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Introduction
For a long time, solutions of polynomial equations of higher order 

have been dealt with either graphically or analytically [1].  The works of 
Abel and Galois have shown that the general polynomial equations of 
degree higher than the fourth cannot be solved in radicals [2].   While 
Abel published the proof of impossibility of solving these equations 
(Abel's impossibility theorem), Galois gave a more rigorous proof 
using the group theory. This does not mean that there is no algebraic 
solution to the general polynomial equations of degree five and above 
[3]. In fact these equations are solved algebraically by employing 
symbolic coefficients: the general quintic is solved by using the Bring 
radicals, while the general sextic can be solved in terms of Kampe de 
Feriet functions [4].

Under certain limited conditions concerning the coefficients and 
roots, Kulkarni described a method to decompose the given sextic 
equation into two cubic polynomials as factors. The cubic polynomials 
are then equated to zero and solved to obtain the six roots of the sextic 
equation in radicals [5].

This paper introduces a straightforward and accurate solution for 
sextic polynomial equation of two real roots involving an analytical-
graphical analysis. The related polynomial characterizes the geometrical 
model of a common problem in geodesy which is the geodetic height 
[6]. Therefore, we pursue the solution of sextic polynomial equation 
of two real roots originated accordingly from the geodetic height 
problem.  

Such a model symbolizes the coordinates of two foot points of 
the two normals from a point on the irregular surface of the earth 
(terrain) to the triaxial ellipsoidal surface as the earth’s model [7]. This 
has been yielded  two curves characterize the locii of the traces of the 
normals from the terrain point to the surface circular sections whose 
intersections are the desired two foot points. 

The graphical solution was granted and considered to identify such 
locii and, consequently, their intersections whose coordinates may 
be exploited as a preliminary estimate of initial values when iterative 
process is considered.

Methodology
The sextic polynomial of interest takes the form:
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and, according to Figure 1, considering a triaxial ellipsoid surface’s 
center as the coordinate system’s origin, aligning z-axis to the polar axis 
direction and x- axis to the east direction, then equation of the surface 
may be expressed as:

(X2/a2) + (Y2/b2) + (Z2/c2) = 1			   (2)

Such reference surface has dimensions (a) along the semi-major 
axis (x-axis), (b) along the semi-minor axis (y-axis) and (c) along the 
polar axis (z-axis), and a>b>c (Figure 1).

There are six normals from E to the reference surface [6-8], four of 
which are imaginary and two are real. The two normals from the terrain 
point E(XE, YE, ZE), Figure 2, to the reference surface has two foot points 
P of coordinates (XP, YP, ZP,), one of them gives the minimum distance 
from E to the surface, i. e. the geodetic height [6].  

The evaluation of the model relies absolutely on the location of the 
terrain point E and the size of the reference surface as well (Figure 2).

The foot points P may be located graphically as the points of 
intersection of two curves µ and η, each of which is the locus of the 
normals from E to a set of circular sections of the surface. The technique 
traced for constructing µ, η. Coordinates of P is utilized as follows.

In Figure 2, PE is the normal from E to the surface, and then the 
parametric coordinates of P are:

XP = XE/t 

YP = YE(1−e1
2)/(t – e1

2)
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Abstract
Zeros of polynomial equations are analytically hard to be determined beyond the special cases of the quartic 

equations. Under some particular conditions, quintic and sextic polynomial equations may be solved iteratively.

This paper presents analytical-graphical solution for accomplishing zeros of particular sextic polynomial equation 
of two real zeros. The concerned polynomial has been modeled geometrically as the radical problem in geodesy 
which is the geodetic height of a point on the terrain surface of the earth. The earth’s model to be adopted is the 
triaxial ellipsoidal surface.

The achieved solution may be utilized as initial values for a convenient and convergent iterative process.
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ZP = ZE(1− e2
2)/(t – e2

2)				                  (3)

Where, when applying "3" to "2",  t stands for the roots of "1",  e1  
is the equatorial eccentricity, and  e2

2  is the polar eccentricity, where:

e1
2 = 1− (b2/a2)					                       (4)

and:

e2
2 = 1− (c2/a2)					                   (5)

Substituting these coordinates into the equation of the surface 
(Equation "2") and comparing the coefficients of the resulting equation 
with the coefficients of "1", then:

a6 = 1						                   (6)

a5 = −2 e1
2 −2 e2

2				                   (7)

a4 = − F2 + e2
4 + e1

4 + 4 e1
2 e2

2 – G2 − e1
2 G2 − H2 + e2

2 H2                                 (8)

a3 = 2 e2
2 F2 + 2 e1

2 F2 − 2 e1
2 e2

4 − 2e1
4 e2

2 + 2 e2
2 G2 − 2 e1

2 e2
2 G2 + 2 

e1
2 H2 − 2 e1

2 e2
2 H2				�     (9)  

a2 =−e2
4 F2 – e1

4 F2 − 4 e1
2 e2

2 F2 + e1
4 e2

4 − e2
4 G2 + e1

2 e2
4 G2 − e1

4 H2 
+ e1

4 e2
2 H2					                 (10)

a1 = 2 e1
2 e2

4 F2 + 2 e1
4 e2

4 F2			              (11) 

a0 = − e1
4 e2

4 F2	 	  			                (12)

 where: 

F2 = XE
2/a2					                  (13)

G2 = YE
2/b2					                      (14)

H2 = ZE
2/c2                                                                (15)                                      

Solving "6" to "15" in terms of a0, a1, a3, a4 and a5 yields:

e1
2 = −(a5/4) – ε                                                    		             (16)

e2
2 = −(a5/4) + ε                                                               	             (17)

F2 = − a1
2/(a0 a5

2)                                                              	            (18)

G2 = [α / (4(1 − e1
2))] + [β / (4ε (1− e1

2))]                                            (19)

H2 = [α / (4(1 – e2
2))] − [β / (4ε (1− e2

2))]                                           (20)

where:

ε = [(a5
2 / 16) – (a0 a5 / a1)]1/2                                                                 (21)

α = (2 a1
2 / (a0 a5

2)) + (a5
2 / 2) + (4 a0 a5 / a1) – 2 a4                                        (22)

β = − (a4 a5/2) + a3 – (a1
2 / (2 a0 a5)) + a5

3/8                                                  (23)

Assuming a reasonable value for a, then values of b and c can be 
determined in terms of the polynomial coefficients from "16" and "17", as:

b = a (1+ ε + a5/4)1/2                                                                             (24)

c = a (1 − ε + a5/4)1/2                                                                              (25)

Also, values of XE, YE, and ZE can be obtained in terms of the 
polynomial coefficients from "13" through "15".

Now, to obtain the desired roots t (from Equation "3"), we seek 
the foot point P(XP , YP , ZP  ) which, as previously mentioned, may be 
located graphically as the points of intersection of two curves µ and η, 
each of which is the locus of points of intersection between normals 
from E to a set of circular sections,  with these sections. The technique 
traced for constructing µ, η and coordinates of P is utilized as follows.

Figure 3 displays a significant aspect associated with the triaxial 
ellipsoidal surface that is the circular sections. There exist two sets 
of such sections [8]. The first set of these sections is generated as the 
intersections of the surface with a set of parallel planes whose equations 
are (Figure 3):

Z = (X – δ )[c2 (a2 – b2) / (a2(b2 – c2))]1/2                                               (26)

where δ is the length along x -axis traced by the planes (Figure 4). 
These planes are parallel to planes tangent to the surface at the umbilic 
points U1 and U2 whose coordinates are (Figure 4):

(U1, U2) = (± a [(a2 – b2) / (a2– c2)]1/2, 0,   c [(b2 – c2) /  
(a2– c2)]1/2)               					               (27)

The locus of these centers is a line joining U1 and U2 and its equation 
is:

Z = − X [c2 (b2 – c2) / (a2(a2 – b2))]1/2                                               (28)

and the centers of the circles are:

C1 = (± δ (a2 – b2) / (a2 – c2), 0,   δ c (a2 – b2)1/2(b2 – c2)1/2/ 
(a(a2 – c2)))                	                                                                  (29) 

Similarly, the other set of the circular sections are generated by 
intersecting the surface with the parallel planes of equations:

Figure 1:  Coordinate Reference System.

Figure 2:  Geodetic Height Model.
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Z = − (X – δ)[c2 (a2 – b2) / (a2(b2 – c2))]1/2                                       (30)

whose corresponding umbilics U3 and U4  are of coordinates:

(U3, U4) = (± a [(a2 – b2) / (a2– c2)]1/2, 0, ± c [(b2 – c2)/  
(a2– c2)]1/2)                  				                (31)

The locus of these centers is a line joining U3 and U4 whose equation is:

Z = X [c2 (b2 – c2) / (a2(a2 – b2))]1/2                                                      (32)

and the centers of the circles are:

C2 = (± δ (a2 – b2) / (a2 – c2), 0, ± δ c (a2 – b2)1/2(b2 – c2)1/2/(a(a2 – 
c2)))						                   (33) 

Radii of the circles (r), in terms of (δ), are:

r = b [1 – (δ2 (a2 – b2)/ a2(a2 – c2))]1/2                                               (34)

Employing these circular sections, the graphical representation of 
the model produces the foot points P1 and P2. This may be practiced 
using the auxiliary orthogonal projection (Mongean Projection) of the 
circular sections onto an auxiliary plane parallel to the circles' planes 
(Figure 5). In such projection, the circles are projected as circles and, 
consequently, the projection of any line normal to any circle is projected 
as the line joining the projection of E (E1 or E2) and the projection of the 
center of the circle. The line joins points of intersection of the normals 
to the circles are a curve μ and η (Figure 5).

Obviously, intersection of the two locii of all normals to the two sets 
of circular sections, i. e., μ and η, yields P1 and P2 and, consequently, EP1 
and EP2 are the normals from E to the surface. Substituting coordinates 
of P1 and P2   in "3" gives the two real roots of the polynomial. Either P1 
or P2 is related to the minimum distance from the terrain point E to the 
surface, i.e. the geodetic height. 

Restrictions for Applicability
The above illustrated analysis is applicable only for the desired 

conditions of "1". These conditions arose according to the mutual 

relation between size of the surface and the polynomial coefficients.

These conditions may be formulated from "6" to "12" as:

a6 = 1

−4 ˂ a5 ˂ 0

a1 ˃ 0

a0 ˂ 0

a0 / a1 ˃ a5 /16

−1 −a5 /2 ˂ a0 a5 / a1 ˂ a5
2/16

a4 ˂ a1
2/( a0 a5

2) + (a5
2 / 4) + (2 a0 a5 / a1)

a2 = (3a1 / a5) + (3 a0
2 a5

2 / a1
2) – (a0 a4 a5 /a1) + (a3 a5 /4)               (35)

 
Figure 4: Centre C1 and Parameter δ.

Figure 3:  Circular Sections.
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Now, we conclude the process as:

1) 	 Verifying conditions (Equation "35"). 

2) 	 Supposing a reasonable value for a.

3) 	 Calculating ε; b; c; F; G and H from "21"; "16"; "17"; "18"; "19" and 
"20" respectively.

4) 	 Calculating XE; YE and ZE from "13"; "14" and "15" respectively.

5) 	 Constructing Mongean Projection and getting the coordinates of 
the trace P1 and P2.

6) 	 Substituting coordinates of P1 and P2 in "3" to get the two real roots 
of "1".

Results
We introduce a numerical example for the purpose of assessing the 

applicability of the procedure and verifying its accuracy. Consider the 
polynomial equation:

t6 − 1.74 t5 – 1.2695 t4 + 3.064728 t3 – 1.7921016 t2 + 0.46002816 
t – 0.048540902 = 0

The first step is checking the coefficients whether they satisfy 
conditions in "35" or not, where:

a6 = 1

−4 ˂ (a5=- 1.74)  ˂ 0

(a1 = 0.46002818) ˃ 0

(a0 = −0.0485409024) ˂ 0

(a0 / a1 = −0.1055172405) ˂ (a5 /16 = −0.10875)

(−1 − a5 /2 = −0.13)˂( a0 a5 / a1 = 0.1835973508)˂ (a5
2/16 = 0.189225)

(a4 = – 1.2695) ˂  ( a1
2/( a0 a5

2) + (a5
2 / 4) + (2 a0 a5 / a1)= −0.4995000133)

 a2 = (3a1 / a5) + (3 a0
2 a5

2 / a1
2) – (a0 a4 a5 /a1) + (a3 a5 /4) = – 1.7921016                          

Obviously, the coefficients satisfy the conditions, so we move to the 
second and third step, as we adopt 10 units for the value of a, and using 
"21"; "16"; "17"; "18"; "19" and "20", then:

ε = 0.075

b = 8

c = 7

Then the fourth step is calculating the terrain point E(XE, YE, ZE) 
using "13"; "14" and "15" respectively, as:

XE = 12

YE = 10

ZE = 8

The next step is the construction of Mongean graphical technique 
(Figure 5), in order to obtain the coordinates of the trace P1 and P2. 
Using the values calculated above, the elements could be plotted using 
a triaxial ellipsoid model of dimensions a, b and c equal 10, 8 and 7 
units respectively. The technique produces two locii µ and η which 
intersect at P1 and P2, whose coordinates are:

P1 (6.84, 4.59, 3.51)

P2 (−8.45, −3.60, −2.03)

Figure 5:  Graphical Solution.
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The final step is the determination of the desired real roots(t1, t2) of 
the proposed polynomial by substituting coordinates of P1 and P2 into 
"3", then we obtain: t1=1.7540406851 and

t2= −1.4202492291.

Many geodetic applications engage high accuracy as in analyzing 
the earth's crustal movements, militant activities, satellite observations, 
etc. [6,7].

Thus, the significance of the proposed analysis is evaluated versus 
accuracy, as we apply the values of both t1 and t2 to the proposed 
sextic polynomial. The outputs are errors of values 4.1229×10-8  and 
3.3855×10-7which may be accepted in the favor of the graphical solution.

Finally, the solution enables getting the shortest distance EP1 from E to 
the surface (geodetic height), (Figure 5) which equals 8.7208829828 units.  

Discussion
Polynomial equations of degree higher than the fourth cannot 

be solved in radicals [2] except Kulkarni decomposition approach, 
furthermore, sextic polynomials are barely solvable analytically [5].

As the numerical methods are considered as the regular approach 
for handling the solvable sextic polynomials, they lack the initial guess 
required for setting up the solution.  So, algorithm has to be adapted 
in order to isolate intervals for the real roots,  roughly approximated 
values of the real roots are calculated then iterations are dealt with using 
appropriate convergent iteration algorithm, such as Newton method, 
in order to calculate such roots [9,10]. Furthermore, Newton's method 
for solving higher order polynomials will always converge if the initial 
point is sufficiently close to the root and if this root is not singular [11].

While Kulkarni introduced an analytical approach, yet the method 
is limited for the reducible sextic over the real field by the mean of 
decomposition [12].

Although the offered analysis conveys graphical involvement, it 
may be considered simple and straightforward method for computing 
the two real roots of the sextic polynomial. The results show an 
acceptable accuracy since the errors yielded are of values 4.1229×10-8 
and 3.3855×10-7 for each root.

In addition, the analysis attends the geodetic height or the shortest 
distance from a given point to the triaxial ellipsoid surface (as an 
earth's model) avoiding the engagement of solving system of nonlinear 
equations using iteration solution scheme produced by Bektas [13].   

Conclusions
Under certain conditions, a sextic polynomial equation of two 

real roots can be modeled as a familiar geodetic problem which is 
the geodetic height determination. The triaxial ellipsoidal surface 
is considered as the surface represents the earth’s irregular surface. 
Surface’s parameters and position of the terrain point are evaluated in 
terms of the polynomial’s coefficients, and vice versa.

Graphical solution is carried out for determining two foot points of 
the normal from a given point to the surface. Such points involve the 
desired roots and one of them associates the geodetic height.

 Numerical justification for examining the approach was introduced 
and showed a reasonable accuracy versus the graphical solution.
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