Seroprevalence and Molecular Epidemiology of Brucellosis in Cattle in Egypt

Ahmed M. El-Hady, Mohamed Sayed-Ahmed, Mohamed E. Saleh, Emad E. Younis

1Animal Health Research Institute, Dokki, Giza, Egypt
2Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
3Corresponding author: Mohamed Zakaria Sayed-Ahmed, Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt, Tel: +966-594-886878; Fax: +966-17-3216837; E-mail: drzakaria-infect@hotmail.com

Received date: December 30, 2015; Accepted date: March 09, 2016; Published date: March 18, 2016

Copyright: © 2016 Ahmed MS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The study was applied on 4772 lactating and non-lactating cows distributed on different districts in Al Sharqia Governorate. Sera were collected from animals during routine diagnosis and control program. The results of screening tests Buffer acidified plate antigen test (BAPAT), Rose Bengal plate test (RBPT),Tube agglutination test (TAT), Complement fixation test (CFT) and indirect enzyme linked immunosorbent assay gave 124 and 176 seroreactive animals by incidence of 4.42% and 8.91% in private farms and individual cases respectively. 37 (29.8%) and 97 (55.1%) isolates of Brucella melitensis biovar 3 were recovered from 124 and 176 seroreactive animals respectively. In seroreactive cows, Brucella melitensis biovar 3 was isolated from 36% and PCR yielded expected products in 40%. In conclusion, more attention should be paid to the role of Brucella melitensis biovar 3 in brucellosis in cattle during the application of national program of Brucella control and eradication.

Keywords: Prevalence; Brucella melitensis; Seroreactive; Cattle; Egypt

Introduction

Brucellosis is a wide spread disease among animals and human and of a major economic importance due to abortions, decrease milk yield, temporarily or occasionally permanent sterility [1]. In Egypt, B. abortus was the commonly isolated species until the beginning of 1970s [2]. In the last years, B. melitensis become the most common strain prevalent in animals in Egypt [1,3,4]. Brucella is a facultative, intracellular, gram negative, bacterial pathogen and the etiologic agent of brucellosis, important zoonosis with a nearly worldwide distribution [5]. The distribution of the disease appears to be correlated with high animal densities associated with winter feeding [6]. Clinical symptoms of brucellosis are non-specific and its diagnosis in sheep is currently based on serological and microbiological tests [7,8]. A variety of antimicrobial drugs have activity against Brucella, however, the results of in vitro susceptibility tests do not always correlate with clinical efficacy. Bacteriological isolation of B. melitensis and/or positive blood culture soon after the infection are common laboratory procedures that are used for diagnosis. However, these procedures are not always successful as they are complicated and represent a great risk of infection for laboratory technicians [9,10]. Serological tests can also be used for diagnosis of Brucella spp. infection via detection of antibodies in serum [11].

In addition, the organism can be detected by polymerase chain reaction (PCR) in blood, semen and abomasal fluid of aborted fetuses and, compare to culture method, PCR has more sensitivity and specificity [8,12]. Recently, The PCR assay has been used for detection of Brucella spp. It is a promising alternative for conventional bacteriological techniques due to its speed, safety, high sensitivity and specificity. In Egypt, control of Brucellosis is yet a difficult task since it had been diagnosed by Ahmed [13], despite the exhaustive efforts and difficult concepts of approach; this difficulty is mainly due to the very high cost and the wide range of maintenance factors of Brucella organisms. The aim of the present study was to determine the immune response of vaccinated animals and the presence of Brucella in blood after vaccination using serological tests and PCR method.

Materials and Methods

Description of the study area

This study was carried out in Al Sharqia Governorate, East of Cairo. The region was purposively selected for the study because it’s have large numbers of animals and human populations. The study was carried out between September 2008 to July 2011. The region has warm and cool dry season with considerable variation of rainfall from year to year. The area has a long rainy season which extend from November to April and a dry season which extends from May to October.

Animals

A total of 4772 cattle were examined for Brucella. The animals were kept under restricted program for controlling the internal and external parasites, vaccination programs and standard level of nutrition; whereas mineral mixture and water were available ad libitum.

Study design and samples size estimation

A cross-sectional study was conducted to determine the epidemiology of Brucella infection in animals in different districts making up the Al Sharqia region. The sample sizes for animals for serological studies, milk samples from cattle for molecular studies, were calculated by the formula of multistage random sampling described by [36]. A random sample of different villages of Al Sharqia Governorate was done, using a table of random numbers, from a sampling frame comprised of a list of all villages in the study area. We collected the samples from different private farms and different areas for individual animals; we select the number of animals every year.
Samples collection

Cattle were manually restrained and had blood samples taken from the jugular vein using 10 ML plain vacutainer tubes. The blood samples from cattle were allowed to clot in a slant position and serum samples were harvested after 24 h. The harvested serum was transferred to 1.5 ML cryovials and stored in Liquid Nitrogen (LN) before being transferred to the laboratory at the Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt where they were stored in an ultradeep freezer (-80 °C) until tested. Cows from each selected households were randomly selected and sampled to obtain a total of 4772 animals. Milk samples were collected under hygienic condition from udders of cattle by hand stripping just prior to milking using sterile screw caped 50 ML falcon tubes. Each sample was transferred to 1.5 ML cryovials and stored in Liquid Nitrogen (LN) to have a total of 50 ML of milk from cattle. First streaps of milk from total of 4772 animals. Milk samples were collected under hygienic stored in an ultradeep freezer (-80 °C) until tested. Cows from each Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt where they were retained placenta, retained placenta with difficult birth, endometritis and repeat breeder. Data regarding beginning of these troubles were also recorded.

Bacteriological isolation

Blood samples were collected for isolation and identification of bacteria according to Alton et al. [15] and serological tests were applied according to Hess [17] and Lambert and Amerault [18]. Bacteriological culture was carried out on specimens from retropharyngeal, supramammary lymph nodes obtained from animals. Blood was collected from lactating cattle in which milk was sampled for *Brucella* DNA detection using 10 ML plain vacutainer tubes for serological study. The samples were immediately stored in LN before transferred to the laboratory at the Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt to be stored in ultra-deep freezer (-80 °C) until tested.

Epidemiological investigation

Cows of different ages and gestation stages, Lactating and non-lactating were examined for abortion and breeding troubles including retained placenta, retained placenta with difficult birth, endometritis and repeat breeder. Data regarding beginning of these troubles were also recorded.

PCR assay

Extraction of DNA was carried out according to [22]. PCR and oligonucleotide primers: the *brucella* Omp 2 gene was used as target DNA. The forward primer (p1 {5' TGGAGGTCAGAAATGAAC 3'}) and reverse primer (p2 {3' GAGTGCGAAACGAGCGC 5'}) of an Omp 2 gene segment were obtained from National Bioscience, Inc., Plymouth, Minn. PCR amplification was performed by the method of [23]. A typical reaction mixture contained 50 mM KCl, 1.5 mM MgCl2, 0.1 % (wt/vol). Triton X-100, 0.2 g of bovine serum albumin (fraction IV, Sigma) per ml, and mM each of the four deoxyribonucleotides, 100 ng of sample DNA and each oligonucleotide primer. For slide PCR, sample DNA was replaced with *brucella* that was laid on a glass slide, air dried, and fixed by being heated. A sample of the dried cells was then collected with a needle, the needle was dipped in 10 ul of double-distilled water, and 2 ul from this solution was put in the PCR mixture. Otherwise, sample DNA (2 ul from a bacterial cell suspension in double distilled water boiled at 100 C for 20 min.) was used. Reactions were initiated by adding 0.5 U of Taq polymerase (Appligene, Illkirch, France).

The reaction mixture was covered with 15 ul of mineral oil (Sigma) to prevent evaporation. Following hot start treatment at 95 C for 3 min., PCR was performed with an Eppendorf Thermocycler (Eppendorf, Hamburg, Germany) as follow 35 cycles of PCR, with 1 cycle consisting of 20 s at 95 C for DNA denaturation, 1 min at 50 C for DNA annealing, and 1 minutes at 72 C for polymerase mediated primers extension. The last cycle included incubation of the sample at 72 C for 7 min. ten micro liters of the amplified product was analyzed with electrophoresis in 1.5 % agarose gel in TEA buffer (20 mM Tris-acetate, 1 mM EDTA (pH 8.0).

Data Analysis

Microsoft Office Excel® 2007 (Microsoft Corporation, One Microsoft Way, Redmond, 98052-7329, USA) was used in storing data and drawing graphs. Data was analysed using Epi-Info version 7 (CDC Atlanta, USA) and MedCalc® version 13.0.2 (MedCalc software, Acacialaan 22, B-8400, Ostend, Belgium). Chi square test was performed to calculate P value for the incidence rate of *Brucella* versus different age groups, sex and species. P value < 0.05 was considered statistically significant.

Results

Serological results

In private farms, 124 out of 2802 (4.42 %) cattle sera tested was positive to RBPT and BAPA. The RBPT positive samples were further confirmed by the TAT, CFT and ELISA. While in individual animals, 176 (8.93 %) out of 1970 cattle sera tested positive with RBPT. The RBPT positive sera were tested with ELISA with 176 (8.93 %) were found positive. There was a statistically significant difference in seroprevalence between private farms and individuals cattle (P < 0.05). (Table 1).
Table 1: Prevalence of Brucella antibodies in cattle in Al Sharqia Governorate.

Bacterial isolation

17 out of 50 positive reactors Brucella melitensis biovar 3 was isolated. (Table 2).

Table 2: Bacteriological isolation of seroreactive animals.

<table>
<thead>
<tr>
<th>Animals</th>
<th>Total no. of samples</th>
<th>No. & % of Brucella isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>Private farms</td>
<td>124</td>
<td>37</td>
</tr>
<tr>
<td>Individual animals</td>
<td>176</td>
<td>97</td>
</tr>
</tbody>
</table>

PCR results

Ten (0.40) out of 25 milk samples from seropositive cattle tested positive with PCR. While Seven (0.28) out of 25 serum samples from seropositive cattle tested PCR positive. The Brucella species detected from cattle was Brucella melitensis biovar 3. All PCR positive results were shown by migration of PCR product to approximately 720-bp for Brucella melitensis fragments (Figure 1 and Table 3).

Table 3: Evaluation of different diagnostic tests in Brucella seroreactive animals.

<table>
<thead>
<tr>
<th>Test</th>
<th>Positive</th>
<th>Bacterial isolation</th>
<th>PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAPAT</td>
<td>25</td>
<td>9 (0.36)</td>
<td>10 (0.40)</td>
</tr>
<tr>
<td>RBPT</td>
<td>25</td>
<td>7 (0.28)</td>
<td>8 (0.32)</td>
</tr>
<tr>
<td>TAT</td>
<td>25</td>
<td>7 (0.28)</td>
<td>7 (0.28)</td>
</tr>
<tr>
<td>CFT</td>
<td>25</td>
<td>7 (0.28)</td>
<td>7 (0.28)</td>
</tr>
<tr>
<td>ELISA</td>
<td>25</td>
<td>7 (0.28)</td>
<td>7 (0.28)</td>
</tr>
</tbody>
</table>

Abortion & Breeding troubles

The percentages of abortion in pregnant cows suffering from brucellosis in some private farms were 1.55 %, 2.61 %, 3.16 % and 3.06 % for years 2008, 2009, 2010 and 2011 respectively (Table 4). While, the percentages of abortion in pregnant cows suffering from brucellosis collected from individual animals were 2.29 %, 1.41 %, 2.59 % and 2.83 % for years 2008, 2009, 2010 and 2011 respectively (Table 4, 5 and 6).

Table 4: Percentage of abortion in private farms.

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of ♀</th>
<th>Number of aborted ♀</th>
<th>% of abortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1030</td>
<td>16</td>
<td>1.55</td>
</tr>
<tr>
<td>2009</td>
<td>842</td>
<td>22</td>
<td>2.61</td>
</tr>
<tr>
<td>2010</td>
<td>538</td>
<td>17</td>
<td>3.16</td>
</tr>
<tr>
<td>2011</td>
<td>392</td>
<td>12</td>
<td>3.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of ♀</th>
<th>No. of aborted ♀</th>
<th>% of abortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>654</td>
<td>15</td>
<td>2.29</td>
</tr>
<tr>
<td>2009</td>
<td>496</td>
<td>7</td>
<td>1.41</td>
</tr>
<tr>
<td>2010</td>
<td>502</td>
<td>13</td>
<td>2.59</td>
</tr>
</tbody>
</table>
it delivered to the antigen presenting cells are fundamental in the mechanisms are need to enhance vaccine repeated copies that been proposed on the basis of restriction endonuclease polymorphism from private farms and individual cases respectively; this result agrees Brucella diagnosis [32]. Recently a molecular biotyping approach has 11 % and 25 % and 31.6 % from lymph nodes of seroreactive animals Bacteriological isolation of brucella from milk samples was 8 % and 19 % and 25 % and 31.6 % from lymph nodes of seroreactive animals from private farms and individual cases respectively; this result agrees with [15] who isolate brucella species from milk samples and lymph nodes.

PCR has increasingly been used as a supplementary method in Brucella diagnosis [32]. Recently a molecular biotyping approach has been proposed on the basis of restriction endonuclease polymorphism in the genes encoding the major outer proteins of Brucella membrane [33]. The Omp2 gene exists as a locus of two nearly homologous repeated copies that differ slightly among Brucella species and biotypes [34]. We used previous information to design specific primers that amplify a 720 bp fragment lanes 3, 4 and 5 shows the positive samples taken from first farm after vaccination with RB51 vaccine, whereas lane 7 only positive samples collected from second farms, Lanes 6 and 8 were negative for PCR against brucella species.

We assumed that the sensitivity of the test would be doubled by selecting duplicated DNA sequences of two gene, we assumed that because of the existing Pst I site polymorphism between B. melitensis and B. abortus, the test is specific for distinguishing between 2 species [35].

The percentages of abortion in pregnant cows suffering from brucellosis in some private farms were 1.55 %, 2.61 %, 3.16% and 3.06 % for years 2008, 2009, 2010 and 2011 respectively. While, the percentages of abortion in pregnant cows suffering from brucellosis collected from individual animals were 2.29 %, 1.41 %, 2.59 % and 2.83 % for years 2008, 2009, 2010 and 2011 respectively. These results were lower than those reported by [28,29,30] whose recorded 16.1 %, 37.4 %, and 26 %, respectively.

The breeding troubles of investigated animals were retained placenta, difficult birth, retained placenta and difficult birth, endometritis and repeat breeder in random investigated animals were 2.7%, 4%, 1.3%, 2% and 0.7 % respectively., This results agrees with [15,31,21] who proved that breeding troubles and poor feeding increasing the infection with brucella.

In conclusion, raising goats with large dairy animals is a faulty traditional practice, whereas it may be a source of B. melitensis infection for animals in Egyptian villages. It should be focused on the problem of the disease in small ruminants as they played a role in transmission of the disease to eliminate it and reduce the prevalence of the disease among cattle.

Table 5: Percentage of abortion in individual investigated animals.

<table>
<thead>
<tr>
<th>Breeding abnormalities</th>
<th>Animals</th>
<th>Private Farms</th>
<th>Individual animals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No of infected cows</td>
<td>%</td>
</tr>
<tr>
<td>Retained placenta</td>
<td>150</td>
<td>5</td>
<td>3.3</td>
</tr>
<tr>
<td>Difficult birth</td>
<td></td>
<td>7</td>
<td>4.7</td>
</tr>
<tr>
<td>Ret. & Diff. birth</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Endometritis</td>
<td></td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>Repeat breeder</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 6: Percentage of cows suffering from brucellosis associated with breeding troubles.

Discussion

Brucellosis is a well-documented zoonosis worldwide posing serious public health problems and extensive economic losses [22]. In these areas brucellosis represents a significant public health issue and its incidence might reach more than 200 cases per 100000 populations [24]. The misdiagnosis and under reporting of brucellosis were make public health issue and its incidence might reach more than 200 cases per 100000 populations [22]. In these breeding troubles.

References

