Self-adjointness, Group Classification and Conservation Laws of an Extended Camassa-Holm Equation

Nadjafikhah M* and Pourrostami N2

1Department of Pure Mathematics, School of Mathematics, Iran University of Science and Technology, Narmak-16, Tehran, Iran
2Department of Complementary Education, Payam Noor University, Tehran, Iran

Abstract

In this paper, we prove that equation \(E = u_t - u_{x} + u_{x} + f(u) - auu_{x} - buu_{x} = 0 \) is self-adjoint and quasi self-adjoint, then we construct conservation laws for this equation using its symmetries. We investigate a symmetry classification of this nonlinear third order partial differential equation, where \(f \) is smooth function on \(u \) and \(a, b \) are arbitrary constants. We find Three special cases of this equation, using the Lie group method.

Keywords: Lie symmetry analysis; Self-adjoint; Quasi self-adjoint; Conservation laws; Camassa-Holm equation; Degas peris-Procesi equation; Fornberg whitham equation; BBM equation

Introduction

A new procedure for constructing conservation laws was developed by Ibragimov [1]. For Camassa-Holm equation are calculated in studies of Ibragimov, Khamitova and Valenti [2]. In this paper, we study the following third-order nonlinear equation

\[E = u_t - u_{x} + u_{x} + f(u) - auu_{x} - buu_{x} = 0, \]
and we show that this equation is self-adjoint and quasi self-adjoint. Therefore we find Lie symmetries and conservation laws. There are three cases to consider: 1) \(b = 0, a = \) arbitrary constant, 2) \(b = 0, a = 0 \), and 3) \(b = a = 0 \). Clarkson, Mansfield and Priestly [3] are concerned with the problem of determining symmetries of the non-linear third order partial differential equation given by

\[u_t - u_{x} + (k + 3)u_{x} = auu_{x} + buu_{x} = 0, \]
where \(a, k \), and \(\beta \) are arbitrary constants. Symmetry classification and conservation laws for higher order Camassa-Holm equation are calculated in framework of Nadjafikhah and Shirvani-Sh [4].

The special cases of (1) are:

Camassa-Holm (CH) equation \(u_t - u_{x} + (k + 3)u_{x} = auu_{x} + buu_{x} \), \(k \)-arbitrary (real), describing the unidirectional propagation of shallow water waves over a flat bottom (let \(k = 3, a = 2, b = 1 \) in (1)).

Degas peris-Procesi (DP) equation \(u_t - u_{x} + (k + 4)u_{x} = auu_{x} + buu_{x} \), \(k \)-arbitrary (real), is another equation of this class (let \(f = k + 4, a = 3, b = 1 \) in (1)).

Fornberg Whitham (FW) equation \(u_t - u_{x} + (1 + u)_{x} = auu_{x} + buu_{x} \), \(a \) and \(b \) are arbitrary constans.

BBM equation \(u_t - u_{x} + u_{x} + (uu_{x}) = 0 \), is another equation of this class (let \(f = 1 + u, a = 0, b = 0 \) in (1)).

Preliminaries

In this section, we recall the procedure to literature of Ibragimov [1]. Let us introduce the formal Lagrangian

\[L = vE, \]

where \(v = v(t, x) \) is a new dependent variable.

We define the adjoint equation by \(E^* = \frac{\delta L}{\delta u} = 0 \). Here

\[\frac{\delta}{\delta u} = \frac{\partial}{\partial u} + D_x \frac{\partial}{\partial u_x} + D_{xx} \frac{\partial}{\partial u_{xx}} - D_{xxx} \frac{\partial}{\partial u_{xxx}} + \cdots i, j, k = 1, 2, \]

is the variational derivative and \(D_x \) is the operator of total differentiation.

An equation \(E = 0 \) is said to be self-adjoint [5] if the equation obtained from the adjoint equation by substitution \(v = u \) is identical with the original equation.

An equation \(E = 0 \) is said to be quasi- self-adjoint [5] if there exists a function \(v = \phi(u) \), \(\phi(u) \neq 0 \) such that \(E^* \) has an undetermined coefficient \(\lambda \). Eq.(1) is said to have a nonlocal conservation law if there exits a vector \(C = (C^i, C^j) \) satisfying the equation

\[D^i(C^i) + D_j(C^j) = 0, \]

on any solution of the system of differential equations comprising (E) and the adjoint equation (\(E^* \)). We say that orginal equation has a local conservation law if (3) is satisfied on any solution of Eq.(1). In studies of Ibragimov [1], the conserved vector associated with the Lie point symmetry \(v = \xi(x, t, u)\partial_x + \eta(x, t, u)\partial_u \) is obtained by the following formula:

\[C^i = \xi^i + W^i_j \frac{\partial \xi^j}{\partial u_{i}} \frac{\partial}{\partial u} - D_{j} \frac{\partial \psi}{\partial u_{j}} - D_{ij} \frac{\partial \psi}{\partial u_{ij}} \]

+ \frac{\partial D_j(W)\partial \psi}{\partial u_{ij}} + D_{ij} \frac{\partial \psi}{\partial u_{ij}}, \]

where \(i, j, k = 2, 1 \) and \(W = \psi - \phi \). (Here \(\partial_x \) means \(\frac{\delta}{\delta x} \).)

We recall the general procedure for determining symmetries for an arbitrary system of partial differential equations [6]. Let us consider the general system of a nonlinear system of partial differential equations of order \(n \), containing \(p \) independent and \(q \) dependent variables is given as follows

\[\Delta_p(x, u^{(m)}) = 0, \quad v = 1, \ldots, l, \]

*Corresponding authors: Nadjafikhah M, Department of Pure Mathematics, School of Mathematics, Iran University of Science and Technology, Narmak-16, Tehran, Iran, Tel: +98 2173225426; Fax: +982173228426; E-mail: m_nadjafikhah@just.ac.ir

Received April 21, 2015; Accepted December 22, 2015; Published December 24, 2015

Copyright: © 2015 Nadjafikhah M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
involving \(x = (x^1, \ldots, x^r) \), \(u = (u^1, \ldots, u^n) \) and the derivatives of \(u \) with respect to \(x \) up to \(n \), where \(u^{(n)} \) represents all the derivatives of \(u \) of all orders from 0 to \(n \). We consider a one-parameter Lie group of transformations acting on the variables of system (5):

\[
\pi^i = x^i + \xi^i(x, u) + O(\varepsilon^2), \quad \pi^a = u^a + \phi^a(x, u) + O(\varepsilon^2),
\]

where \(i = 1, \ldots, r, \) \(a = 1, \ldots, n \), \(\xi^i \) and \(\phi^a \) are the infinitesimals of the transformations for the independent and dependent variables, respectively, and \(\varepsilon \) is the parameter of the transformation. We consider the general vector field \(v \) as the infinitesimal generator associated with the above group

\[
v = \sum_i \xi_i^i(x, u) \partial_i + \sum_a \phi^a(x, u) \partial_a.
\]

where \(v \) is called the \(n \)th order prolongation of the infinitesimal generator given by \(v^\varepsilon = v + \sum_k \sum_i [\phi^i(x, u^\varepsilon)] \partial_{\varepsilon^k} \partial_i \), where \(k = (i_1, \ldots, i_k) \), \(1 \leq i_k \leq p \), \(1 \leq a \leq n \), and the sum is over all \(k \)’s of order \(0 < k \leq n \). If \(k = a \), the coefficient \(\phi_a \) of \(\partial_\varepsilon^a \) will depend only on \(\varepsilon \)th and lower order derivatives of \(u \) and \(\phi^1(x, u^\varepsilon) = D_1(\phi) - \sum_k [\xi^1(x, u^\varepsilon)] + \sum_k [\partial_{\varepsilon^a}], \) where \(\varepsilon \) is the normal coordinate for \(x \)

where \(\varepsilon \leq 1 \) the group parameter and \(\xi^1 = \xi^1, \xi^2 = \varepsilon \) and \(\phi^1 = \phi \) are the infinitesimals of the transformations for the independent and dependent variables respectively. The associated vector fields is of the form

\[
\phi^1(x, u^\varepsilon) + \phi^2(x, u^\varepsilon) + \phi^3(x, u^\varepsilon) + \phi^4(x, u^\varepsilon) \partial_\varepsilon^2 + \phi^5(x, u^\varepsilon) \partial_\varepsilon^3 + \phi^6(x, u^\varepsilon) \partial_\varepsilon^4 + \phi^7(x, u^\varepsilon) \partial_\varepsilon^5 + \phi^8(x, u^\varepsilon) \partial_\varepsilon^6,
\]

with coefficient

\[
\phi^i = D_1(\phi) - \sum_k [\xi^1(x, u^\varepsilon)] + \sum_k [\partial_{\varepsilon^a}],
\]

(11)

where \(D_1 \) is the total derivative with respect to independent variables. The invariance condition (6) for Eq. (1) is given by,

\[
v^\varepsilon([u, -u_{\varepsilon^1} + af - au_{\varepsilon^2} - bu_{\varepsilon^3}]) = 0,
\]

(12)

whenever \(E = 0 \). The condition (12) is equivalent to

\[
\phi_{\varepsilon^1} - bu_{\varepsilon^3} + (f - au_{\varepsilon^2}) - bu_{\varepsilon^3} - bu_{\varepsilon^3} = 0,
\]

(13)

whenever \(E = 0 \). Substituting (11) into (13), yields the determining equations. There are three cases to consider:

\[a \text{ and } b \neq 0 \text{ are arbitrary constants} \]

In this case, complete set of determining equation is:

\[
q_2 = 0,
\]

(14)

\[r_1 = 0, \]

(15)

\[\phi_2 = 0, \]

(16)

\[\phi_{\varepsilon^2} + \phi_{\varepsilon^3} + 3\phi_{\varepsilon^4} = 0, \]

(17)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(18)

\[3\phi_{\varepsilon^4} + 3\phi_{\varepsilon^5} - 2\phi_{\varepsilon^6} = 0, \]

(19)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(20)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(21)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(22)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(23)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(24)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0, \]

(25)

\[\phi_{\varepsilon^3} + 2\phi_{\varepsilon^4} = 0. \]

(26)

With substituting (26) into (24) – (25) we have

\[f = -1 + K(bu_1 + 1), \]

(27)

where \(c_1, c_2 \) and \(K \) are arbitrary constants. With substituting (27) into determining system, we have

\[\phi = \frac{-c_1(bu_1 + 1)}{b}, \]

(28)

\[\tau = c_1 + c_2, \]

(29)

\[\tau = c_1 + c_2. \]

(30)

where \(c_1, c_2 \) and \(K \) are arbitrary constants. With substituting (27) into determining system, we have

\[\phi = -c_1(bu_1 + 1), \]

(31)

\[\tau = c_1 + c_2, \]

(32)

\[\tau = c_1 + c_2. \]

(33)

Theorem 3.1.1. Infinitesimal generators of every one parameter Lie group of point symmetries in this case are

\[
v_1 = -t \partial_1 + \xi^{(1)}(t), \quad \xi^{(2)} = \xi^{(1)}(t), \quad \xi^{(3)} = \alpha(t).
\]

(34)

With substituting (34) into (33) we have

\[
v_1 = \frac{-t}{b} \partial_1 + \frac{(bu_1 + 1)}{b} \partial_2.
\]

(35)

We want to construct the conservation law associated with the symmetry

\[
v_1 = -t \partial_1 + t \partial_2.
\]

(36)
We have
\[W = u - \frac{1}{b} tu + tu'. \]
Thus, the expression for the conserved vector with\(a = 0 \) becomes
\[\xi_v^0 = 0, \quad r_v^0 = 0, \quad \tau_v^0 = 0, \quad f_u^0 + \beta = 0. \]

Now, by considering Eq. (33) – (42) it is not hard to find that the components \(\xi, \tau, b \) of infinitesimal generators become
\[\phi = \frac{dF(t)}{dt} = \frac{d^2F(t)}{dt^2} + F(t), \quad \tau = -F(t) + c_2, \quad \xi = c_1. \]

To find complete solution of the above system, we consider Eq. (43) and \(l = \dim \text{Span}_a(f_u^0 + \beta^1) \). Three general cases are possible:

3.2.i) \(l = 1 \), then \(f = \alpha \) constant;
3.2.ii) \(l = 2 \), then \(f = af + \beta \);
3.2.iii) \(l = 3 \), then \(af^b + \beta f + \gamma = 0, \alpha \neq 0 \).

Case 3.2.i). With substituting \(f = \alpha \) constant in determining system (33)–(44), we have \(\varphi = c_1, \tau = c_2, \xi = c_3 \), where \(c_1, c_2, c_3 \) are arbitrary constants.

Theorem 3.2.1. Infinitesimal generators of every one parameter Lie group of point symmetries in this case are:
\[v_1 = \partial_t, \quad v_2 = \partial_u, \quad v_3 = \partial_v. \]

Case 3.2.ii). With integrating from \(f = af + \beta \) with respect to \(u \), we obtain
\[f = -\frac{\beta}{\alpha} + Ce^{\alpha u}, \]
where \(C \) is an integrating constant. With substituting (46) into Eq. (43)–(44) and Eq. (45), we have
\[\xi = c_1, \quad \tau = -c_2, \quad \phi = \frac{c_3(Ca - e^{\alpha u} \beta)}{Ca^2}. \]

Theorem 3.2.2. Infinitesimal generator of every one parameter Lie group of point symmetries in this case is:
\[v = \partial_t - t\partial_u + \frac{Ca - e^{\alpha u} \beta}{Ca^2} \partial_v. \]

Case 3.2.iii). The Eq. (43) leads to \(\varphi = 0, \tau = c_2, \xi = c_3 \).

Theorem 3.2.3. Infinitesimal generators of every one parameter Lie group of point symmetries in this case are:
\[v_1 = \partial_t, \quad v_2 = \partial_u, \quad v_3 = \partial_v. \]
\[b = 0, \quad a = 0. \]

Complete set of determining equation is
\[\xi_v^1 = 0, \quad \tau_v^1 = 0, \quad \xi_v^2 = 0. \]
We find that \(\xi \), \(\tau \) and \(\phi \) are \(\xi = \xi(x), \tau = \tau(x) \) and \(\phi = \phi(x) \). Hence we have two cases possible:

\[
C^2 = -u_x v_x + f u_x v_x + 2u v_x - tu_x v_x - tv_x u_x - 2fu_x v_x + tfu^2 x, \tag{50}
\]

Now, we substitute in (68) and (70) the expression \(v = u \), therefore arrive at the conserved vector with the following components:

\[
C^2 = -cu + cu_x + fu_x v_x + tu_x u_x - tfu_x v_x - tu_x u_x, \tag{69}
\]

\[
C^2 = -cu - u_x u_x + fu_x v_x + 2tu_x u_x - tu_x u_x - 2fu_x v_x + 2tu_x u_x, \tag{70}
\]

where \(f = Le^{ux} \).

Case 3.3.ii) By considering Eq. (49) – (54), we find that the components \(\xi, \tau \) and \(\phi \) are \(\xi = \xi(x), \tau = \tau(x) \) and \(\phi = \phi(x) \). By considering Eq. (55) and (56) we have

\[
\xi = c_0 \exp 2x + c_1 \exp -2x + c_1, \tag{71}
\]

where \(c_i, i = 1, 2, 3 \) are arbitrary constants.

From the following identity:

\[
A(x)u + B(x,t) = \int \frac{f}{L}L = Ku, \tag{72}
\]

we find that \(\xi = c_0 = 0 \) and \(\phi = -(fL)_x \). Hence we have two particular cases:

\[
\frac{f}{L} = Ku, \quad \frac{f}{L} = Ku = g(u), \tag{73}
\]

where \(K \) is an arbitrary nonzero constant. For the first case, we have

\[
\xi = c_0, \quad \tau = c_0 + c_1, \quad \phi = -Ku_x, \tag{74}
\]

and for the second case, we have

\[
\xi = c_0, \quad \tau = c_0 + c_1, \quad \phi = 0. \tag{75}
\]

Theorem 3.2. Infinitesimal generators of every one parameter Lie group of point symmetries in this case, when \(\frac{f}{L} = Ku \) are

\[
v_1 = \partial_x, \quad v_2 = \partial_y, \quad v_3 = -(u_3 + au_1), \tag{76}
\]

and when \(\frac{f}{L} = Ku = g(u) \) are

\[
v_1 = \partial_x, \quad v_2 = \partial_y, \quad v_3 = -(u_3 + au_1), \tag{77}
\]

where \(K \) is an arbitrary nonzero constant.

To construct the conservation law associated with the symmetry \(v = \partial_x, -au_1 \), we find that \(W = -u \). Therefore, we have the conserved vector with the following components:

\[
C^1 = u^2 + au_x - tu_x u_x + tu_x u_x - fu_x u_x + fu_x u_x - fu_x u_x, \tag{78}
\]

\[
C^1 = -u^2 + au_x - tu_x u_x + tu_x u_x - fu_x u_x + fu_x u_x - fu_x u_x, \tag{79}
\]

\[
C^1 = -u^2 - fu_x u_x + fu_x u_x - fu_x u_x - fu_x u_x + fu_x u_x - fu_x u_x, \tag{80}
\]

where \(f = Le^{ux} \).

Acknowledgements

The authors wish to express their sincere gratitude to Prof. N.H. Ibragimov for his useful advice and suggestions and helpful comments.
References