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Introduction
Three standard ways exist for using the likelihood function to 

perform hypothesis testing: the likelihood ratio test, score test and 
Wald test. Xie and Zimmerman [1] gave a thorough presentation of 
antedependent (AD) multinomial models for categorical longitudinal 
data and, extending much earlier work of Anderson and Goodman [2], 
developed maximum likelihood estimators of transition probabilities 
and testing procedures associated with fitting AD models to categorical 
longitudinal data with missingness. More specifically, they developed 
likelihood ratio tests for order of antedependence, time-invariance of 
transition probabilities, and strict stationarity. Due to the oversensitivity 
of the likelihood ratio test for order of antedependence (i.e. Type I 
error rates that are significantly larger than nominal levels), they used 
Lawley [3] strategy of multiplying the likelihood ratio test statistic by 
a scale factor to obtain a modified likelihood ratio test statistic with 
Type I error rate closer to its nominal level. However, this modification 
requires tedious computation. Moreover, Xie and Zimmerman [1] did 
not discuss how the performance of the likelihood ratio test (modified 
or unmodified) compares to that of either the score test or Wald test.

The purpose of this article is to make comparisons among the 
score, Wald, likelihood ratio, and modified likelihood ratio tests for 
antedependence and related properties. We will show that the score 
test is superior to the Wald and likelihood ratio tests with respect to 
computational simplicity. Moreover, we will show that the score test 
outperforms the others in terms of size and power.

The remainder of the article is organized as follows. In Section 2, we 
review unstructured AD multinomial models (of variable and constant 
order) and maximum likelihood estimation of the parameters of such 
models. In Section 3, we derive score tests for order of antedependence, 
time-invariance of transition probabilities, and strict stationarity. We 
also derive Wald tests for these same purposes, but in somewhat less 
generality due to the complexity of notation in AD multinomial models. 
In Section 4, we compare the operating characteristics of the score, 
Wald, and likelihood ratio tests (both the regular and the modified 
version) based on data simulated from three AD multinomial models. 

In Section 5, we use the testing procedures developed in Section 3 to 
analyze data from a longitudinal study of labor force participation of 
married women. Section 6 is a brief summary.

Antedependence Models for Categorical Longitudinal 
Data

Time index-ordered random variables Y1,...,Yn are said to be 
antedependent (AD) of order (p1,p2,...,pk) if the kth variable, conditioned 
on the pk immediately preceding variables, is independent of all further 
preceding variables [4]. In the special case for which pk=min (k−1, p) 
for all k and for some integer p (with 0 ≤ p ≤ n−1), we say alternatively 
that the variables are pth-order antedependent.

Notation and parameterizations

Consider a longitudinal setting, with a fixed number N of subjects. 
Let Yi ≡ (Yi1, . . . , Yin)′ denote the vector of values of a categorical 
characteristic at the n scheduled observation times for the ith subject, 
some of which may not be observed (if a portion of that subject’s data 
is missing). Let 1, . . . , c ≥ 2 denote the characteristic’s categories. Let 
Yk denote the characteristic’s value at time point k for a generic subject. 
For each possible outcome (y1,...,yn) — corresponding to a cell in an 
n-dimensional contingency table — let π y1... yn ≡ P(Y1=y1,..., Yn =yn)
denote the true cell probability with corresponding cell count Ny1…,yn
(which may or may not be observed), and put π=(πy1...yn). Accordingly,  

1,..., ,
( 1,..., )∈

= ∑
n

y yn
y yn C

N N , where Cn ≡ {1, . . . , c}n is the set of all cn possible 
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Abstract
Three standard hypothesis testing procedures exist based on likelihood functions: the likelihood ratio, score, and 

Wald tests. For unstructured antedependence models for categorical longitudinal data, Xie and Zimmerman derived 
the likelihood ratio test for the order of antedependence as well as likelihood ratio tests for time-invariance of transition 
probabilities and strict stationarity. In this article, we derive score tests (of Pearson’s chi-square form) and Wald tests 
for all the same purposes. Via simulation, we show that for testing for order of antedependence, a modified likelihood 
ratio test performs best if the sample is of size 50 or smaller, but otherwise the score test is superior. The Wald test is 
markedly inferior to both. We also show that the likelihood ratio and score tests for time-invariant transition probabilities 
and strict stationarity perform about equally well. The methods are applied to data from a longitudinal study of labor force 
participation of married women, indicating that these data are third-order antedependent with time-invariant transition 
probabilities of this order.
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outcomes. We assume that the Yi’s are independently and identically 
distributed as Multinomial (1, π) and that covariates, apart possibly 
from indicator variables for groups, are either unavailable or not used 
in the analysis.

In this article, we will derive score and Wald tests for various 
properties of AD models. The score test, like the likelihood ratio 
test, is well known to be invariant to 1:1 transformations of the 
parameter space. It is therefore convenient, since antedependence 
is defined in terms of certain conditional independencies, to 
parameterize in terms of certain conditional probabilities. Define 

1 1 1 1 1 1... ( ,..., )
− − −π ≡ = = =

k k k k k kP Y Y Yy y y y y y  for k=2,...,n and (y1, . . . , 

yk) ∈ Ck. Under an AD(p1, . . . , pn) model, we may represent the common 

values of { }1 1 1 1 1... 1 ... : ( ,..., )− − − − − −− −π ∈
k k kk k k p k k p k pk p Cy yy y y y y  

by transition probability parameter 
1...
−

π
kk k-p yky +...+y

. (Here and 

subsequently, we indicate summation over a subscripted index by 
replacing that index with a “+”). Thus, the AD (p1,...,pn) model may be 
parameterized by the nonredundant set of parameters

{ }

{ }

1( ... )
... ...
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1
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+ + + +
∋ =

− −+ + =
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Note that 1( ... )
1

( ) ( 1) .
=

Θ = − ∑n k
np p p
k

dim c C  

In contrast to the likelihood ratio and score tests, the Wald test 
is not invariant to parameter transformations. It is inconvenient to 
express all nonredundant equations implied by equivalence among   

{ }1 1 1 1 1... 1 ... : ( ,..., )− − − − − −− −π ∈
k k kk k k p k k p k pk p Cy yy y y y y in terms of 

π or  in a well-organized way to perform a Wald test. Alternatively, 
Agresti [5] suggests parameterizing in terms of log odds ratios, 
since convergence of the asymptotic distribution of the estimated 
log odds ratios to normality is rapid. The natural analogue here is to 
parameterize in terms of conditional log odds ratios, or COLORs, 
where the conditioning is on all possible realizations of all intervening 
variables. More specifically, we define COLORs of lag two and higher 
as follows:
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c
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y
(1)

where (yk−h, yk) ∈ {1,...,c−1}2, (yk−h+1,...,yk−1) ∈ Ch−1, k=3,4,...,n, and 
h=2,3,...,k−1. In addition, we define lag-one COLORs (for which there 
are no intervening variables) by an expression identical to (1) but with 
h=1; thus, lag-one COLORs coincide with lag-one log odds ratios.

Structured antedependence models and maximum likeli- 
hood estimators

Antedependence (of specified order) is said to be structured if 
additional restrictions (such as stationarity) are imposed; otherwise 
it is unstructured. Two types of structure we consider here are time-
invariance of pth-order transition probabilities and strict stationarity, 

defined as follows. If p ≥ 1 and ( ) ( ) ( 1)
1 1 ...− −
+

π k k p k
ppy y y  denotes 

1 1 1( ,..., )+ − −= = =k p k p k pP Y Y Yy y y  for k=p+1,...,n, the pth-order 

transition probabilities are said to be time-invariant if
( 1) (1) ( 2) (2)( ) ( 1) ( ) ( ) ( 1)1 1 1 1 ...1 1

... ...
...+ + + − −+ + +

π = π = = πp pp p n n p np pp p ppy y yy y y y y y  for 

all  1, . 1 1( )… + +∈p pCy y 				                  (2)

Variables Y1,..,Yn are said to be strictly stationary if the joint 
probabilities of all events are invariant to time shifts. Clearly, strict 
stationarity implies (2), but not vice versa. For situations with either no 
missing data or ignorably monotone missing data, Xie and Zimmerman 
[1] derived closed-form expressions for the maximum likelihood 
estimators of the parameters of an unstructured AD(p1,..,pn) process 
under the multinomial sampling framework described previously. 
They also derived maximum likelihood estimators (in closed form) 
for the parameters of an AD(p) model with time-invariant pth-order 
transition probabilities, and for the parameters of a strictly stationary 
AD(p) model. Furthermore, for situations with arbitrarily ignorable 
missing data, they devised a restricted EM algorithm for computing 
maximum likelihood estimates. One or more of these estimators 
appears in expressions for the score tests to be described in the next 
section.

Hypothesis tests

Order of antedependence: Score test Consider testing AD(p1,...,pn) 
as a null hypothesis against AD(q1,...,qn) as the alternative hypothesis, 
where pk ≤ qk for all k and the inequality is strict for at least one k. 
Now, for hypothesis testing in a multinomial sampling context, it is 
well known that if the alternative hypothesis is saturated, then the 
score and Pearson’s chi-square test statistics for any testable null 
hypothesis coincide. In the present context the alternative hypothesis 
need not be saturated [i.e. AD(n− 1)]; nevertheless the likelihood under 
the alternative hypothesis is the product of kernels of conditionally 
independent saturated c-nomial distributions, whose parameters’ only 
constraints are that they lie in [0, 1) and sum to one [1]. Furthermore, 
the parameters in these distributions are all distinct. As a result, the 
information matrix corresponding to this likelihood is block diagonal 
[each block on the diagonal being of dimensions (c−1)× (c−1)], and 
the score test statistic for any testable null hypothesis is merely the 
summation of the Pearson’s chi-square statistics corresponding to the 
individual c-nomial distributions. By similar arguments, the score tests 
for all the other purposes presented in this article also have Pearson’s chi-
square form. Now, the Pearson’s chi-square statistics equal zero for those 
k for which pk=qk. Let ( ){ }, 1 ... ... ..., 1,..., : 0+

− + + + + +>≡ + ∈
u ku k u u k k u y yC y y y C N  

and write +
kC   for  ,

+
k kC . Therefore the score test statistic for testing 

for AD(p1, . . . , pn) versus AD(q1, . . . , qn) simplifies to

( )
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
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Where 
1 1 1( ,..., ) ( ,..., ) ( ,..., )

...... ... ... ...
ˆ ˆ ˆ( 0) ( 0)

− −
+ ++ + + +

= = + ≥n n n

k k q k k pk k
k kð I p ð I p ð

kk- k-

p p p p p p
+...+yy y y y y y1 1

 . 

The limiting null distribution of 2
,X p q  is chi-square with degrees of 

freedom equal to ( )1 1( ... ) ( ... )
2

( ) ( ) ( ) ( 1)
=

≡ Θ − Θ = − −∑n n k k
nq q p p p q
k

d dim dim c C Cp,q . Thus, 
the approximate size-α score test for AD(p1,...,pn) versus AD(q1,...,qn) 
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rejects the null hypothesis if 2
,X p q  exceeds the 100(1−α)th percentile of 

the aforementioned chi-square distribution. 

For the important special case of testing AD(p) versus AD(q), 
where 0 ≤ p<q ≤ n−1, the score test statistic simplifies to


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
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k k q
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kk k k-p k
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degrees of freedom for the corresponding limiting null chi-square 
distribution are ( ) ( ) ( ) ( ) ( )1 1, 1 1+ +≡ − − − − − − − + −p p q qd p q n p c n p c n q c n q c . 

If some data are (ignorably) missing, the score test statistics may be 
generalized to expressions identical to 2Xp,q  and 2

,p qX , except that the 
cell counts are replaced with maximum likelihood estimates obtained 
by carrying out a restricted EM algorithm under AD(q1,...,qn) and the 
maximum likelihood estimates of transition probabilities are obtained 
by carrying out a restricted EM algorithm under AD(p1,...,pn). Similar 
generalizations to accommodate missing data may be made to all score 
tests presented subsequently.

Wald test

For simplicity, we present a Wald test for testing pth-order 
antedependence against the saturated model [AD(n−1)]. Wald tests 
for variable-order antedependence can be derived easily by extending 
results from this section. Let ( )1 1, ...ψ

− + −−≡
k k h kk hy y y yΨ  denote the 

vector of COLORs listed in order from no intervenors (lag one) to n−2

intervenors (lag n−1). 

Under the saturated model, the maximum likelihood estimator of   

1 1, ...ψ
− + −− k k h kk hy y y y is given by

( ) ( )
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Let ( )1 1, ...
ˆ ψ

− − + −
Ψ ≡

k h k k h ky y y y
, with ordering of elements identical 

to that of  ψ . 

Lemma 3.1. As ( )ˆ,→∞ −N N Ψ Ψ  converges in distribution to 
N(0,Σ), where

( ) ( ) ( )1 1
A A A Aπ π ππ π

− −
′ ′     = Β − Β     ∑ diag diag ' diag , 

and matrices A and B are defined in the proof in Section 7.1.

In Section 7.2, we create a toy example to illustrate the Wald test for 
AD(p) against the saturated model. 

By Lemma 3.1, we obtain the limiting distribution of all conditional 
log odds ratios. Under an AD(p) model (with p<n−1), all COLORs of 

lag p+1 and higher are equal to zero, as is easily verified. Consequently, 
pth-order antedependence is equivalent to the condition MpΨ=0, 
where

( )0
0 .×× −
 ≡   p pp p

p d dd d d
M I   

0 and I are null and identity matrices respectively, and 

( ) ( )
2

21 1
−

=

= − − −∑
n

k
p

k p

d c n k c   or, equivalently, 

( )( ) ( ) ( )1... 11 1+= − − Θ = − − + − −np pn n p p
pd c dim c n p c n p c . Then 

a Wald test statistic is given by

( ) ( ) ( )12 'ˆ ˆˆM M M M
−′≡ Ψ Σ Ψp p p p pT N  

It follows from Lemma 3.1 and Slutsky’s Theorem that the limiting 
null distribution of 2

pT  is chi-square with dp degrees of freedom. 
However, the Wald test is affected by empty cells. If any cell count is 
zero, 0.5 may be added to each cell count to avoid zero denominators 
in the maximum likelihood estimates of COLORs.

Time-invariant transition probabilities

Score test: Xie and Zimmerman [1] derived the likelihood ratio test 
for time-invariant pth-order transition probabilities. For this testing 
purpose, the score statistic can be expressed as

( ) ( )
( )( )
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where 
( )

1 1...
π̂ +

+p p

p
y y y  is the maximum likelihood estimator of the common 

pth-order transition probability [see Theorem 2 of Xie and Zimmerman 
[1] for an expression for this estimator] and the summation is over 
those 1 1( ,..., )+ +∈p pCy y1  and k=p+1,…,n for which the denominator 
is positive. The limiting null distribution of each test statistic is chi-
square, with degrees of freedom equal to the number of nonredundant 
conditions in (2), or ( )(  1)[   1 ] .− − + pc n p c  

Wald test: Due to the complexity of the general situation, we 
illustrate the derivation of a Wald test for time-invariant transition 
probabilities for the special case of an AD(1) model, with c=2 and n=3. 
A Wald test for situations with other p, c, and n can be obtained in 
similar fashion.

Using notation from (2), the null hypothesis of time-invariant 

transition probabilities is ( 2) (1) (3) ( 2) ( 2) (1) (3) ( 2)0 1 1 1 1 1 2 1 2
: ,π π π π= =H . 

Maximum likelihood estimators of the parameters appearing in H0 are 
as follows:
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and these are all asymptotically independent with limiting normal 
distributions
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respectively. Thus, a Wald test statistic is given by
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A Wald test may be carried out by comparing 2Tt  to a chosen 
percentile of the chi-square distribution with two degrees of freedom.

Strict stationarity

Score test: Maximum likelihood estimators of cell probabilities of 
a strictly stationary AD(p) model cannot be expressed in closed form, 
but they can be obtained numerically using Lang [6] algorithm. Let 

,(p)π̂ s  be the vector of estimates so obtained. Then, the score statistic 
for testing for strict stationarity under an unstructured AD(p) model is
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respectively, where the summations are taken over those terms for 
which the denominators are positive. The limiting null distribution of 
each test statistic is chi-square with (c−1)[n−(p+1)]cp+(cp−1) degrees 
of freedom.

Wald test: As we did for the Wald test for time-invariant 
transition probabilities, we present a Wald test for strict 
stationarity only for the special case of an AD(1) with c=2 and 
n=3. By Lemma 1 of Xie and Zimmerman [1], strict stationarity 
imposes one additional restriction [under AD(1)] beyond those 
imposed by time-invariant transition probabilities, namely 
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Thus, a Wald test statistic for strict stationarity is given by
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respectively, obtained by replacing the parameters with their maximum 
likelihood estimates. A Wald test may be carried out by comparing 2TS  
to a chosen percentile of the chi-square distribution with three degrees 
of freedom.

Simulation studies

Tests for order of antedependence: In this section, we report 
results of several simulation studies of the tests developed in earlier 
sections, beginning with tests for order of antedependence. Data were 
simulated from two binary linear processes observed at four time 
points. The first process is defined as follows:

1 2 1
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Here θ ∈ [0, 2] controls the degree of departure from first-order 
antedependence: when θ=0 the process is AD(1), when θ>0 the process 
is AD(3), and as θ increases, the departure from AD(1) is larger. The 
second process differs from the first only by redefining Y3 and Y4 as 
follows:
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This difference renders the process AD(2) [rather than AD(1)] 
when θ=0.

For each process, each of four sample sizes (N = 50, 100, 200, 1000), 
and each θ over a range of values, 10,000 samples were generated. 
Rejection rates for (nominal) size-0.05 score, Wald, likelihood ratio 
(LRT) and modified likelihood ratio (MLRT) tests of AD(1) versus 
AD(3) for (3) and (4), and of AD(2) versus AD(3) for (3) and (5), are 
listed in Table 1. Rejection rates for testing (3) and (4) are plotted in 
Figure 1, while those for testing

(3) and (5) are similar hence not shown. These results indicate that:

1. Regardless of the specific test statistic, rejection rates for testing 
AD(1) versus AD(3) are higher than those for testing AD(2) versus 
AD(3), as expected.

2. The Wald test is the least powerful and its test statistic converges 
in distribution to 2 (8)χ  relatively slowly. As the sample size increases, 
rejection rates for the score test, LRT and MLRT become very similar 
to each other.

3. When the sample size is small (N=50), rejection rates are 
discernibly higher for the MLRT than for the score test. In particular, 
the MLRT makes more Type I errors, which is the cost it pays for 
having higher rejection rates than the score test at nonzero values of θ.

4. When the sample size is moderate (N=100 and N=200), the 
power curves for score test and MLRT cross. The point of intersection 
is closer to the null (θ=0) when N=200 than when N=100. Thus the 
larger the sample size, the better the relative performance of the score 
test to the MLRT.

We also investigated the effect of missing data on these results, 

but to save space we do not list detailed results. The overall effect is a 
reduction in the power; for example, when 25% of the data is missing, 
the power of the score, likelihood ratio, and modified likelihood ratio 
tests is reduced by roughly 10-20% and the power of the Wald test is 
reduced by roughly 20-30%.

Tests for time-invariant transition probabilities

For our second simulation study, we define binary AD(1) random 
variables Y1, Y2, Y3 and Y4 as follows:

1

1 1

1

1 ( 1)1 if 11 w.p.
2 102 ( 1 1)
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t Y
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t Y
	                  (6)

where 0 ≤ λ ≤ 5/3. For each fixed (t, λ), P(Yt=1|Yt−1=1) ≠ P(Yt=1|Yt−1=2); 
hence the variables are not AD(0) for any λ. When λ = 0, however, 
the transition probabilities are time-invariant; otherwise, they are not. 
Ten thousand realizations were simulated from (6) for each of several 
values of λ, and the likelihood ratio and score tests for time-invariant 
transition probabilities were performed.

Empirical rejection rates for the tests are listed in Table 2. These 
indicate that the likelihood ratio and score tests perform about equally 
well, with a very slight power advantage to the likelihood ratio test. 
When 25% of the data is missing, the power of both tests is reduced by 
roughly 15-20%.

Tests for strict stationarity

Finally, consider binary AD(1) random variables  defined as 
follows:

1

1

1

1 ( 1 1)1 w.p. 32 , for 2,3,4and 0.4 1.8
12 w.p. ( 1 2)
2 2
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t t

P Y Y
Y t

P Y Y
  for t = 2, 

3, 4 and 0.4 ≤  γ ≤ 1.8      				                   (7)

Note that for arbitrary γ ≠ 0, P(Yt=1|Yt−1=2) is always 50% larger 
than P(Yt=1|Yt−1=1). Clearly, process (7) has time-invariant transition 
probabilities. Furthermore,

2 2 1 1 2 1 1
5( 1) ( 1 1) ( 1) ( 1 2) ( 2)
12
γ

= = = = = + = = = =P Y P Y Y P Y P Y Y P Y  .

Thus, when 6 ,
5

γ =  
2 1

1( 1) ( 1)
2

= = = =P Y P Y , which guarantees that 

process (7) is of strict stationarity by Lemma 1 of Xie and Zimmerman 
[1]; otherwise, it is not strictly stationary. Ten thousand realizations 
were simulated from (7) for each of several values of γ ranging between 
0.4 and 1.8, and the likelihood ratio and score tests for strict stationarity 
were performed.

Empirical rejection rates are listed in Table 3. When γ is far away 
from 1.2 and the sample size is insufficiently large, the simulated data 
yield too many empty cells, with the consequence that strict stationarity 
cannot be tested by either the likelihood ratio test or score test due to 
zero expected cell counts. We use an “X” in Table 3 to indicate such 
cases. We observe that the likelihood ratio test slightly outperforms the 
score test for strict stationarity since the empirical size of the likelihood 
ratio test is not significantly different from the nominal size 0.05, except 
when the sample size is small, and the power of the likelihood ratio test 
is uniformly higher (by a small amount) than that of the score test. 
Since the likelihood ratio test performs well here, we do not develop on 
any modification to it as Xie and Zimmerman [1] did for determining 
the order of antedependence. As expected, the further γ is from 1.2, the 
higher the empirical rejection rate.

N θ (3) and (4) (3) and (5)
 Score LRT MLRT Wald Score LRT MLRT Wald

50 0 0.019 0.073 0.029 0.002 0.017 0.097 0.038 0.003
0.2 0.029 0.1 0.047 0.004 0.023 0.111 0.044 0.003
0.4 0.044 0.138 0.068 0.005 0.04 0.14 0.062 0.009
0.6 0.076 0.202 0.113 0.01 0.063 0.183 0.087 0.014
0.8 0.119 0.285 0.181 0.016 0.094 0.24 0.123 0.023
1 0.187 0.396 0.268 0.026 0.147 0.322 0.185 0.047

100 0 0.024 0.078 0.04 0.01 0.035 0.081 0.046 0.013
0.2 0.051 0.103 0.057 0.029 0.057 0.099 0.06 0.024
0.4 0.113 0.164 0.099 0.074 0.108 0.146 0.098 0.055
0.6 0.22 0.267 0.183 0.165 0.182 0.221 0.159 0.106
0.8 0.39 0.434 0.328 0.32 0.291 0.334 0.25 0.188
1 0.588 0.628 0.518 0.528 0.438 0.477 0.385 0.315

200 0 0.037 0.068 0.044 0.02 0.047 0.063 0.049 0.028
0.2 0.087 0.102 0.073 0.045 0.087 0.091 0.073 0.058
0.4 0.232 0.231 0.184 0.1 0.193 0.186 0.16 0.149
0.6 0.476 0.47 0.406 0.208 0.36 0.351 0.31 0.304
0.8 0.75 0.745 0.687 0.372 0.577 0.565 0.524 0.523
1 0.924 0.924 0.895 0.586 0.78 0.772 0.738 0.741

1000 0 0.051 0.053 0.051 0.044 0.053 0.055 0.051 0.047
0.2 0.293 0.277 0.272 0.161 0.209 0.2 0.196 0.205
0.4 0.871 0.865 0.862 0.571 0.692 0.682 0.675 0.689
0.6 0.999 0.999 0.999 0.927 0.973 0.97 0.968 0.973
0.8 1 1 1 0.997 0.999 0.999 0.999 0.999
1 1 1 1 1 1 1 1 1

Table 1: Empirical rejection rates of tests for order of antedependence for data 
simulated from processes (3) and (4) and (3) and (5). Empirical sizes (rejection 
rates when θ=0) more than two estimated standard errors from the nominal size 
(0.05) are set in bold type.
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Example: Labor Force Data
Lindsey [7] provides data on annual employment status (employed 

or unemployed) from 1967 to 1971 for 1583 U.S. women from a cross-
sectional survey. The data are displayed in a longitudinal multinomial 
format in Table 4, where Y1 through Y5 correspond to the years 1967 
through 1971. No data are missing and only one cell is empty. The 
cell counts indicate that employment status is rather persistent over 
the time period: in particular, the outcomes “employed for all 5 years” 
and “unemployed for all 5 years” have relatively high proportions, 
0.269 and 0.353 respectively. All remaining cells have relatively small 
proportions (less than 0.05).

The penalized log-likelihood model selection procedure proposed 
by Xie and Zimmerman [1] selects AD(0,1,2,3,3) [or equivalently 
AD(3)] when AIC is the criterion. Likelihood ratio, modified likelihood 
ratio, score, and Wald tests are all highly significant (P<10−8) for AD(0) 
against AD(1), AD(1) against AD(2), and AD(2) against AD(3), but 
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Figure 1: Empirical rejection rates for tests for AD(1) versus AD(3) under model (3) and (4), as a function of θ.

N=50 N=200 N=1000

λ LRT  Score LRT  Score LRT  Score
0 0.058 0.053 0.53 0.50 0.048 0.047

0.1 0.062 0.056 0.061 0.062 0.093 0.091
0.2 0.067 0.061 0.090 0.086 0.260 0.258
0.3 0.079 0.074 0.140 0.137 0.560 0.557
0.4 0.095 0.089 0.220 0.214 0.839 0.839
0.5 0.118 0.112 0.333 0.329 0.969 0.968
0.6 0.149 0.141 0.470 0.464 0.997 0.998
0.7 0.191 0.180 0.620 0.614 1 1
0.8 0.238 0.221 0.762 0.751 1 1
0.9 0.299 0.280 0.870 0.859 1 1
1.0 0.375 0.350 0.941 0.935 1 1

Table 2: Empirical rejection rates for tests of time-invariant transition probabilities 
for data simulated from process (6). Empirical sizes (rejection rates when λ=0) 
more than two estimated standard errors from the nominal size (0.05) are set in 
bold type.
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those for AD(3) against AD(4) are not significant (P=0.340, P=0.384, 
P=0.418, and P=0.458 for the likelihood ratio, modified likelihood 
ratio, score, and Wald tests respectively). Thus we conclude that AD(3) 
is the best constant-order AD model.

Next, we test for time-invariant third-order transition probabilities 
under the assumption of an AD(3) model, finding insufficient evidence 
against this hypothesis (P = 0.205 for the score test and P = 0.201 for 
the modified likelihood ratio test). Maximum likelihood estimates of 
the time-invariant third-order transition probabilities under AD(3) are 
as follows:

 

(3) (3) (3) (3)
1 1211 111 1 112 1 122

(3) (3) (3) (3)
1 211 1 212 1 221 1 222

ˆ ˆ ˆ ˆ0.896, 0.257, 0.774, 0.219,

ˆ ˆ ˆ ˆ0.772, 0.214, 0.651, 0.077.

++ + +

+ + + +

π = π = π = π =

π = π = π = π =

From these we note that among the transition probabilities that 
the women were employed given that they were unemployed only 

once during the preceding three years, (3)
1 211

ˆ
+π  and ˆ (3)

1 121
ˆ
+π , are 

very similar and are much larger than (3)
1 112

ˆ
+π , indicating that the 

employment statuses of those women at each of the last two years were 
more closely related to those of the immediately preceding year than 
to those at the two further preceding years. This is consistent with 

expectation. Similarly, (3)
1 122

ˆ
+π  and (3)

1 212
ˆ
+π  are very similar and much 

smaller than (3)
1 221

ˆ
+π .

Although the transition probabilities do not vary significantly over 

time, strict stationarity is strongly rejected (P<9.0×10−5 for the score 
and modified likelihood ratio tests). An examination of each year’s 
marginal probability of employment suggests that the rejection of strict 
stationarity is due largely to a significantly smaller level of employment 
among surveyees in 1967 1ˆ( 0.427)++++π =  and a significantly 
larger level in 1969 1 1ˆ( 0.490)++ ++π =  than in the three other years 

1 1 1ˆ ˆ ˆ( 0.461, 0.469, 0.457)+++ +++ + ++++π = π = π = .

Based on these findings, we recommend that any additional model 
development [e.g. fitting an autoregressive binary time series model, 
such as those featured by Cox and Snell [8]] take the order of the 
model to be three, take third-order transition probabilities to be time-
invariant, and allow marginal probabilities to vary over time.

Conclusions
In this article, we derived score and Wald tests for order of 

antedependence, timeinvariance of transition probabilities, and strict 
stationarity of categorical longitudinal data. This work generalizes 
that of Anderson and Goodman [2] for testing for firstorder 
antedependence to testing for antedependence of any variable order, 
and for testing for time-invariance of transition probabilities in a first-
order antedependence model to testing for such invariance, and for 
the even stronger property of strict stationarity, in an antedependence 
model of any constant order. These tests are first-order equivalent 
and asymptotically optimal; however, their performance differs for 
finite sample samples. To perform the likelihood ratio test, one must 
estimate the models under both the null and alternative hypotheses; 
an advantage of the score and Wald tests is that they require only one 
model to be estimated. However, an important disadvantage of the 
Wald test is its lack of invariance to the parameterization used.

Based on our simulation results, for testing for the order of 
antedependence we recommend the modified likelihood ratio test if the 
sample is of size 50 or smaller, and the score test otherwise. The Wald 
test for order of antedependence proposed herein is markedly inferior 
to both and should not be used. Furthermore, the score and likelihood 
ratio tests for time-invariant transition probabilities and for strict 
stationarity appear to perform about equally well. Therefore, for the 
sake of consistency, we recommend that the practitioner test for time-
invariant transition probabilities and strict stationarity using the same 
type of test (likelihood ratio or score, depending on whether the sample 
size exceeds 50) as he/she uses to test for the order of antedependence.
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1 1 1 2 2 47 2 1 1 2 2 17
1 1 2 1 1 11 2 1 2 1 1 9
1 1 2 1 2 2 2 1 2 1 2 3
1 1 2 2 1 12 2 1 2 2 1 5
1 1 2 2 2 28 2 1 2 2 2 24
1 2 1 1 1 21 2 2 1 1 1 54
1 2 1 1 2 7 2 2 1 1 2 16
1 2 1 2 1 0 2 2 1 2 1 6
1 2 1 2 2 9 2 2 1 2 2 28
1 2 2 1 1 8 2 2 2 1 1 36
1 2 2 1 2 3 2 2 2 1 2 24
1 2 2 2 1 5 2 2 2 2 1 35
1 2 2 2 2 43 2 2 2 2 2 559

Table 4: Labor force data (1=employed, 2=unemployed).
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