At macroscopic scale, the mass should be calculated according to 

Particles quarks content πo uū — dđ η uū+ dđ - 2ss ηʹ uū + dđ + ss
Experimental mass [47]
(MeV/c2)

134.9766 ± 0.0006 547.862 ± 0.018 957.78 ± 0.06

Calculation (MeV/c2) 134.9766 547.862 957.78
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 1.74856 ± 0.00008 0.96145 ± 0.00001 1.343105. 10-7 ± 6.7. 10-12

Table 9: Input and output data for a mesons family, for J=0 and Q=0

Particles quarks content ρ° uū - dđ ω uū+ dđ ϕ ss
Experimental mass [47]
(MeV/c2)

775.26 ± 0.25 782.65 ± 0.12 1019.461 ± 0.019

Calculation (MeV/c2) 775.26 782.65 1019.461
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values 2.74694 ± 0.00042 0.86982 ± 0.00001 3.96922. 10-7 ± 9.8. 10-11

Table 10: Input and output data for a mesons family, for J=1 and Q=0.

Figure 6: µ
Φ
 versus the reference mass mref for the five considered families 

(composite particles).
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eqn. 37. However, the second and third terms of the right-member of 
this equation vanished when masses are big enough, which corresponds 
for example to the cases of macroscopic systems. Consequently, at those 

scales, the mass of physical systems is equal to the reference mass that 
corresponds to the mass obtained with a weighing machine. Another 
consequence is that additivity of masses of a complex and composed 

Particles quarks content Neutron nο  d— d—u Charmed sigma ∑c
0  d— d— c  Top sigma ∑t

0 d— d—t
Experimental mass [46] (MeV/c2) 939.565379 ± 0.000021 2453.74 ± 0.16 Unknown
Calculation (MeV/c2) 939.565379 2453.74  
Prediction (MeV/c2)     6971 ±  86
Parameters ref

Pr

m
m

C
≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values with CΦ= f(mref) 11.046 ± 0.092 1.0171 ± 0.0027 1.1301. 10-6 ± 2.06. 10-8

Table 11: Input and output data for the d-d-x family, for J=1/2 and Q=0.

Particles quarks content Xi Ξ° s - s - u Charmed omega Ωo
c s - s - c Top omega Ωo

t  s - s - t
Experimental mass [46] (MeV/c2) 1314.86 ± 0.2 2695.2 ± 1.7 unknown
Calculation (MeV/c2) 1314.86 2695.2  
Prediction (MeV/c2)     9122  ±  107
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values with CΦ=f( mref ) 14.00 ± 0.12 1.0366 ± 0.0029 1.6808. 10-6 ± 2.92. 10-8

Table 12: Input and output data for the s-s-x family, for J=1/2 and Q=0.

Particles quarks content Delta ∆° d - d - u Charmed Sigma ∑*0
c d - d - c Top sigma ∑*0

t d - d - t
Experimental mass [46]
(MeV/c2)

1232.0 ± 2 2518.8 ± 0.6 unknown
 

Calculation (MeV/c2) 1232.0 2518.8  
Predictions (MeV/c2)     8514  ±  104
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values with CΦ=f(mref) 13.07 ± 0.11 1.0360 ± 0.0029 1.5181. 10-6 ± 2.73. 10-8

Table 13: Input and output data for the d-d-x family, for J=3/2 and Q=0.

Particles quarks content Xi Ξ*0 s - s - u charmed Omega Ω*0
c s - s - c top Omega Ω*0

t  s - s – t
Experimental mass [46] (MeV/c2) 1531.8 ± 0.32 2765.9 ± 2 Unknown
Calculation (MeV/c2) 1531.8 2765.9  
Prediction (MeV/c2)     10183  ±  117
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)
 

Fitted values with CΦ=f(mref) 15.43 ± 0.13 1.0451 ± 0.0029 1.9773. 10-8 ± 3.37. 10-8

Table 14: Input and output data for the s-s-x family, for J=3/2 and Q=0.

Particles quarks content Delta ∆++ u — u — u charmed Sigma ∑*
c

++ u — u — c top Sigma ∑*
t
++ u — u — t

Experimental mass [46] (MeV/c2) 1232 ± 2 2517.9 ± 0.6 unknown
Calculation (MeV/c2) 1232 2517.9  
Prediction (MeV/c2)     8513  ±  104
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values CΦ=f( mref ) 13.07 ± 0.11 1.0360 ± 0.0029 1.5177. 10-6 ± 2.73. 10-8

Table 15: Input and output data for the u-u-x family, for J=3/2 and Q=2.

Particles quarks content Xi Ξ*- s—s—d Omega Ω s—s—s Bottom Omega s — s — b
Experimental mass [46] WWI c2) 1535.0 ± 0.6 1672.45 ± 0.29 unknown
Calculation (MeV/c2) 1535.0 1672.45  
Prediction (MeV/c2)     8104  ±  90
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values with az,=f( mref ) 12.06 ± 0.096 1.0583 ± 0.0030 1.4113. 10-6 ± 2.31. 10-8

Table 16: Input and output data for the u-d-x family, for J=3=2 and Q=0.



Citation: Panicaud B (2017) Scalar Field Theory for Mass Determination. J Phys Math 8: 235. doi: 10.4172/2090-0902.1000235

Page 13 of 15

Volume 8 • Issue 2 • 1000235J Phys Math, an open access journal
ISSN: 2090-0902

system is strictly correct only for macroscopic scales (eqn. 6). For 
microscopic systems, it is not necessarily true (with or without taking 
into account for interactions between the particles of systems).

Discussion on the scalar field

In section 3.3, we have introduced different masses linked to the 
scalar field. According to eqn. 17, mΦ is the contribution part of the 
particle mass corresponding to its interaction with the scalar field. 
µΦ is also related to the scalar field. It is denoted as the scalar mass of 
coupling/interaction. Equations 44 and 49 show that this mass may be 
directly related to the reference mass mref, which would play the role of 
a source for the scalar field. It is interesting to investigate the different 
µΦ, calculated from the different identified CΦ (eqn. 33).

As an energy, we can wonder how is distributed the spectrum of this 
quantity? At first approximation, we can try to compare it to a harmonic 
quantum oscillator because the values are discrete. One-dimensional, 
two-dimensional and three-dimensional harmonic oscillators have 
been tested. Only the one- dimensional harmonic oscillator leads to 
consistent results. We have calculated the different ratios µΦ/mPr for all 
the families considered in sections 4.2, 4.3, 4.6 and 4.8. The massive 
bosons (N=2) have not been considered once again, mainly because 
it does not correspond to the same case as the others (N=3). For the 
different families, we have also calculated the quantity:

0 0
2 2

, 1= /
2Pr Pr Pr

E E
C C

µΦ 
− 

 

n
n

m m m
 			                 (54)

where the zero-level energy E0 is identified for the electronic family, for 
which µΦ is the smallest. The value of E0 is thus 2

,02 91.556 /elec MeV cµΦ = . 
This value enables to plot the energy for the different n calculated with 
eqn. 54, according to:

0
2 2

1
2Pr Pr

E E
C C

 = + 
 

n n
m m

 				                 (55)

It can be also compared to the theoretical values obtained with Eq. 
55 for the same E0 with integer values for n running from 0 to 27. We 
have plotted both results in Figure 7. When comparing the two sets 
of values, we obtained a good correlation. Indeed, for n=0 the relative 
error is null. For n=1, the relative error is maximum: 14% for n and 
9% for En. For other n, the relative error is less than 1.3% for n and En. 
With good confidence, we can conclude to the existence of the mass 
quantification according to the one-dimensional harmonic quantum 
oscillator, whose interaction/coupling with scalar field leads to a part 
of the mass of matter. This conclusion is independent of the influence 
of the reference mass, because of two reasons. First the influence of mref 
on Cφ is not the same for all kinds of families (cf. eqns. 46 and 51). Second, 
the quantum oscillator has been identified using all the families (for N=3). 
This oscillator leads then to the quantification of the different scalar masses 
of interaction µΦ,n that leads to the quantification of the particles masses 
m, thanks to the dependence to the reference mass of the scalar field 
interaction (with specific coupling ”constant” for each family of particles).

The zero-level energy of this oscillator may be a good candidate to 
solve cosmological problems such as dark energy. Its value corresponds 
to a scalar mass of coupling µΦ,0=45.778M eV/c2 and is equivalent to 
a fundamental angular frequency ω0=E0/=1.391· 1023rad/s. Indeed, 
it is possible to calculate the density of this energy in the universe. 
Considering a number of baryons of nB,U=1081 with the age of the 
universe of tU=13.819 · 109 years, we can calculate the density as 
follows [49]:

3
, 0

3
, 0

26 3

3 / (4 )

3 / (4 ( ) )

1.74.10 /

B U U

B U U

n E R

n E ct

kg m

ρ π

π
Φ

−

=

=

≈

 			                 (56)

where RU is the radius of the universe considered as a sphere and c the 
speed of light. The calculus has to be compared with the value given in 
the specialized literature around 10−26kg/m3 [49]. It is obvious that the 
previous calculation suffers from different approximations:

•	The universe is not necessarily and simply a sphere with 
isotropic expansion;

•	The number of baryons is uncertain; moreover, the leptons and 
mesons have not been taken into account in the calculation; 
however the present calculation corresponds to an admissible 
maximum value for nB,U;

From the present theory the baryons are not in the minimum of 
energy, but correspond to modes with 

n ≠ 0, so that it cannot be the observed baryons that eventually 
participate to this density; it should be the same quantity as the 
observed one: we suggest thus that it could be anti-baryons, for which 
actual observations are lacking.

Particles quarks content Delta ∆ °u—d—d Sigma Σ*°u—d—s Bottom Sigma *0

b∑ u— d — b
Experimental mass (MeV' e2) [46] 1232 ± 2 1383.7 ± 1 unknown
Calculation (MeV/c2) 1232 1383.7  
Prediction (MeV/c2)     6542 ± 76
Parameters ref

Pr

m
m C

≈

Q

CΦ(kg1/2. m-2. s1)

Fitted values with CΦ,=f(mref) 9.761 ± 0.082 1.0556 ± 0.0030 1.0290. 10-6 ± 1.76. 10-8

Table 17: Input and output data for the u-d-x family, for J=3/2 and Q=0.

Figure 7: Normalized energy En/(mPrc
2) versus level n for the different 

considered families (fundamental and composite particles) for N=3.
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However, taking care of these effects will not drastically change 
the numerical result. The dark energy could be thus interpreted as 
anti-particles at the zero- level energy and not converted in direct 
observable matter. This proposition does not explain this asymmetry 
between particles and anti-particles, but suggests that the ones have 
been converted in matter through the scalar coupling, while the others 
have not and would thus constitute the ”observed” dark energy

Conclusion
The present paper is an attempt to calculate the masses of 

both fundamental and composite particles from a master formula 
containing several parameters. The developments are based on a 
Lagrangian approach with a variational principle. It is consistent with 
the developments in physics over the last 50 years. Indeed, we propose 
a theory explaining mass of the different particles as an interaction/
coupling with a real scalar field based on physical arguments. Other 
arguments such as symmetries remain still to be investigated. This 
theory is based on quantum arguments, at first order of approximation, 
with non-relativistic assumption, in a global approach, assuming that 
mass can be additively separated. Mass may be thus composed of three 
parts depending differently on a reference mass: the reference mass 
itself; a quantum correction linked to the Planck scale; an interaction 
with a real scalar field. No self-interactions are eventually taken into 
account. The interaction with the scalar field may be compared to the 
Higgs mechanism. Indeed, each family of particles interacts differently 
with this scalar field and corresponds to a different coupling constant. 
These “constants” of coupling are less numerous in the present approach. 
The different parameters of the corresponding equation (mainly used 
as a third-order algebraic equation) have been identified for different 
particles: fundamental or composite ones. For fundamental ones, only 
neutrinos have not been used because of the experimental uncertainties 
of their masses. The latter may be equivalently interpreted through 
the renormalisation mechanism. For composite ones, several baryons 
families have been used. It should be extended to more families of 
mesons. Moreover, the present theory is able to make predictions for 
the mass of unknown particles belonging to families, for which at least 
two masses are known. Indeed, it is possible to predict the interaction 
parameters, because CΦ (or µΦ) is related to the reference mass mref for a 
given scale and a given number N of particles per family, independently 
of other quantum numbers (Q, J ...). Moreover, the interaction with 
a scalar field seems to follow a specific scheme related to a quantum 
harmonic oscillator of zero-level energy/mass 91.556 MeV/c2.

Its energy/mass density is evaluated around 2 · 10-26 kg/m3. It 
may be interpreted as the dark energy linked to the whole content of 
anti-particles (antibaryons...) of the universe that would remain as 
fundamental oscillations in the mass space at the zero-level energy and 
have not been converted into matter through this scalar interaction. 
This asymmetry between particles and anti- particles in the mass space 
remains yet to be investigated and will be done in a future work. The 
quantum and non-relativistic 1D harmonic oscillator predicts the scalar 
mass of interaction µΦ for each family of particles (baryons, mesons...) 
whatever their quantum numbers, scale and could be also independent 
of N. This last point requires also more investigations from doublets of 
particles.

The present theory proposes thus a general description of family 
of N particles from one to any expected integer value. However, only 
the cases N=2 and N=3 seem to correspond to the common energy 
around the proton mass mPr. The reference mass could be predicted 
according to the relation with the scalar mass of interaction µΦ that 

seems to be related for a given family to a mode of oscillation of a 
quantum harmonic oscillator. The latter can be seen as a source for the 
scalar field, which enables the oscillations (“germs” of matter) in the 
mass space to acquire mass through the coupling with the scalar field. It 
would lead also to the possibility to predict masses for family for which 
only one mass is known. Moreover, the present theory could be also 
applied for anisotropic state of the scalar field.

Besides, we propose a quantized lattice structure for space at 
the Planck scale, for which consequences of the present theory are 
experimentally checkable, with some predictions. This proposed lattice 
structure is based on quantum principles and physical considerations 
at Planck energy. Eventually, the theory enables to predict a minimum 
distance related to the Planck length that each family can access. This 
simple theory is thus powerful to explain and calculate the mass of 
physical systems, especially at microscopic scale, for which some 
contributions have influence on large large-scale phenomena (dark 
energy). The predicted masses require now to be experimentally tested.
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