Shift of Small Scale Fishing Impacts on Fish Trophic Levels in Lake Iro Revealed by Species-based Indicators

Modou Thiaw1*, Mbaye Tine2,3, Hamet Diaw Diadhiou4, Oualbadet Magoma4 and Patrice Brehmer5

1Institut Sénégalais de Recherches agricoles (ISRA), Centre de Recherches Océanographiques de Dakar-Thiawoye, BP 2241, Dakar, Sénégal
2The Molecular Zoology Laboratory, University of Johannesburg, Kingsway Campus, Auckland Park 2006, South Africa
3Genome Centre Cologne at MPI for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
4Directorate of Fisheries and Aquaculture (DPA), NDjamena, Chad
5Institut of Research for Development (IRD), UMR195 Lemar, ISRA-CRODT, BP 1386, Dakar, Senegal

Abstract
A fisheries management plan was required in Central Africa, which integrated a reduced regional hydrographical network and limited amounts of data in the overall regime. The current data and knowledge on fish populations and fisheries impacts are very poor in this region, particularly in Chad. Therefore, any new knowledge, especially on the structure of the ichthyological stands can be considered as valuable. Information on the status of Lake Iro fisheries resources was thus established by this study, which can serve as a model fisheries management regime in Central Africa. We performed assessment of fish resources in Lake Iro, Chad, achieved by a characterization of the exploited ichthyofauna, and the location of nursery and fishing areas. Results indicated that the overall size range of fish species showed negative effects of fishing pressure on size structure of the fish resources. Fishing has increasingly exerted pressure on fish species and affected the primary consumer species. We hypothesized at Lake Iro fish catches were below optimal fish production levels, essentially due to excessive localized fishing efforts, and selective fishing techniques by fisherman. Such reports call for the development of an integrated plan for sustainable management of Lake Iro fisheries resources. Sustainable and equitable exploitation of Lake Iro resources can be promoted by implementation of the following recommendation: a protected area at the lake inlet to limit excessive juvenile fish catches, which disturbs the aquatic food chain and prevents juvenile fish supply and growth in Lake Iro.

Keywords: Species-based indicator; Fish assemblage; Trophic level; Integrated management; Lake Iro; Chad; Central Africa

Introduction
Fish resources of aquatic ecosystems in Chad face several challenges, including a reduction in the hydrographical network, the unregulated fishing effort, the high fish juvenile predation, the imbalances in ichthyology fauna and the lake species composition [1]. The country has experienced recurring droughts during the four past decades that have altered the hydrographical network and silting of watercourses and inland lakes. An excess of 210,000 hectares of former spawning ground and juvenile growing areas have been lost to silting [1]. Anglers exerted excessive fishing pressure due to heavy localized fishing practices using small scale fishing gear, much of which is prohibited. The fishing materials, including bait, are not selective enough on a species basis, and anglers readily catch many different fish taxa [2]. Former studies reported predation pressures were essentially caused by ichthyophagous species, which have higher reproductive success rates and survival than forage fish, therefore, the predator and prey balance can be reestablished [3,4]. However, the imbalance of fish species composition can result from strong commercial fishing pressure of ichthyophagous species to the detriment of forage fish, which can alter the aquatic food chain [5]. Finally, during the dry season, the local community harvests fish by hand, which prevents new generations of fish to grow and reproduce, considerably reducing available resources [6].

Fisheries management use simple or complex models that require large amounts of data. The cost for data collection and analyses can be considerable [7]. Therefore, where costs are prohibitive, it is necessary to develop simple and efficient alternative methods to establish if there is a link between anthropogenic and environmental perturbations (including fishing pressure), and effects on fish communities [8,9]. The monetary incomes of the logistics cost for science in Central Africa are limited. In the current study, we present results from scientific fishing investigations performed at Lake Iro applying a simple quantitative method to characterize the primary fish species exploited by anglers in this ecosystem. This was achieved through an ad hoc data collection system, including scientific fishing operations (seine net fishing) and data derived from the current literature. The analysis is based on a comparison between samples collected at the mouth and on the border of the lake, by examining the abundance of species, the mean sizes or size distributions, as well as more global indicators such as the slope of the size spectrum, trophic levels, and diversity indices. Overall, our results provided the first information available for the development of integrated survey plans, which are indispensable tools for a sustainable management of fisheries resources in Chad; and equally important an understanding of ecological productivity in shallow tropical lakes of poorly studied areas [10].

Materials and Methods
Study area
Lake Iro is located in Chad northeast of Kyabe City (10°06’30”N, 19°25’19”E) (Figure 1). Waters from the Bahr Salamat is one of the tributaries of the Chari River. The Bahr Salamat flows past Am-Timan.
City and contributes to an inland delta, which forms Lake Iro, before the tributary joins the Chari River. The length and width of the lake are 14 and 11 km, respectively, with an average 3 m depth. The lake area is estimated at 11,700 ha in dry and 20,500 ha in high water periods. Fisheries data on Lake Iro are sparse in the literature due to the low number of fisheries studies carried out on this type of ecosystem.

**In situ data collection**

Data obtained during experimental fisheries surveys were collected at different points of Lake Iro, i.e., two fishing operations on the borders and one at the river inlet, over three days during one week of collection surveys. The objective of these scientific surveys was to analyze the ichthyofaunal lake dynamics. Thus, biological and ecological parameters, length and weight measurement of each species in the catch, and intra- and interspecific and predator-prey relationships were examined. Additional information on fish populations was obtained from literature reviews [11]. Bellemans method was used to identify species collected in fishing areas [12]. We also used trophic levels from the Fishbase databases, and literature reviews [14,22-29]. The percentage of species diet was established using information collected from FAO, Fishbase databases, and literature reviews. The Albaret sexual maturity scale was applied to samples collected during the fishing haul. A sub-sample of fifty individuals per species and per fishing haul was measured (total length). The whole fish sample was individually weighed (total weight in g) and the fork length (FL in cm) measured. Fifty individuals of each surveyed species were dissected for macroscopic sex determination and stage of gonad sexual maturity, which was based on the following criteria: general ovary or testicle condition; oocyte visibility through the ovary membrane or testicle vasculature; and/or size and maturation level. The Albaret sexual maturity scale was applied to samples collected during the fishing survey for males and females [22].

**Fisheries data analysis**

A literature review on species at local and sub-regional levels, and at a global scale was first conducted. Thus, experimental fisheries data was mined. In this study, information on the biology, ecology and exploitation of fish species have been included. Simple descriptive analyses were performed to identify major trends in the life history traits and ecological affinities of the species were examined. The sexual maturity stages based on the same specific criteria to determine fish reproduction stage were identified and applied to fish species collected from Lake Iro. The percentage of all fish species present in the borders and the lake mouth were used to evaluate species distribution in the ecosystem. Species distribution in the lake resulted in the potential to determine spatial variation. Fish life history traits were estimated from the literature and new data collected from Lake Iro, whereas each species diet was established using information collected from FAO, Fishbase databases, and literature reviews [14,22-29]. The percentage of mature females and males present in the lake was estimated to determine if Lake Iro can be considered as a fish spawning area at the time of the sampling season.

**Diversity and evenness indices**

The diversity indices N1 of Hill, an exponential function of Shannon-Weiner’s index $H'$, and N2, the reciprocal of Simpson’s index, were chosen for their complementarily [30]. They were calculated using the following formulae:

$$N1 = \exp\left(-\sum p_i \ln(p_i)\right)$$
balanced according to the following formula:

\[ N2 = 1/ \sum pi^2 \]

Where \( pi \) is the proportion of species “i” in terms of abundance.

The N1 index increases with the sampling effort, in contrast to the N2 index [31]. However, N2 is sensitive to changes in the abundance of the species present in few numbers, as each proportion is squared. In contrast, N1 is less sensitive because each proportion is weighed by its logarithm [31].

Species diversity is comprised of two components; namely, the number of species (S) in the sample, and the evenness (E) of their frequency distribution, which characterizes the shape of the distribution. E was calculated on the basis of the following formula:

\[ E = \ln(N1)/\ln(S) \]

when all species are equally represented, E=1.

**Size spectrum analysis**

Fishing impacts on fish populations were assessed by analysing size structure according to the following variables: (1) overall size range; (2) average size per species; and (3) size range per ecologically distinctive area (the borders and the lake mouth). Fish size range is a relevant parameter to analyse size trends in fish communities of aquatic ecosystems affected by heavy exploitation, because the general size range profile observed in catches is altered in favour of smaller size species [32]. Size classes are defined, with each class represented by its mid-value. A linear regression of the logarithm of the number of individuals in each length class was calculated for the region of the spectrum where the number of individuals was decreasing. The slopes and intercepts were then compared using ANCOVA. Logarithmic transformation was used to normalise the length distribution and homogenise the variances [33].

**Trophic level and spectra**

The definition of trophic categories or classes leads to simplify the complex interaction of the trophic web of an ecosystem [13,34-36]. Hence, for all species, we used the same definition as of trophic categories from various data sources [26]. After compiling the literature dealing with similar ecosystems, we can assume that the trophic regimes do not differ much from what we found in the Lake Iro. The following data were included in our analyses: Lauzanne from Lake Chad, Olojo from Osun River, Nigeria, Kantoussan from Manantali and Salingue Lakes in Mali [13,37-39]. In addition to his information, we also used trophic levels derived from the metabase Fishbase to our landed species [40]. When the trophic level for given species was unavailable, it was estimated using the value from Fishbase for the same genus or species.

For the trophic spectrum study, the trophic levels of species are pooled into one-unit trophic classes, each class being presented by its mean value. Then, the mean trophic levels (TLm) of species are estimated using the value from Fishbase for the same genus or species. [41]. The trophic levels derived from the metabase Fishbase to our landed species [61] were significantly different (P<0.001). By contrast, the y-intercept coordinates were significantly different (P<0.001). The straight lines of adjustment for size range were located at different levels but had comparable profiles.

The main species targeted by fishermen fish are the larger species, i.e., B. docmak, B. bajad, O. niloticus, Heterobranchus bidorsalis and Gymnarchus niloticus. A total of 344 specimens were captured during daytime fishing. These individuals were subsequently measured. Global size spectrum analysis observed for Lake Iro showed the modal class was 225 mm. The average total catch size was 219.7 mm. Depending on species, the size range was less broad overall. However, the proportion of individuals with size exceeding 500 mm was 1.8% (Figure 2). The linear regression of the logarithm of the total number of specimen measured against length at the upper end of the distribution exhibited a slope of 0.013 and y-intercept of 7.5 (Linear regression, R2=0.99).

The average size of each species at the different sites visited is shown in Figure 3. The size of fish samples from all the Lake ranged from 10 to 800 mm (Table 1). The proportion of individuals with size exceeding 500 mm (the largest individuals) was 1.8%. In addition, the average size of species caught at the lake mouth was less than or equal to that of species captured at the lake borders (Figure 3).

**Spatial variation in size range**

Global size ranges observed from the two border and lake mouth catches showed the modal class at borders was 225 mm and the lake mouth fish were 125 mm (Figure 2). The average size for the borders catch was 214.5 mm and 189.9 mm at the lake mouth. The right adjustment for size range at the lake mouth exhibited a slope of 0.009 and a y-intercept of 4.7 (R2=0.92). The slopes of the linear models adjusted for size range for the two areas (borders and mouth) were significantly different (P<0.001). By contrast, the y-intercept coordinates were significantly different (P<0.001). The straight lines of adjustment for size range were located at different levels but had comparable profiles.

Juvenile fish were caught in high numbers at the lake mouth, where fishing pressure is severe due to the high number of set nets observed.
at the lake mouth channel. At lake borders, the highest occurrence of large fish was observed, but a large number of juveniles were also noted. Most of the fish analysed (n=68) exhibited full stomachs.

Trophic dynamics of Lake Iro

Among the 23 surveyed species in Lake Iro catches, the most abundant trophic category in number of species are secondary consumers, with represented 56.5% (Table 2). Two primary consumers (O. niloticus and Citharinus citharus) composed 27.4% of the total weight landed (Figure 4). In the secondary consumers category, Clarias gariepinus, Synodontis clarias, Synodontis batensoda and Streptomyces orientalis represented the majority of the catches. The tertiary consumers in the catches were largely composed by Labeo niloticus, B. bajad, and B. docmak. The mean trophic level of the Lake Iro calculated from the experimental fisheries was 3.1.

The primary consumers (37.2%) and tertiary consumers (44.6%) composed the majority of Lake Iro fish abundance (Kg/ha). At the mouth of Lake, tertiary consumers and omnivores abundance was very low; however, abundance was high in the same categories at the borders sites (Figure 5). The abundance, depending on trophic level, was calculated as 52% for trophic levels 2 to 3, and 48% for trophic levels 4 to 5.

Figure 2: Size frequency distribution observed in the Lake Iro (grey) catches. The catches were discriminated according to two modalities: “lake border” (black) and “lake mouth” (dotted line).

Figure 3: Average size per fish species observed in Lake Iro (grey) catches. The catches were discriminated according to two modalities: “lake border” (white) and “lake mouth” (dark).
sizes were inventoried: the modal class of fish size distribution at the lake mouth is 125 mm. We assumed the exploitation intensity modified the population trophic structure at the lake mouth. The observed changes in the trophic spectrum showed that high fishing pressure was increasingly exerted on species at the bottom level of the food chain, even if predatory species were identified in scientific catches.

The current lake exploitation levels in the absence of selective fishing gear have led to a shift in the expected impacts on an overexploited aquatic ecosystem (i.e., increase in lake trophic levels). The results of this study indicate the lake manager and stakeholders should regulate all fishing activities, e.g., fishermen must adhere to specific fishing techniques. Based on our results, catches at Lake Iro are not at optimum production levels due to fishing pressures, which are too localized and do not exhibit adequate species diversity. Implementation of a protected area at the river inlet will protect juvenile fish from exploitation and will serve to maintain the predator/prey balance in the aquatic food chain. Consequently, new generations of fish can mature and be harvested by the entire community operating throughout Lake Iro and not only fishermen working on the river inlet.

The argument presented here justifies the assertion that differences observed between sampling sites can be attributed to the impact of fishing. The results reported here also supports the assertion that a shift has occurred at the mouth of the lake and the statement that catches at Lake Iro are not at optimum production levels due to fishing pressures. There is, however, one main drawback of this study which is the analysis relies on a set of data that can be assumed as insufficient. Therefore, comprehensive data that can be used to answer the question about the impact of fishing on fish populations present at the mouth of Lake Iro, in Chad. Catches of the two samples from the border of the lake are pooled and compared with those of the mouth. Although having these two observations is interesting and provided good arguments for the findings, the

In addition, numbers of distribution trends according trophic categories are conform to those of weight. In Lake Iro, the proportions in number of primary and secondary consumers in the catches were more important. The proportion of secondary consumers fish was very high at the mouth of the lake and low at the two borders sites (Figure 6). The higher trophic levels were also relatively important in the lake catch.

### Discussion

Lake Iro is a breeding area for many fish species, including but not limited to *B. docmak*, *B. bajad* and *O. niloticus*, which are important food sources for local communities in developing countries in the Central African region [1]. Our results indicated small scale fishing efforts exhibited negative effects on the size structure of Lake Iro fish populations. These observations were consistent with expected impacts of fishing on the size range of intensively exploited fish populations, i.e., a marked decrease in the proportion of large fish [5,36]. At the mouth of Lake Iro, intense fishing pressure and a decline in large fish abundance resulted in a change in fishermen’s selection of preferred angling gear. The seine net mesh sizes were reduced to accommodate smaller fish, and in some cases, an illegal monofilament net was put into practice.

The lake catch composition was amended, and more fish of small

### Table 1: Fish length (in mm): medium ($L_{med}$), maximum ($L_{max}$), and minimum ($L_{min}$) fish species sizes found in all catches. The catches were conducted from our three study sites on Lake Iro; N=Number of individuals sampled.

<table>
<thead>
<tr>
<th>Species</th>
<th>LF/LT</th>
<th>N</th>
<th>$L_{min}$</th>
<th>$L_{med}$</th>
<th>$L_{max}$</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alestes baremoze</td>
<td>LF</td>
<td>13</td>
<td>14</td>
<td>121.1</td>
<td>178</td>
<td>49.7</td>
</tr>
<tr>
<td>Bagrus bajad</td>
<td>LF</td>
<td>22</td>
<td>220</td>
<td>339.9</td>
<td>670</td>
<td>115.5</td>
</tr>
<tr>
<td>Bagrus docmak</td>
<td>LF</td>
<td>4</td>
<td>200</td>
<td>543.0</td>
<td>800</td>
<td>257.1</td>
</tr>
<tr>
<td>Brycinus nurse</td>
<td>LF</td>
<td>10</td>
<td>101</td>
<td>121.6</td>
<td>200</td>
<td>20.2</td>
</tr>
<tr>
<td>Citharinus citharus</td>
<td>LF</td>
<td>5</td>
<td>200</td>
<td>246.0</td>
<td>270</td>
<td>28.8</td>
</tr>
<tr>
<td>Claris gariepinus</td>
<td>LT</td>
<td>47</td>
<td>170</td>
<td>266.4</td>
<td>519</td>
<td>66.3</td>
</tr>
<tr>
<td>Distichodus rostratus</td>
<td>LF</td>
<td>6</td>
<td>167</td>
<td>186.7</td>
<td>218</td>
<td>18.9</td>
</tr>
<tr>
<td>Gymnarchus niloticus</td>
<td>LF</td>
<td>5</td>
<td>190</td>
<td>281.2</td>
<td>359</td>
<td>66.0</td>
</tr>
<tr>
<td>Heterobranchus bidorsalis</td>
<td>LT</td>
<td>1</td>
<td>660</td>
<td>660.0</td>
<td>660</td>
<td>-</td>
</tr>
<tr>
<td>Heterotis niloticus</td>
<td>LT</td>
<td>3</td>
<td>341</td>
<td>379.7</td>
<td>428</td>
<td>44.3</td>
</tr>
<tr>
<td>Hyperopsis bebe bebe</td>
<td>LF</td>
<td>15</td>
<td>120</td>
<td>144.0</td>
<td>160</td>
<td>13.0</td>
</tr>
<tr>
<td>Hyperopsis bebe bebe</td>
<td>LF</td>
<td>5</td>
<td>159</td>
<td>161.6</td>
<td>168</td>
<td>3.8</td>
</tr>
<tr>
<td>Lates niloticus</td>
<td>LT</td>
<td>16</td>
<td>188</td>
<td>368.9</td>
<td>532</td>
<td>102.4</td>
</tr>
<tr>
<td>Marcusenius senegalensis</td>
<td>LF</td>
<td>11</td>
<td>90</td>
<td>111.8</td>
<td>180</td>
<td>25.2</td>
</tr>
<tr>
<td>Mormyrus rume</td>
<td>LF</td>
<td>11</td>
<td>16</td>
<td>156.5</td>
<td>200</td>
<td>50.6</td>
</tr>
<tr>
<td>Oreochromis niloticus</td>
<td>LT</td>
<td>94</td>
<td>170</td>
<td>242.3</td>
<td>340</td>
<td>35.7</td>
</tr>
<tr>
<td>Petrocephalus sp.</td>
<td>LF</td>
<td>3</td>
<td>60</td>
<td>60.0</td>
<td>60</td>
<td>0.0</td>
</tr>
<tr>
<td>Schilbe mystus</td>
<td>LF</td>
<td>20</td>
<td>100</td>
<td>173.1</td>
<td>210</td>
<td>29.2</td>
</tr>
<tr>
<td>Synodontis batensoda</td>
<td>LF</td>
<td>15</td>
<td>10</td>
<td>123.9</td>
<td>190</td>
<td>69.5</td>
</tr>
<tr>
<td>Synodontis bicutatus</td>
<td>LF</td>
<td>6</td>
<td>140</td>
<td>156.5</td>
<td>170</td>
<td>11.9</td>
</tr>
<tr>
<td>Synodontis claris</td>
<td>LF</td>
<td>9</td>
<td>100</td>
<td>134.3</td>
<td>185</td>
<td>30.1</td>
</tr>
<tr>
<td>Synodontis orientalis</td>
<td>LF</td>
<td>21</td>
<td>100</td>
<td>128.9</td>
<td>190</td>
<td>23.3</td>
</tr>
<tr>
<td>Synodontis schall</td>
<td>LF</td>
<td>2</td>
<td>10</td>
<td>50.0</td>
<td>90</td>
<td>56.6</td>
</tr>
</tbody>
</table>

In Table 2, the distribution of fish species by trophic category indicates the proportion of species in each group. The sampling included species that are important food sources and have a significant impact on the local community. The results show that the local community relies heavily on these species, and their abundance is crucial for maintaining the food security of the community. The increase in the abundance of small fish suggests a decline in large fish populations, which could have implications for the sustainability of the fishery.

### Table 2: Species distribution recorded in the catch range by trophic category.

<table>
<thead>
<tr>
<th>Trophic category</th>
<th>Number of species</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary consumers</td>
<td>3</td>
<td>Citharinus citharus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distichodus rostratus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oreochromis niloticus</td>
</tr>
<tr>
<td>Secondary consumers</td>
<td>13</td>
<td>Alestes baremoze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Claris gariepinus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gymnarchus niloticus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperopsis bebe bebe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperopsis bebe bebe niloticus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marcusenius senegalensis</td>
</tr>
<tr>
<td>Apex predators</td>
<td>4</td>
<td>Bagrus bajad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bagrus docmak</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterotis niloticus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schilbe mystus</td>
</tr>
<tr>
<td>Omnivores</td>
<td>3</td>
<td>Brycinus nurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterobranchus bidorsalis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heterotis niloticus</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Proportion by weight and trophic level of species caught in Lake Iro (grey). The proportion was discriminated according to two modalities: “lake border” (white) and “lake mouth” (dark).

Figure 5: Catch (biomass-kg) per surface area (ha) according to trophic categories. The catch was discriminated according to three modalities: all the lake (grey), the lake border (white) and “lake mouth” (dark).
The results presented here are the first step towards the establishment of a sustainable and durable fisheries management plan in Central Africa. As announced in the abstract, it has a limitation which is the limited set of fish composition, diversity and trophic level. Although the approach used in this study shed slight light on the management plan as also more global indicators such as the slope of the size spectrum, the abundance of species, the mean sizes or size distributions, but samples collected at the mouth and on the border of the Lake examined to investigate the impact of fishing on fish populations present at the mouth and summarise the actual situation of Lake Iro, in Chad. Both literature and scientific survey data were used to perform appropriate analyses that allowed developing indices or finding information for this Central African Lake. The analysis based on a comparison between samples collected at the mouth and on the border of the Lake examined the abundance of species, the mean sizes or size distributions, but also more global indicators such as the slope of the size spectrum, trophic levels, and diversity indices. The analyses enabled to gain new knowledge, especially on the structure of the ichthyological stands in Chad where the current data and knowledge on fish populations and fisheries impacts are really poor. The key component of this study is the informative fish description, which included size, composition, biomass, trophic level in the Lake Iro. The study has a richness of 23 fish species, defined in different tropical categories, which are primary and secondary consumers, predators and omnivores. The different indicators developed and the choice of the indices helped to define the fish composition, diversity and trophic level. Although the approach used in this study shed slight light on the management plan as announced in the abstract, it has a limitation which is the limited set of data that can be assumed as insufficient to draw definitive conclusions. The results presented here are the first step towards the establishment of a sustainable and durable fisheries management plan in Central Africa.

Acknowledgment

The authors would like to thank Timothée Brochier (IRD) for the English editing.

We also thank the two anonymous reviewers whose comments have helped to considerably improve the manuscript. Conflict of interest and funding eventual conflicts of interest (including personal communications or additional permissions, related manuscripts), sources of financial support, corporate involvement and patent holdings are disclosed. The project that allowed collecting the data related to this manuscript was funded by the French Institute for the Environment.

References


