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Abstract

Screening for changes in gene expression across biological conditions using high throughput technologies is now
common in biology. In this paper we present a broad Bayesian multilevel framework for developing computationally fast
shrinkage-based screening tools for this purpose. Our scheme makes it easy to adapt the choice of statistics to the
goals of the analysis and to the genomic distributions of signal and noise. We empirically investigate the extent to which
these shrinkage-based statistics improve performance, and the situations in which such improvements are larger. Our
evaluation uses both extensive simulations and controlled biological experiments. The experimental data include a so-
called spike-in experiment, in which the target biological signal is known, and a two-sample experiment, which illustrates
the typical conditions in which the methods are applied.

Our results emphasize two important practical concerns that are not receiving sufficient attention in applied work in
this area. First, while shrinkage strategies based on multilevel models are able to improve selection performance, they
require careful verification of the assumptions on the relationship between signal and noise. Incorrect specification of
this relationship can negatively affect a selection procedure. Because this inter-gene relationship is generally identifiable
in genomic experiments, we suggest a simple diagnostic plot to assist model checking. Secondly, no statistic performs
optimally across two common categories of experimental goals: selecting genes with large changes, and selecting
genes with reliably measured changes. Therefore, careful consideration of analysis goals is critical in the choice of the

approach taken.

Background

Many genomics investigations using expression arrays take the
form of searching for genes whose expression level is different across
experimental conditions or phenotypes. The list of gene transcripts
produced by a microarray analysis is usually the starting point
for extensive additional biological work, including independent
validation, and both in-silico and laboratory work on sequences and
proteins related to the transcripts selected. In this context, microarray
experiments are screening, not testing, experiments. Because of the wide
range of important questions that can be explored using these arrays,
and the costs involved, comparisons across conditions are often made
using a limited number of replications. Efficient use of data is critical
in improving a laboratory’s ability to correctly identify important
biological hypotheses and proceed to test them by appropriate further
experimentation.

Specific screening goals vary with the study. Two simple but
representative situations are the selection of genes that are changed by
alarge amount, and the selection of genes that are changed by a reliably
measured amount. In either case, the comparison of gene expression
across two conditions based on replicated experiments requires a trade-
off of signal, the variation of expression across the two conditions,
versus noise, the variation of expression within each condition.
Therefore the problem is statistical in nature [1-3]. In this paper we
discuss a Bayesian multilevel framework for developing screening tools
that adapt to the goals of the analysis and to the genomic distributions
of signal and noise. We evaluate a representative set of these tools using
both extensive simulations and controlled biological experiments in
which the set of altered genes is known.

A variety of approaches for selecting differentially expressed genes
have been proposed [4] for a review and Murie et al. [5]. The simplest
and still the most widely used is to set a threshold on a measure of signal
alone, for example an estimated fold—change. This can be motivated

by the desire to identify large changes, although often it is used by
simple analogy with other gene expression essays that have much less
noise. Upper and lower thresholds of two and one half are often seen
in applications.

One limitation of this approach is that it does not consider how
reliably gene-specific changes are measured. That is, it implicitly
assumes that all genes are subject to the same level of noise. This may
not be the case because even after appropriate preprocessing of the data,
the within-gene variation in expression can be highly gene-dependent.

A straightforward way to account for both signal and noise is to
select genes based on statistics motivated by two-sample testing, such
as the T-ratio or the Wilcoxon statistic. For each gene, the T-ratio is
an estimate of the signal-to-noise ratio. Because it requires estimating
two or three parameters instead of one, when the number of replicates
is small, the T-ratio does not necessarily perform better than fold-
change, even when the goal is point-null-like. Gains in efficiency over
both fold-change and T-ratios can be obtained by considering the
ensemble of gene expression measures at once, rather than each gene in
isolation. This occurs for at least two reasons. First, genes measured on
the same array type in the same laboratory are all affected by a number
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of common sources of noise. Secondly, many changes in expression are
part of common biological mechanisms.

A widely used approach that uses genome-wide information
is “significance analysis of microarrays” or SAM [6]. SAM involves
transforming the signal-to-noise ratios so that they are approximately
independent of noise across genes. The type of transformation used
by SAM is designed to protect against false discoveries generated by
very small denominators in the T-ratios. The denominators that are
really small are highly likely to be so by chance, because genes share
many sources of variability, and a certain amount of variation is to be
expected from all of them.

More broadly, joint estimation of many related quantities is often
approached by multilevel modeling, and the associated Empirical
Bayesian [7,8] and Hierarchical Bayesian [9] estimation techniques.
See Carlin and Louis [10] for a detailed discussion. In genomics, these
may represent variation in two stages. The first stage defines summaries
at the gene level, for example test statistics, or estimates of fold change
and noise. These describe variability of samples within each gene.

The second stage posits a “genomic” distribution for these
gene-level summaries. Such multilevel modeling provides tools for
borrowing strength from other genes when making inference on each
gene. Some examples of implementations in microarrays are provided
by Baldi and Long [11], Newton et al. [12], Efron et al. [13], L onnstedt
and Speed et al. [14], Ibrahim et al. [15], Parmigiani et al. [16], Wright
and Simon [17] among others.

In practice, a question often raised by genomics practitioners is
the extent to which simple, real-time, shrinkage statistics motivated by
multilevel models would outperform single-gene-at- a-time analysis or
SAM. In this paper we set out to systematically address this question.
To this end, we found it necessary to develop a general framework for
developing and evaluating these fast shrinkage statistics. Our answer
will turn out to be that shrinkage can furnish substantial improvement
over single-gene-at-a-time analysis or SAM, provided that the statistics
chosen will a) take into account the goals of the screening experiments
and b) will be chosen based on examination of the properties of the
genomic distribution of signal and noise. Even though we considered
an extensive collection of statistics, the goal was not that of providing
an exhaustive comparison of all approaches that have been proposed,
but rather that of highlighting the critical role of the signal-to—
noise trade-off and of providing tools to choose among alternative
approaches based on the genome-wide behavior of signal and noise.
We compared the performance of these statistics using both extensive
simulations and real data sets in which fold changes were known.

Methods
Multilevel models for two-group comparisons

We consider a design in which two biological types are compared
on a microarray that probes G genes. Each type is measured on n arrays
using either technical or biological replicates. Here technical replicates
refer to experiments that have multiple aliquots of the same RNA, while
biological replicates refer to experiments that have multiple subjects
from a population. Each situation requires a different interpretation
of the array-to-array variability, but the formal structure is the same.
We do not consider both levels of replication at the same time here.
We denote by X, - the expression for gene g in sample j in the first
group, and by X, the expression for gene g in sample j in the second
group. Expression levels are assumed to be centered around an overall
experiment-wise mean.

Recall our interest lies in studying approaches for selecting
genes that are differentially expressed between groups. We begin by
describing an additive group effect and independent Gaussian errors.
That is we assume that the observed expressions are conditionally
independent draws from

1
Xlgf‘ﬂg’ag’5g~N(ﬂg _55::’0-;)

1
ng/|yg,0§,5g~N(ﬂg +55g’0_§]'

Here, d is the difference in expression level for gene gacross groups,
p is an overall expression level for gene g, also referred to as abundance,
or intensity, and ng is the variance of expression level for gene g in
both groups. We refer to &, as true signal, and to o_as true noise. In a
multilevel setting, our parameterization is different fgrom that assuming
E{X, }=u E{X, }=u +0 , which would lead to two different marginal

g g 2 g g
variances in the two groups.

The fit of the normal distribution can often be improved by a
suitable transformation of the data. Departures from normality, equal
variances, and additivity may occur but are not considered in this
manuscript.

Multilevel models postulate a distribution for the abundance, signal,
and noise parameters across genes. A common assumption to many of
the multilevel models used in microarray analysis is that of conjugate
distributions for the second stage of the statistical model, in short a
“conjugate model”. In the case of Gaussian data, the conjugate model
implies that the gene-specific signal-to-noise ratios and abundance-
to-noise ratios are independent of the corresponding gene-specific
noise [18,19]. This assumption leads to convenient mathematical
representations for many of the steps required by the data analysis, and
is sometimes adopted solely for this reason. In practice, however, some
microarray experiments follow this independence pattern closely, while
others depart from it substantially. The loss of efficiency of screening
based on the conjugate model in the latter case can be large.

Here we broaden the conjugate scheme and we investigate four
model varieties, that result from the combination of two factors: (i)
whether the gene-specific signal is independent of the gene-specific
noise, (ii) whether the gene-specific abundance is independent of the
gene-specific noise. Formally, for (i) the independence models assumes
that § and o_are independent, while the conjugate model assumes that
6/0,and o_are independent.

The remainder of our distributional assumptions are standard for
normal multilevel models [9,20]. The models are summarized in Table 1.

We use the notation dg for the mean difference of expression across
two groups, a_ for the overall mean expression, and s, for the pooled
estimate of the standard deviation. Notationally:

ag :%()?Ig +)?22)

dg:ng—Xlg

> RSS 1 < = 1 < =
s, = =— X +X,))+—— X, —-X,.)".
] n_lg( o+ X)) n_lg( 2y~ %X2)

In all four models of Table 1, these statistics are independent
conditional on gene-specific parameters and have distributions

L,
a, ~N(,ug,ﬂagj
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Table 1: The four classes of multilevel models investigated. The array-to-array
variation is modeled in the same way in all four cases. In all cases,j=1,2,...,n
andg=1,2,...,G. All quantities denoted by Greek letters are unknown. A further
set of prior distributions for the hyperparameters is described in the text.

ANALYSIS GOAL

MOTIVATING MODEL :
Reliably measured change

Large change
Difference in
Expression (F) T—statistic (T)

Significance Analysis of Microarray (SAM)
Signal (CC.F) Standardized Signal (CC.T)
Tail probability (CC.TP) Bayes factor (CC.BF)

Independence/Normality
of Genes

Exchangeability of Genes

Complete Conjugacy

Independence of Signal (CI.F) Standardized Signal (CI.T)
Abundance and Noise Tail probability (CL.TP)  Bayes factor (CI.BF)
|ndependence of S|gr|a| Slgnal (lCF) Standardized Slgnal (lCT)
and Noise Tail probability (IC.TP)  Bayes factor (IC.BF)

Signal (11.F) Standardized Signal (11.T)
Independence

Tail probability (I.TP)  Bayes factor (I1.BF)

Table 2: Summary of statistics examined, by goal and motivating model structure.

2
dg ~N(5g,;6§]

n-1, ,
e Sg ™~ Xan-1y
conditional on gene-specific parameters. All four combinations of Table
1 occur commonly in practice. For example, our two experimental data
sets show two markedly different relationships between signal and
noise.

The vector of unknown genome-wide parameters will be denoted
by &=(v,$,A,7). There are several estimation approaches available
for models of this kind. State-of-the art, computationally intensive
approaches are usually based on MCMC [21]. Instead we focus on a
faster and simpler empirical Bayesian approach based on estimating
& by method of moments from the empirical distributions of S;,Z, d/s.
The resulting estimators are computationally cheap and may include
shrinkage of the signal, of the noise, or both. Several method of

moments alternatives are available, and results can be strongly affected

by this choice. For example, in our experience, the method of moments
applied to the distribution of Sg, which is inverse gamma, performs
poorly, while the same appliedto ~ performs well.

We approach the task of generating a list of candidate genes by
ranking genes according to a one-dimensional statistic, and then
selecting all genes whose statistic is above a certain cutoff. This is the
norm in practice. While more general decision theoretic approaches
evaluating the trade-off between false and missed discoveries are
available [22,23], these are complex, and would have been prohibitive
in our extensive simulation study. The cutoff is often determined by
the ability of a laboratory to perform validatory analyses, or, more
inferentially, by false discovery rates [24-27]. In our presentation,
to simplify the comparison of approaches, we focus on the ranking
of genes implied by the statistics, and the ability of each statistic of
identifying the top g genes.

Throughout, we draw a distinction between the selection of genes
that are changed by a large amount, and genes that are changed by a
reliably measured amount. Accordingly we consider two broad families
of statistics, ones that estimate the signal, 8g, and ones that estimate the
signal-to-noise ratio, § /o . Because we use statistics as ranking devices
and compare them based on ROC curves, we only need to define
statistics up to constants that are not gene-specific. A proportionality
sign will indicate omission of such constants. Table 2 summarizes the
statistics we examined, organizing them by goal and motivating model
structure. Table 3 summarizes the expressions of statistics motivated
by multilevel models.

Statistics

In this subsection we enumerate and briefly comment on each of
the statistics we considered. The remainder of this section is provided
as a reference for future sections. Details of the derivations are given in
the Appendix.

Difference in Expression (F): This is the observed average
difference d. Usually expression data are analyzed in the logarithmic
scale, in which case F corresponds to an estimate of the log fold change
across conditions.

T-statistic (T): This is the common statistics T o« dg/sg used for
testing the null hypothesis of § =0 one gene at the time.

Significance Analysis of Microarrays (SAM): This was proposed by
Tusher et al. [6] and is based on the change of gene expression relative
to an adjusted standard deviation. For the two group case considered
here, the SAM statistic for gene g is

d
SAM =—=
Sy +5,

where s, is the so-called “exchangeability factor”. This factor is estimated
using information from the entire set of genes to transform the values
of SAM so that noise and SAM are approximately independent.

Statistics for the Complete Conjugacy (CC) Model: In the
Complete Conjugacy model the conditional posterior distribution of §,
given hyperparameters £ can be written as

n
Edg o’

S,d, 00,6 ~N n—l’n—gl (1)
St 5t
2 A2 A

A set of computationally cheap statistics is derived by considering
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Table 3: Summary of functional forms of all the statistics motivated by multilevel models. For the complete conjugacy case (CC) we consider both statistics that use analytic
integration with respect to g, (labelled CC.m) and statistics that use plug-in estimates of o_ (labeled CC.c).

empirical Bayes estimates of this distribution, obtained by replacing
hyperparameters  with an estimate & . A regularized estimate of signal
6, is
n
—d
CCF=—2"od
’ 1 n ¢
-+
A2
Regularization is independent of the gene, so for any given
experiment CC.F will be proportional to F. For this reason we only
consider F, although we keep this correspondence in mind when
interpreting the results.

A standardized estimate of signal is derived as the ratio of
the conditional posterior mean and standard deviation of §, from
expression (1),

d
CC.T ox —==.

A2
O-g

The denominator incorporates a linear shrinkage estimate of
the gene-specific variance with gene-varying coefficients, penalizing
more heavily genes whose signal or abundance are outlying. For this
reason, it is critical that the conjugacy assumption be checked, or
very valuable information may be lost. On the other hand, when the

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Volume 5 ¢ Issue 2 « 1000192



Citation: Liu D, Parmigiani G, Caffo B (2014) Screening for Differentially Expressed Genes: Are Multilevel Models Helpful? J Biomet Biostat 5: 192.

doi:10.4172/2155-6180.1000192

Page 5 of 16

assumption is met, an increase in efficiency is gained from estimating
the denominator.

An empirical Bayes estimate of the Bayes factor [28] for the null
hypothesis of no gene-specific differential expression, §, = 0, is:

5 —(n+v)
a
g

-1 A
4L Msj L
4 8

£ 2

2

~»

1
—+
2n

2 2
d&’ a&’

1+l (}’l—l) 2+ 7 + 7
+7?

CC.BF «

b
n 2n
Finally, we consider the empirical Bayes approximation,
- 2 £
CC.TP = Pr(5, > Dld,,a,,s2,&),

of the probability that the true change &, exceeds D [29]. Here, D
represents a target change across conditions. This tail probability
reflects the observed change, its variability and the likely magnitude of
biologically significant changes.

Statistics for the Independence of Abundance and Noise (IC)
Model: In this model the posterior distribution of §, given o, and
hyperparameters & can be written as

n
Edg o’
S0 E ~N| ST @
St S5t
2 A2 A

Unlike in the complete conjugate case, a closed form marginalization
with respect to 0 is not possible. Therefore we derive results assuming
O¢ is known. In the actual calculations, to obtain a real-time statistics,
o-; is estimated by the posterior mode of the distribution of 0y | sé , &

Then our estimate of the normalized signal is

"a
ICF=-2"_o4g
Ton 1 &
J— + =
2 A7
As with CC.F, IC.F is proportional to F, so we only consider F in
our results section.

A standardized estimate of signal based on regularized estimates
of signal is the ratio of the marginal posterior mean and standard
deviation of (Sg from expression (2), that is

d,
~2 "
Ve
The Empirical Bayes estimate of the Bayes factor, conditional on
gene specific variance is:

IC.T

- n
IC.BF xe ¢
Finally, we consider the empirical Bayes tail probability

IC.TP = PH(S, > Did,,62,&).

Statistics for the Independence of Signal and Noise (CI) Model: In
this model the posterior distribution of §_given ¢ and hyperparameters
& can be written as

nd

g

20° 1

2 ~ g
Opldys 06 ~N| === =

2+ 2 2+ 2
20g A 20‘g A

©)

Again, to obtain a real-time statistic we develop results conditional
on o and estimate it with its posterior mode in actual calculation. The
estimate of the signal is

nd,
267
CLF=——*%—.
n_, 1
e
26, W\

A standardized estimate of signal based on regularized estimates

of signal is the ratio of the marginal posterior mean and standard
deviation of (Sg from expression (3), that is
nd,

a2
20‘g

CLT= .
n 4 1
262 32

g

The Empirical Bayes estimate of the Bayes factor is:

n oo
2% 4
2t N
26, of 252452
n &
2

while the tail probability approximation is
CLTP = Pr(6, > Did,,67,£).

Statistics for the Complete Independence (II) Model: In this
model the posterior distribution of §, given o, and hyperparameters ¢
can be written again as

nd

g
20, 1 )
2 ~ g
5g|dg’o-g’§ N n L’ n +L
20 A? 20'; A2

g

A regularized estimate of § , motivated by the independence model
is obtained by replacing & with ¢ and O'; with its conditional posterior
mode evaluated at £, and approximating the posterior mean by

nd

g

A

2 2
NF=——-+~—.
n 1

267 * A2

g

Unlike IC.F and CC.F, both ILF and CLF imply a linear shrinkage
which depends on the genomic variability of the signal. Dividing IL.F
by the square root of the variance of 6g, and approximating as before,
we obtain
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o}
ILT=——

while the empirical Bayes approximation to the tail probability is

ILTP = Pr(5, > Dld,,67,&).

Notice that the definitions of statistics for the CI and II cases would
be the same if J was known Hence the only difference in practice is
the posterior mode for O' . It should not then be a surprise that the
performance of these two are very close. For the same reason, this is
also true for statistics in the CC and IC settings conditional on O'é .

The empirical Bayes estimators, both standardized and not, have
functional similarities to the SAM score, although shrinkage of the
noise in the denominators are determined differently. In empirical
Bayes analyses, the shrinkage is driven by the parameters of the
genomic distributions of signal and noise, in a form that depends
on whether or not conjugacy is assumed. In SAM one applies linear
shrinkage to the standard deviation rather than the variance, and the
shrinkage intercept s0 is chosen to approximate independence of SAM
ratios from noise.

Simulation Results
Overview

In this section we study the performance of the real time shrinkage
statistics on a large number of data sets simulated from each of the four
models in Table 1. We evaluate each statistic on the basis of the implied
ranking of genes, and the ability of each statistic of identifying the top
g genes. In the analyses presented here we considered two alternative
goals: in one the genes of interest are the top genes by absolute change
9, In the other the genes of interest are the top genes by signal-to noise
ratio § /0. We considered the top 1%, 2% and 10% for each goal. For
each cutoff we create a binary indicator of whether the true parameter
is in the top list, and use this indicator as the true class assignment to be
predicted. We evaluate performance by an ROC curve [13,30], which is
the graph of the true positive fraction versus the false positive fraction
for varying thresholds.

As summaries, we consider the overall area under the ROC
curve [31] and the partial area under the ROC corresponding to false
positive fractions smaller than 20%. We prefer these measures to
others incorporating explicitly §, and § /o, for two reasons: the goal
of the microarray experiments we are focusing on is screening rather
than estimation; interest usually lies in a relatively small fraction of
important findings.

Based on these criteria, our simulations suggest three general
conclusions about the alternative approaches for identifying differential
genes: i) simple, real-time, shrinkage statistics motivated by multilevel
models can outperform alternatives based on analyzing each gene
separately, in some cases by a large margin; ii) the same statistics can
perform better than the commonly used SAM [6] statistic, provided

that careful checking of the multilevel modeling assumptions is carried
out, and iii) no statistics is optimal for both the identification of large
6,and large /o,

Design of simulation study

Our goal was to generate a large and diverse number of scenarios,
depending on sample size, conjugagy assumptions, and hyperparameter
choices. We considered three sample sizes: 3, 10 and 100 per group.
Use of samples as small as 3 is a common scenario in the gene screening
experiments taking place during the routine activities of many
laboratories, while 10 per group is a common scenario in comparisons
across conditions for population genomic studies. Sample size as large
as 100 per group are rare and considered here mostly as a check.

For each combination of conjugacy assumption (CC, IC, CI and
II) and sample size, we simulated data from 2009 hyperparameter
combinations, resulting in a total of 24108 datasets. The 2009
combinations of hyperparameters are based on the grid:

E[o]] € (ﬁ,%,é,l,izs,looj

5 111
var| o, ]e(mgglszsloo) (0]
,1,5,25 100)15[02]
,1,5,25, 100)E[o 7]

} and

val‘[o'g } Here the total number of combinations is 2009 rather than

For each combination we derive v and 8 from E[

the full 2401 because some expectation/variance combinations lead to
unrealistic settings for _ yielding numerically unstable results.

Simulation results

Mining the massive information generated by the thousand
datasets required drastic summarization. Here, we present one detaset
in detail, and then provide the following summaries: scatterplots in
which each deatset/statistic combination is represented by a single
point, summaries of pairwise comparisons of statistics by model/goal/
sample size, and summaries of best performing statistics by model/
goal/sample size.

Figure 1 shows the ROC curves for a single simulation. Data are
generated from the II model and the ROC is based on identifying
genes with large signal. In this data set, we see a clear separation in
the performance of the statistics, both within and across conjugacy
structures. The tail probability statistics perform best irrespective of the
motivating model, stressing the importance of correctly specifying the
analysis goal.

To summarize this type of comparison for all 2009 simulated
data sets, we display pair scatterplots of areas under the ROC curves
(AUC). Figure 2 summarizes results for II data with three replicates.
We focus on T, SAM and on the three shrinkage-based statistics that
perform best in II data. Whiskers at the top of the graphs for the T
statistics indicate that, for a subset of simulation for which other
statistics achieve a perfect separation, the T is can still miss a fraction
of differentiated genes. The reciprocal situation does not occur,
suggesting a substantial inefficiency in the use of the T statistic. For
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Figure 1: ROC curves for all the statistics under study in a single simulation with 3 replicates and 1000 genes. The hyperparameter
values used to simulate the data were v=2, =1, y=1 and 1=1. The ROC curves are grouped by statistical model to unclutter the
displays. The curves for T and SAM are repeatedin each panel.
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Figure 2: Comparison of performance of T, SAM and the shrinkage statistics that perform best in independent (ll) data. Each point represents the areas under
the curve for two statistics for a particular simulated data set. In the plots above the diagonal, we report the areas when identifying genes with high signal to
noise ratio, while in plots below the diagonal we report areas when identifying genes with large signal. The shrinkage statistics that perform best change across
the two goals, and therefore different shrinkage statistics are shown above and below the diagonal. Because over-plotting points may lead to visually misleading
results in some cases, we also print the percentages PU and PL of points lying above and below the diagonal, and the averages MX and MY of the horizontal

and vertical variables.
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Figure 3: Heat maps of the results for data simulated from the four models, with sample size 3. The color encodes the sign of the difference between percentages PU
and PL of points lying above and below the diagonal in Figure 2 for all pairs of statistics. Green indicates PU<PL, red indicates PU>PL, while yellow indicates those
cases where the difference was less than 0.05. The best statistics to identify genes with large signal are labeled with purple, while the best statistics to identify reliably
measured differentially expressed genes are labeled with blue. These results are further summarized in Table 4.
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both goals, the best performing model is based on CI, suggesting that
the model chosen to represent the abundance/noise relationship is less
critical than that chosen for the signal/noise relationship. A complete
set of such comparisons including IC, CI and CC is available in the
supplementary materials on our website.

Rather than reproducing these plots for each of the simulation
scenarios, we present, in Figure 3, “heat maps” synthesizing pairwise
comparisons of estimators for the four simulation settings. For each
pair of statistics, maps encode how often one statistics’ AUC is better
than the other’s, allowing for rapid comparison of any two statistics
on data generated under each of the four model families. To further
summarize, the best performing statistics from the heat maps for
sample sizes 3, 10 and 100 replicates are reported in Tables 4 and 5 (for
partial AUC).

Overall, these results emphasize the importance of matching the
statistic to the analysis goal: fold changes and tail probabilities appear
to be the best statistics for estimating large signals changes. In contrast
the signal-to-noise ratios and Bayes factors appear to be optimal for
estimating reliably measured differential expression. Also, these result
confirm the importance of shrinkage: in only one case did a T statistic
out-perform other statistics to identify high signal changes while in
no cases did fold change out-perform other statistics to identify high

SNRs. IN shrinkage correctly identifying the appropriate modelling
assumptions becomes increasingly important as the number of
replicates increases. The SAM statistic performs well across models,
though often worse than the best shrinkage statistics within a model.

To provide a bound on the improvement in performance that
can be achieved by shrinkage, in Tables 4 and 5 we provide results
obtained by plugging in the true values of the parameters of the
genomic distributions instead of their estimates in the calculation of
the statistics.

When there is no close form, we have used the conditional
estimation by plugging in the posterior mode of O, g2 . To verify how
reasonable these real-time statistics are, we considered the Complete
Conjugacy model where closed forms are available for all the statistics.
We performed another set of simulation with exactly the same
hyperparameters comparing the results based on CC.TP and CC.BF in
two cases: gne based on the conditional posterior of &, with posterior
mode of O, plugged in, the other based on the margmal posterior of §,
integrating out O'2 Results are shown in the supplementary materlals
Real-time statistics generally perform as well as the exact statistics,
although there is a minority of cases in which the exact statistics does
far better than real-time approximation, especially for tail probabilities.
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nrep=10
Model 1l Cl IC cC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM SIN CLT CLT CLT CLT CLT CLT IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP
CLTP CLTP CLTP CLTP CLTP CLTP
Signal CLF CLF CLTP CLF CLF IC.TP *C.TP *C.TP IC.TP *C.TP *C.TP *C.TP
*C.F *C.F IC.TP *C.F *C.F
T S/N CLT CLTT CLTT CLT CLTT CLTT IC.BF IC.BF IC.BF IC.BF IC.BF IC.BF
T *| TP CLTP Cl.BF CI.BF CI.BF
ILTP CLTP CLTP
Signal CLF CLF *LTP CLF *LF *L.TP CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP
IC.TP IC.TP
nrep=10
Model I Cl IC CcC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM S/N 1T *1.T IL.T CLT CLT CLT IC.BF IC.BF IC.BF *LTP IC.BF IC.BF
*L.TP *L.TP CLTP *1LTP *1LTP
Signal *L.TP *.TP CLF ILTP CILF *1.TP *C.TP *C.TP *C.TP *C.TP CC.TP *C.TP
CILF CLF CLTP IC.TP ILTP *FIC.TP
IC.TP IC.TP
T SIN LT LT LT CLT CLT CLT IC.BF IC.BF IC.BF IC.BF IC.BF IC.BF
*LTP *LTP CLTP *LTP *LTP CLTP
CIL.BF
Signal *1.TP *1.TP CLF IL.TP *1.TP *L.TP CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP
CLF CLF CLTP IC.TP *FIC.TP
nrep=100
Model 1] Cl IC CcC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM S/N LT IL.T ILT CLT CLT CLT IC.BF IC.BF IC.BF IC.BF IC.BF IC.BF
IC.BF IC.BF IC.BF *L.BF
Signal *LLF *LF *LF *L.TP *LTP *LTP IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP
*L.TP *LTP *LTP *F *F
T S/N IL.T ILT ILT CLT CLT CLT IC.BF IC.BF IC.BF IC.BF IC.BF IC.BF
IC.BF IC.BF IC.BF *L.BF *1.BF
Signal *I.LF *LLF *I.LF *1.TP *L.TP *1.TP IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP
*1.TP *L.TP *L.TP *F *F

Table 4: Summary of best performing statistics by AUC. Here “model” is the true model used for simulation. Statistics were evaluated by their ability to identify the top
1%, 2% and 10% of genes with large signals (labeled Signal) and large signal-to-noise ratios (S/N). The rows labeled MM correspond to parameter esti-mation using the
method of moments while those labeled TT correspond to using the true hyperparameter. Instances where the best performing statistic did not match the appropriate true
model and goal are high- lighted in red. Instances where the best performing statistic did not match the model but was consistent with goal are highlighted in blue. A
wildcard * indicates the statistic from either the conjugate or indepen- dence model was the best performer. For example, "*C.F” indicates that the CC.F and IC.F statistics

were roughly equivalent best performers.

Finally, we further investigated the seemingly counterintuitive
result where the best performing statistic for the data simulated from
the Complete Conjugacy model are the IC. TP, IC.BF for genes ranked
by both signal alone and signal-to-noise ratio. This behavior persists at
larger sample sizes. The reason for the counterintuitive behavior is that
some of the hyperparameter combinations lead to simulated dataset
that have diagnostic plots consistent with an IC model, in which case
IC statistic performs well while the abundance-based shrinkage applied
by the CC statistics leads to loss of some of the signal. Additional details
are provided in the supplementary materials.

Experimental Results
Datasets

We analyzed two data sets. The first was reported by Tusher et al.
[6] in the context of comparing radiated and unirradiated cell lines. A
subset of the genes’ changes, identified based on the SAM statistic, were

subsequently validated by independent essays. While the experiment
includes some blocking, we analyze it here as though it were a two—
class comparison with 4 replicates.

The second data set is from an experiment reported by Dudley et al.
[32]. They performed a so called “spike-in” experiment in which they
selected 9 genes with very low natural expression and “spiked-in” Cy3-
labeled gene-specific oligonucleotides in increments from 0.5 fold to
200 fold. Their experiment used cDNA microarrays including a total
of 6307 genes, and had two replicates. We work from ratios of Cy3-
to-Cy5 channels, after normalization [33]. While spike in experiments
are useful in that true fold changes are known, both the magnitudes of
the changes, and the sparsity of changes in the genome are unlikely to
be realistic.

Graphical diagnostics for conjugacy structure

We begin by investigating the relationship between signal,
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nrep=3
Model I Cl IC CcC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM S/N CLT CLT CLT CLT CLT CLT SAM SAM SAM SAM SAM SAM
Signal CLF CLF CLF CLF CLF CLF *C.F *C.F *C.F *C.F *C.F *C.F
*C.F
Truth S/N CLT CLT CLTT CLT CLT CLTT CLT CLT CC.BF CLT CC.BF CC.BF
CC.T CC.T CC.T
CLT
Signal *I.LF *L.LF *I.LF CILF CLF *LLF *C.F *C.F *C.F *C.F *C.F *C.F
nrep=10
Model Il Cl IC cC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM S/N LT LT ILT CLT CLT CLT SAM SAM SAM SAM SAM SAM
CC.BF CC.BF CC.BF
CC.T CC.T CC.T
Signal CLF CLF *L.LF CLF CLF CLF *C.F *C.F *C.F *C.F *C.F *C.F
CC.TP
Truth S/N 1T 1T ILT CLT CLT CLT CC.T CC.BF CC.BF CC.BF CC.BF CC.BF
CC.BF CC.T *C.T CC.TCLT |CC.TCLT CC.T
CLT
Signal CLF CLF *L.LF CLF CILF CLF *C.F *C.F *C.F *C.F *C.F *C.F
nrep=100
Model 1l Cl IC CcC
top % 1 2 10 1 2 10 1 2 10 1 2 10
MM S/N T I.T IL.T CLT CLT CLT *C.T *C.T *C.T *C.T *C.T *CC.T
CC.BF CC.BF CC.BF CC.BF |CC.BF |CC.BF
CLT CLT CLT
Signal *LF *I.LF *L.LF *L.LF *I.LF *L.LF *C.F *C.F *C.F *C.F *C.F *C.F
Truth S/N 1T I.T ILT CL.T CLT CL.T *C.T *C.T *C.T *C.T *C.T CC.T
CC.BF CC.BF CC.BF CC.BF |CC.BF |CC.BF
CLT CLT CLT
Signal *L.LF *I.LF *I.LF *I.LF *I.LF *I.LF *C.F *C.F *C.F *C.F *C.F *C.F

Table 5: Best statistics for each simulation scenario with three replicates. Here “model” corresponds to the true model used for simulation. Statistics were
differentiated in their ability to identify the top 1%, 2% and 10% of genes with large signals (labeled Signal) and large signal-to-noise ratios (S/N). The rows
labeled “MM” correspond to parameter estimation using the method of moments. Results using the actual true parameter values (labeled "Truth”) are also
given. Instances where the best statistic did not matching the appropriate true model and goal are highlighted in red. Instances where the best statistic did not
match the model but was consistent with goal are highlighted in blue. The results highlight the importance of matching the statistic to the goal; in only one case
did a T statistic out-perform other statistics to identify high signal changes while in no cases did a fold change out-perform other statistics to identify high SNRs.

abundance and noise by displaying boxplots of signal and abundance
by noise level. These elaborate on ideas of Dudoit et al. [34] and Tusher
et al. [6]. Figure 4 considers the Tusher data. An SN plot in which the
location and dispersion of signal are stable across noise levels suggests
the use of an independence model, while one in which the location
and dispersion of signal increase with noise level suggests the use of
a conjugate model. Thus, a constant box size indicates independence
while an increasing box size indicates conjugacy. In simulated data
(see Supplementary materials), the diagnostic plot clearly distinguishes
conjugacy with respect to signal and noise as well as conjugacy with
respect to abundance and noise.

Because results are sensitive to the type of transformation applied
to the expression measurements, we display both the original scale and
the cube root. Untransformed data show a pattern consistent with the
conjugate model, while data transformed using the cube root appears
consistent with the independent model. An alternative visualization to
the SN plot is a simple scatterplot of signal versus noise. A limitation

of this approach is that it can be difficult to establish whether increased
variation in signal at different level of noise is due to a true relationship
or simply to a higher number of genes at that noise level.

Figure 5 shows the spike-in data using three transformations. The
original scale shows a marked positive relationship between estimated
signal and noise, the cube root scale a mild positive relationship, and
the logarithm an almost stable relationship, with some indication of
larger variation in the signal at lower noise level. These figures do not
inform us about absolute intensity, so the larger variation of signal at
the low end after the log transformation is not the same as the well-
known “fishtail” effect observed in MV A plots.

In this data set the cube root transformation is the most effective
in helping identify the truly differentially expressed genes, performing
better than the commonly used log. In practical application one does
not have the advantage of knowing the true changes when choosing a
transformation. The important lesson here is, however, that choosing
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Figure 4: Signal-to-noise diagnostic plot for the Tusher data under two transformations. Genes identified by SAM are highlighted in red. The horizontal axis is
the binned gene specific variances. The vertical axis for the plots in the left column is the average expression across the two groups (abundance) while it is the
the average difference in expression (signal) for the right column. Conjugacy appears appropriate for the raw data, and an independence relationship appears

appropriate for the transformed data.

transformations based on convenient statistical properties such
as variance stabilization does not necessarily improve, and could
prejudice, our ability to detect signal.

These two datasets stress that both the independence of signal and
noise and independence of signal-to-noise ratio and noise may need to
be tackled in real applications. While transformation of the measured
intensities may allow one to achieve independence, it is not clear that
such transformations would be optimal in terms of gene screening.

Comparison of real-time statistics

Figure 6 shows pairwise scatterplots of the statistics CC.TP, ILF,
and SAM for the two transformations in Figure 4. CC.TP and ILF are
the two best performing real-time shrinkage statistics for identifying
genes with large signal. The two best statistics for selecting reliably
measured genes, CC.BF and ILT, are given in the supplementary
materials. All the genes originally identified by Tusher et al. [6] receive
high tail probability using both transformed and untransformed data,
though additional genes also receive tail probability close to one. On

the other hand, the correspondence between SAM and ILF is good after
cube root transformation but not in the raw scale. In evaluating these
results, one must keep in mind that only genes that exceeded a certain
SAM threshold were validated independently in the study. Therefore,
direct performance comparisons with SAM are not reliable here.

Figure 7 compare statistics in the spike-in data. For the log
transformed data, we would expect a better performance from ILF
than CC.TP based on the SN plot. In fact, the ILF statistics shrinks the
effects excessively and gives a less efficient ranking. For the cube root
transformed spike-in data we would expect and, in fact, see a better
performance from CC.TP than ILF in Figure 7. For the untransformed
spike-in data, results, shown in the supplementary materials, confirm
the intuition from the exploratory plots that the conjugacy model
should outperform the independence model. Figure 7 does show this
result. In a close view of comparison between CC.TP and SAM on raw
data (see Supplementary materials), CC.TP also clearly picks up all the
spiked genes, while SAM does not. Spiked genes are genes have large
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Figure 5: Signal to noise plot for the spike-in data under three transformations. Spiked-in genes are high- lighted in red. The horizontal axis is the binned
gene specific variances while the vertical axis for the plots in the left column is the average expression across the two groups (abundance) while it is the
the average dif- ference in expression (signal) for the right column. The apparent relationships between abundance and noise and signal and noise clearly
change dependent on the transformation used. While conjugacy appears ap-propriate for the raw data, and independence relationship appears more

appropriate for the log-transformed data.
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signals, so that poor performance of IL.T and CC.BF is no surprise (see
Supplementary materials).

This analysis warns of a potential danger in the use of multilevel
modeling. Assuming that the signals follow a Gaussian law assumes
that all genes are differentially expressed to some extent, and the goal
is to either detect the largest signals or the largest reliably measured
signals. This is realistic in case-control comparisons and in experiments
in which the experimental intervention changes a large portion of
the expression, as during cell division. In contrast, in this spike-in
experiment, the distribution of signals is in fact degenerate at

0 for all but the 8 spiked in genes. Therefore, the statistics motivated
by the Gaussian law on the signal are not validated from the data.
While extreme, the spike-in situation may be relevant in practice when
experimental intervention modifies a small set of genes involved in a
very specialized pathway.

Diagnosing empirically whether the signal distribution is a mixture
is difficult. Appropriate weight should be given to the biological
circumstances of the experiment. For example, here an independence

relationship is suggested for the signal and noise for the cubic and
log transformed data. However, as the majority of the genes are
biologically known to have no signal, these plots do not inform us
on the question of interest. Furthermore, Figure 7 shows that the
best complete independence statistics for identifying large signal and
reliably measured signal changes, ILF and IL.T, perform poorly for
detecting the spiked-in genes. In summary, aggressively modelling the
distribution of signals when the overwhelming majority of genes have
no signal can produce poor results.

Conclusions

In this article we present a framework for interpreting, selecting,
and estimating shrinkage based screening statistics used in the
identification of differentially expressed genes. We also evaluated a
representative set of these tools using both extensive simulations and
controlled biological experiments in which the set of altered genes is
known or partially known.

Our results emphasize two important practical concerns that are
not receiving sufficient attention in applied work in this area. First,
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Figure 7: Comparisons of fold change statistics Il.F and CC.TP with SAM in the spike-in data. Spiked-in genes are highlighted in red. Here the CC.F and I..TP
statistics were chosen from Tables 4, 5 and 6 as the optimal statistics for detecting large signal changes for the 1l and CC models. For this data, the Il model is
supported under the log transformations while the CC model is supported for the raw and cubic transformed data. The II.F statistic shrinks conservatively even for
the log transformed data while SAM and CC.TP perform well for both transformed data sets. No statistic performs well on the original scale.
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while shrinkage strategies based on multilevel models are able to
improve selection performance, they require careful verification of the
assumptions on the relationship between signal and noise. Incorrect
specification of this relationship can negatively affect a selection
procedure. Because this inter-gene relationship is generally identified
in genomic experiments, we suggest a simple diagnostic plot to assist
model checking. Secondly, no statistic performs optimally across two
common categories of experimental goals: selecting genes with large
changes, and selecting genes with reliably measured changes. Therefore,
careful consideration of analysis goals is critical in the choice of the
approach taken.

The commonly used SAM statistics emerges as a reasonable
compromise between the two goals above and is, to some extent,
automatically adaptive to different relationships between signal and
noise. Improving on SAM is possible but requires careful validation of
the assumptions about the upper level distribution. The assumption of
conjugacy in the abundance dimension requires careful attention as it
is not robust. In particular, estimators based on the CC assumption can
be outperformed even on data generated under CC.

Our simulation analysis relies on the assumed normality of data.
In practice, two aspects of it are critical. At the lower stage, in small
samples, the functional form of the error distribution across samples
is hard to assess. On the other hand, at the upper stage,normality
can be checked, and transformations may help, although the caveats
discussed in Section 4.3 should be considered. Alternative multilevel
models have been studied, for example by Newton and Kendziorski
[35] who consider gamma models, and M “uller et al. [22], who extend
those to mixtures of gamma models. While these alternatives are worth
serious consideration, here we focus on Gaussian models and statistics
motivated by the Gaussian setting, primarily because in this way we
can practically investigate a variety of relevant statistics on a massive
number of simulation scenarios.

Other interesting multilevel approaches have been proposed to
analyze designs that are more complex than the two-group comparisons
considered here. We refer the reader to Kerr et al. [36], Wolfinger et al.
[37], Kooperberg et al. [38], Tai and Speed [9] and Wang et al. [40] for
further details. Meta-analysis of multiple microarray studies is another
area where multilevel models have proven helpful, as illustrated by
Conlon [41] and Scharpf et al. [42].

In recent years gene expression is increasingly measured using
technologies based on sequencing short read (RNA-seq) which
coexist with the hybridization-based approaches that motivated this
work. These technologies generate count data. Though the normal
model is sometimes used and can perform reasonably after variance
stabilization, differential expression is better analyzed statistically using
poisson and negative binomial models as described in [43] or Rapaport
et al. [44]. An effective effective approaches using multilevel models
is included in the Bioconductor package described by Love et al. [45].

In our analysis we assumed that all genes on the array are potentially
changed. This is realistic in case control designs across populations or
comparison of cells at different stages of the cell cycle, regulation can
be expected in a large number of genes, although differences will vary
randomly and many genes will be changed by amounts that are smaller
than noise. In tightly controlled experiments, such as a comparison of
wildtype versus mutant species, or treated versus untreated cell lines,
differential expression may only involve a small number of pathways
and genes. While this situation can be reasonably handled in the
framework considered here, it would be more accurately modeled by

assuming that only a fraction of the genes are differentially expressed
across groups A multilevel model could assume assume that a fraction
of the § are identically zero, while the rest are normally distributed
[14].

Our focus here has been on simple and easy-to-compute statistics
for gene selection. Multilevel models were used only to provide
motivation and a conceptual framework for the derivation of the
shrinkage statistics. More generally, multilevel models give raise to
potentially more efficient strategies than those considered here, at the
price of increased computational expense, for example by MCMC of
MCEM. Systematic exploration of those in the thousands of data sets
considered here would have been impractical. However, our results
suggest that that appropriate shrinkage is a critical part of gene selection
and this will hopefully encourage practitioners to consider these more
computing intensive approaches as well.
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e Figure 26 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 27 Heat map, the summary of pairwise comparison among all statistics

e Figure 28 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 29 Heat map, the summary of pairwise comparison among all statistics

e Figure 30 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 31 Heat map, the summary of pairwise comparison among all statistics

e Figure 32 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 33 Heat map, the summary of pairwise comparison among all statistics

e Figure 34 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 35 Heat map, the summary of pairwise comparison among all statistics
e Figure 36 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model
(d) Complete Conjugacy model
i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 37 Heat map, the summary of pairwise comparison among all statistics

e Figure 38 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters



e Figure 39 Heat map, the summary of pairwise comparison among all statistics

e Figure 40 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 41 Heat map, the summary of pairwise comparison among all statistics

e Figure 42 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 43 Heat map, the summary of pairwise comparison among all statistics

e Figure 44 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 45 Heat map, the summary of pairwise comparison among all statistics

e Figure 46 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 47 Heat map, the summary of pairwise comparison among all statistics

e Figure 48 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

2. Number of replicates equal to 10

(a) Independence model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 49 Heat map, the summary of pairwise comparison among all statistics

e Figure 50 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 51 Heat map, the summary of pairwise comparison among all statistics

e Figure 52 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 53 Heat map, the summary of pairwise comparison among all statistics

e Figure 54 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 55 Heat map, the summary of pairwise comparison among all statistics

e Figure 56 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 57 Heat map, the summary of pairwise comparison among all statistics

e Figure 58 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters



e Figure 59 Heat map, the summary of pairwise comparison among all statistics
e Figure 60 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model
(b) Independence of Signal and Noise model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 61 Heat map, the summary of pairwise comparison among all statistics

e Figure 62 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 63 Heat map, the summary of pairwise comparison among all statistics

e Figure 64 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 65 Heat map, the summary of pairwise comparison among all statistics

e Figure 66 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 67 Heat map, the summary of pairwise comparison among all statistics

e Figure 68 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 69 Heat map, the summary of pairwise comparison among all statistics

e Figure 70 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 71 Heat map, the summary of pairwise comparison among all statistics
e Figure 72 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model
(¢) Independence of Abundance and Noise model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 73 Heat map, the summary of pairwise comparison among all statistics

e Figure 74 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 75 Heat map, the summary of pairwise comparison among all statistics

e Figure 76 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 77 Heat map, the summary of pairwise comparison among all statistics

e Figure 78 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 79 Heat map, the summary of pairwise comparison among all statistics



e Figure 80 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 81 Heat map, the summary of pairwise comparison among all statistics

e Figure 82 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 83 Heat map, the summary of pairwise comparison among all statistics
e Figure 84 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model
(d) Complete Conjugacy model
i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 85 Heat map, the summary of pairwise comparison among all statistics

e Figure 86 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 87 Heat map, the summary of pairwise comparison among all statistics

e Figure 88 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 89 Heat map, the summary of pairwise comparison among all statistics

e Figure 90 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 91 Heat map, the summary of pairwise comparison among all statistics

e Figure 92 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 93 Heat map, the summary of pairwise comparison among all statistics

e Figure 94 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
e Figure 95 Heat map, the summary of pairwise comparison among all statistics

e Figure 96 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

3. Number of replicates equal to 100

(a) Independence model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 97 Heat map, the summary of pairwise comparison among all statistics

e Figure 98 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters



e Figure 99 Heat map, the summary of pairwise comparison among all statistics

e Figure 100 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 101 Heat map, the summary of pairwise comparison among all statistics

e Figure 102 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 103 Heat map, the summary of pairwise comparison among all statistics

e Figure 104 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 105 Heat map, the summary of pairwise comparison among all statistics

e Figure 106 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 107 Heat map, the summary of pairwise comparison among all statistics
e Figure 108 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model
(b) Independence of Signal and Noise model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 109 Heat map, the summary of pairwise comparison among all statistics

e Figure 110 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 111 Heat map, the summary of pairwise comparison among all statistics

e Figure 112 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 113 Heat map, the summary of pairwise comparison among all statistics

e Figure 114 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 115 Heat map, the summary of pairwise comparison among all statistics

e Figure 116 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 117 Heat map, the summary of pairwise comparison among all statistics

e Figure 118 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 119 Heat map, the summary of pairwise comparison among all statistics



e Figure 120 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

(¢) Independence of Abundance and Noise model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 121 Heat map, the summary of pairwise comparison among all statistics

e Figure 122 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 123 Heat map, the summary of pairwise comparison among all statistics

e Figure 124 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 125 Heat map, the summary of pairwise comparison among all statistics

e Figure 126 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 127 Heat map, the summary of pairwise comparison among all statistics

e Figure 128 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 129 Heat map, the summary of pairwise comparison among all statistics

e Figure 130 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 131 Heat map, the summary of pairwise comparison among all statistics
e Figure 132 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model
(d) Complete Conjugacy model

i. Top 1% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 133 Heat map, the summary of pairwise comparison among all statistics

e Figure 134 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 135 Heat map, the summary of pairwise comparison among all statistics

e Figure 136 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 137 Heat map, the summary of pairwise comparison among all statistics

e Figure 138 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

e Figure 139 Heat map, the summary of pairwise comparison among all statistics



e Figure 140 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes
A. Hyperparameters estimated by mothod of moment
e Figure 141 Heat map, the summary of pairwise comparison among all statistics

e Figure 142 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters
e Figure 143 Heat map, the summary of pairwise comparison among all statistics

e Figure 144 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model



1.2 Compare the difference between two definitions of CC. TP and CC.BF

1. Number of replicates equal to 3

(a) Figure 145 Top 1% genes are differential genes
(b) Figure 146 Top 2% genes are differential genes
(¢) Figure 147 Top 10% genes are differential genes

2. Number of replicates equal to 10

(a) Figure 148 Top 1% genes are differential genes
(b) Figure 149 Top 2% genes are differential genes
(¢) Figure 150 Top 10% genes are differential genes

3. Number of replicates equal to 100

(a) Figure 151 Top 1% genes are differential genes
(b) Figure 152 Top 2% genes are differential genes
(c¢) Figure 153 Top 10% genes are differential genes

1.3 Diagnostic plot of counter intuitive result from CC model

1. Compare CC.TP to IC.TP, CC.BF to IC.BF when data are simulated from CC model

(a) Number of replicates equal to 3

i. Figure 154 Top 1% genes are differential genes
ii. Figure 155 Top 2% genes are differential genes
iii. Figure 156 Top 10% genes are differential genes

(b) Number of replicates equal to 10

i. Figure 157 Top 1% genes are differential genes
ii. Figure 158 Top 2% genes are differential genes
iii. Figure 159 Top 10% genes are differential genes

(¢) Number of replicates equal to 100

i. Figure 160 Top 1% genes are differential genes
ii. Figure 161 Top 2% genes are differential genes
iii. Figure 162 Top 10% genes are differential genes

2. Diagnostic plot of data simulated from CC model

(a) Figure 163 IC. TP does better than CC.TP
(b) Figure 164 CC.TP does better than IC.TP

3. Diagnostic plot of data simulated from IC model

(a) Figure 165 IC. TP does better than CC.TP
(b) Figure 166 CC.TP does better than IC.TP
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Figure 1: Heat map summary for simulations based on Independence model with number of replicates equal

to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 2: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 3: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 4: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 5: Heat map summary for simulations based on Independence model with number of replicates equal
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to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 6: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 7: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with true

hyperparameters plugged in.
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Figure 8: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 9: Heat map summary for simulations based on Independence model with number of replicates equal
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to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 10: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 11: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated with

true hyperparameters plugged in.
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Figure 12: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 13: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 14: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 15: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
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models are calculated with true hyperparameters plugged in.
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Figure 16: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 17: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 18: The best statistics among all 18 statistics are selected and compared to the simple T statistics

and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 19: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 20: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 21: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 22: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 23: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 24: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 25: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated

by method of moments.

35



FLI:0 245 Pz 50 u TR ] i
MY 751 MY 751 N T ;
o ::.
T L 3
: !
sl P
. PL:0 752 : ; LIS el
M0 747 M0 763 M0 765
2 l; o b i
FUa 957 b FU:0 555 S Puiaser :
M MY:0 747 | mvoae e
2 R 1 ]
: SAM | 5
] 7 ol
it 1 =1
PL:0 M3 4T LI PLEss
Mt 59 M0 763 M0 765
Ay v T
: Sy
P 355 - P 0 564 &=
MY 55 MY:0 763 .
PL:0 10 PL:0 167 A PL:0 529
Mz 69 M0 347 M0 765
PUCR0E P 0 457 TP
Mo gz MY 52
PL:0 094 PL:0 293 FL:DAET
Biik: 0 544 Bii:0 747 B0 516 CCTP

Figure 26: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 27: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 28: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 29: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 30: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 31: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 32: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with

number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 33: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 34: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 35: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 36: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 37: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 38: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 39: Heat map summary for simulations based on Complete Conjugacy model with number of replicates

equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated

with true hyperparameters plugged in.
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Figure 40: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 41: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 42: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 43: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 44: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 45: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 46: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 47: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 48: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 49: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 50: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 51: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with

true hyperparameters plugged in.
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Figure 52: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 53: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 54: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 55: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with

true hyperparameters plugged in.
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Figure 56: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates

equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 57: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 58: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 59: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 60: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 61: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 62: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 63: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
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models are calculated with true hyperparameters plugged in.
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Figure 64: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 65: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 66: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 67: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 68: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 69: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 70: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 71: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 72: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 73: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 74: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 75: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 76: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with

number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.

86



] . CCEF

I
H-BAREEEEEEERE NN
B - - B
v wn v oo [l o o o [ e o e
EEEEEEEEN - BN -EEEEE

Figure 77: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 78: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.

88



Il NEEENEEEEE - =
B -

| IR R Rl R
HEEE BN -EEEEEEN - - -
HEEEEN-EEE-EH-- - EEEE
EEEE"-EN - N -HAEER
B - O R R
HEEEEEE - EEEAREE -
EEEEERENE- BN -HEEN
HE-BFEEEE"AEE EEEEE
B - - R R
EEEEEEEEEENE-EENE - - -
HEEEEEEE“HEEN-EEEE
HEEERF-FESEEE-EAEEN
EEEEEN EEEEEEN - =S
FEEEEEEESEE NS - W
1 R
EEEEEREE R EE o

Figure 79: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 80: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 81: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 82: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with

number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 83: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 84: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 85: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 86: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 87: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 88: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 89: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 90: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 91: Heat map summary for simulations based on Complete Conjugacy model with number of replicates

equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated

with true hyperparameters plugged in.
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Figure 92: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated

with true hyperparameters plugged in.
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Hyperparameters are estimated by method of

Figure 93: Heat map summary for simulations based on Complete Conjugacy model with number of replicates

equal to 10 and top 10% genes to be differential genes.

moments.
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Figure 94: The best statistics among all 18 statistics are selected and compared to the simple T statistics
This is the result of simulation based on Complete Conjugacy model with number of

and SAM score.
replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method

of moments.
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Figure 95: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated

with true hyperparameters plugged in.

105




B ﬁ‘ﬂi‘;‘f‘ _.-
FUC0 265 FUz0 261 FULC0 561
b0 755 b0 755 k20 755 3
FL:0ME FL:0 755 FL:0 553
hit:0 755 bz 0 754 Ms:0 765
/ £ *‘ﬁl';f‘ g
IR FUz0 2 FU:0 576
b0 757 W0 755 W0 755 ;
o
FL:0 0 FL:0 704 FL:0 Fizd
Wiz0 227 btz 0 754 Bis:0 755
L «‘&II‘-‘f K
PU i i PU 0 574 | BF PU 0 415
W0 557 W0 557 b0 754 )
i
FL:0 033 FL:0126 FL:0 364
B0 727 B0 757 CC TP B0 745

Figure 96: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 97: Heat map summary for simulations based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 98: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 99: Heat map summary for simulations based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 100: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 101: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes.
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and SAM score. This is the result of simulation based on Independence model with number of replicates equal

Figure 102: The best statistics among all 18 statistics are selected and compared to the simple T statistics
to 100 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 103: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 104: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 105: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated by method of
moments.
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Figure 106: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 107: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 108: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 109: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 110: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 111: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel
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Figure 112: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 113: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated

Figure 114: The best statistics among all 18 statistics are selected and compared to the simple T statistics
by method of moments.
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Figure 115: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel
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and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel

Figure 116: The best statistics among all 18 statistics are selected and compared to the simple T statistics
models are calculated with true hyperparameters plugged in.
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Figure 117: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 118: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 119: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 120: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 121: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated

by method of moments.

=
=

-0 ng

B . B ....

131

CIF

=

=

=
=
=

clr -0z -hnz
CLIF

CIEF

. c ...

=

=
o
=

o
= Lrl
-

CCEF

o
Lxl =
o




FL:0 AT FU:02M
MY 0 52T M0 527
FL:0 FL:0 F54
M0 525 M0 555
IR FL:0 225
MY 0 525 MY S0 525
. SAM
3 7
:: FL:0 NG FL:0TY
kA0 TEG BAY 0 ESS
FLI0 235 P FL0 834 R | BF
IRET : WY 20 85 y
FL:0 00 FL:0 07
B0 756 B0 52 |G TP

Figure 122: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with

number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 123: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel

models are calculated with true hyperparameters plugged in.
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Figure 124: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 125: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated

by method of moments.
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Figure 126: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 127: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel
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Figure 128: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 129: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 130: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 131: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel
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models are calculated with true hyperparameters plugged in.
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Figure 132: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 133: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method

of moments.
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Figure 134: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 135: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 136: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 137: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated by method

of moments.
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Figure 138: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method
of moments.

148



ILTF

-4

-0 NG

=
n

=
=

=
=
=

-0

=
=
o

o
=

=
=

clr

CLIF

o
Lxl
o

CCIF

o
&
=

Figure 139: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 140: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 141: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 142: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 143: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 144: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 145: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out O'S (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 146: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out O'S (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 147: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out O'S (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 148: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out 0'3 (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 149: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out 0'3 (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 150: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out 0'3 (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 151: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out O'S (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 152: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out 0'3 (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 153: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of d, with posterior mode of 05 plugged in (X axis), the other based on marginal
posterior of J, integrating out 0'3 (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.

163



IC.BF

Ranked by ratio Ranked by signal

= | pu. 047 = | puoas S 4
MY 0.75 . WY 0,017
o
=
)
= _| = _|
PL: 0533 PL: (.43
o ] M 0,744 o ] M 0,805
| [ | | | | | [ | | | |
00 02 04 0F 08 10 00 02 04 0F 08 10
CCBF coTP

Figure 154: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 1% genes are differential genes.
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Figure 155: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 2% genes are differential genes.
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Figure 156: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 10% genes are differential genes.
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Figure 157: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 1% genes are differential genes.
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Figure 158: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 2% genes are differential genes.
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Figure 159: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 10% genes are differential genes.
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Figure 160: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 1% genes are differential genes.
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Figure 161: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 2% genes are differential genes.
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Figure 162: IC. TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 10% genes are differential genes.
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Figure 163: Diagnostic of the counter intuitive result that IC. TP outperforms CC.TP on data simulated from
Complete Conjugacy model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP for all
data sets simulated from Complete Conjugacy model. Most of the time, IC.TP does equally well as CC.TP.
There are cases (red and green points) that IC.TP does significantly better than CC.TP. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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Figure 164: Diagnostic of the counter intuitive result that IC. TP outperforms CC.TP on data simulated from
Complete Conjugacy model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP for all
data sets simulated from Complete Conjugacy model. Most of the time, IC. TP does equally well as CC.TP.
The red points indicate cases when CC.TP does better than IC.TP. The green points is the case where the
difference between CC.TP and IC.TP is maximized. The hyperparamter space in log scale are plotted in
the second and third graph on the top row. Red and green points are mapped into these two graphs. The
diagnostic plot of data simulated from Complete Conjugacy model with the worse hyperparamter senario
(green case) are plotted in the second row. The three boxplots show the relationship between abundance
and noise, the relationship between signal and noise and the relationship between abundance and noise
respectively. Red points in the second row are the genes with large signal.
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Figure 165: Same plot as Figure 7?7 except that simulation is done based on Independence of Abundance
and Noise model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP. Most of the time,
IC.TP does equally well as CC.TP. The red points indicate cases when IC. TP does better than CC.TP. The
green points is the case where the difference between IC. TP and CC.TP is maximized. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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Figure 166: Same plot as Figure 7?7 except that simulation is done based on Independence of Abundance
and Noise model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP. Most of the time,
IC.TP does equally well as CC.TP. The red points indicate cases when CC.TP does better than IC.TP. The
green points is the case where the difference between CC.TP and IC.TP is maximized. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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