Silent Crisis: Epidemic Hypertension in Rural West Africa

Emmanuel Ato Williams,1,2*, Daniel Ansong1, Stephen Alder2, Lowell Scott Benson2, Stephen James Campbell2, Katherine MacDonald2, Tadashi R Miya3, Isaac Boakye4, Joseph Marfo Boaheng1, Evans Xorse Amuzu1, Osei Asibey Owusu1, Isaac Nyanor1, Bernard Arhin1 and Ty Triston Dickerson2

1Komfo Anokye Teaching Hospital, Ghana
2Division of Public Health, University of Utah School of Medicine, USA
3Department of Inpatient Pediatrics, University of Utah School of Medicine, USA

Abstract

Background: Hypertension is the commonest modifiable risk factor of cardiovascular diseases and a major preventable cause of premature mortality. The worldwide prevalence of hypertension will increase by more than half by 2025; almost three-quarters of people with hypertension will be living in developing countries by 2025. We set out to evaluate the burden and correlates of adult hypertension in a rural Ghanaian community.

Methods: A cross-sectional survey was conducted on 438 adults aged ≥35 in the Barekese sub-district (estimated population 18,510). Socio-demographic characteristics, modifiable and non-modifiable risk factors, blood pressure (BP) and anthropometric measurements were collected using standardized protocols.

Results: The proportion of hypertension and isolated systolic hypertension in the study population is 50.9% and 16.0% respectively. Only 21.2% were previously diagnosed as hypertensive; 25.8% of whom were not being treated. The proportion of the people with hypertension whose BPs were controlled (<140/90mmHg) was 13.5%. The mean systolic and diastolic BPs were 134.75 mmHg (SD: 24.68) and 83.01 mmHg (SD: 13.58). Obesity (Body Mass Index, BMI>30 kg/m²) was found in 13.24% of the population, with 6.7% being extremely obese (BMI>40 kg/m²). Factors such as increasing age and BMI positively correlated with BP.

Conclusion: There appears to be a high burden of hypertension in rural Ghana; the low detection, and poor management and control should make this a high priority. These findings indicate the need for urgent measures to promote health education that would facilitate prevention, early detection, and management of hypertension.

Keywords: Hypertension; Cardiovascular; Epidemic; Rural; Ghana; West Africa; Developing countries

Introduction

Systemic Arterial Hypertension (hereafter referred to as ‘hypertension’) is defined as blood pressure (BP) ≥140/90 mmHg [1]. It is a major preventable cause of premature mortality through its association with Cardiovascular Disease (CVD) and renal disease. Hypertension-related CVD primarily includes stroke and Ischaemic Heart Disease (IHD). Isolated Systolic Hypertension (ISH) is more common in the elderly because the Diastolic Blood Pressure (DBP) plateaus in the 5th and 6th decades and, subsequently, gradually declines, unlike the Systolic Blood Pressure (SBP), which continues to increase with age [2]. Annually, approximately 8 million deaths worldwide are attributable to elevated SBP, accounting for about 14% of all deaths [3]. This includes 54% and 47% of hypertension-attributable deaths due to stroke and IHD, respectively [3]. The risk of death from such cardiovascular events (CE) increases in a ‘log-linear’ fashion for BP ≥115/75 mmHg, even in individuals with no known underlying vascular disease [4]. For instance, the probability of dying from CE such as IHD and stroke is doubled for every 20 mmHg increase in SBP or 10 mmHg rise in DBP in middle-aged and elderly persons [4].

The worldwide prevalence of hypertension is projected to increase by more than 50% by 2025 [3], implying an expected increase in global mortality from hypertension. Additionally, it is estimated that three-quarters of people with hypertension live in developing countries [5,6] where complicating factors such as poor detection and awareness [5-7], inadequate treatment and control [7,8], and increased risk [9,10] and severity [11] of end-organ damage contribute to a relatively earlier age for hypertension-related mortality (e.g., more than 52% compared to 23% under age 70) than in high-income countries [12,13]. Moreover, about 80% of the hypertension-attributable disease burden occurs in low- and middle-income countries with more than one-half occurring in individuals aged 45 to 69 years [3].

It had been previously suggested that hypertension is not a significant health problem in rural Ghana and that large-scale hypertension case-finding and intervention programmes should be confined to urban populations [14]. This assertion is no longer tenable, as studies increasingly indicate a rising number of persons with hypertension in not only urban, but also, rural communities in developing countries such as Ghana [15-18]. While historically, morbidity and mortality in Ghana were largely due to the significant infectious disease burden, it is rapidly being augmented by the rising incidence of noninfectious diseases, including hypertension. This epidemiologic transition has led to a ‘double-burden’ of disease phenomenon [19]. Consequently, efficiency in addressing the public health problems of developing nations such as Ghana is contingent on measures that address this dual burden of disease in their approach.

The Barekese sub-district of Ghana is a rural community near Kumasi, Ghana’s second largest city, where investigators have previously identified a high burden of hypertension along with poor
detection, treatment and control as part of the Barekuma Collaborative Community Development Project (BCCDP) [17]. The current study was carried out to confirm the previous findings [17] in an attempt to identify and flag a potentially imminent crisis of hypertension in this rural community where data have been scarcely available.

Methods

Study area and setting

Ghana, located in West Africa, is bordered by the Ivory Coast (West), Burkina Faso (North), Togo (East) and the Gulf of Guinea and Atlantic Ocean (South). It consists of 10 regions and 216 districts and has a population of about 25 million [20]. The name ‘Ghana’ originates from a medieval Ghana Empire kingly title meaning ‘Warrior King’ [21]. Ghana, formerly Gold Coast and now reputed as ‘the Switzerland of Africa’ [22], is regarded as a model nation in Africa with democratic and peaceful political transitions for over 2 decades, as well as being one of the continent’s fastest growing economies (producing gold, cocoa, and crude oil). It is classified as a Lower-Middle Income Economy by the World Bank [23] and ranked 135 out of 187 on the联合国人口发展指数 in 2012 [24]. The country has a universal health care system titled the National Health Insurance Scheme (NHIS) [25].

The BCCDP study area is located in the Barekese sub-district, one of the eight sub-districts of the Atwima Nwabiagya District in the Ashanti Region of Ghana. The BCCDP is a collaborative partnership between 20 rural Ghanaian communities near Kumasi and researchers from the Komfo Anokye Teaching Hospital (Kumasi, Ghana), the Kwame Nkrumah University of Science and Technology, KNUST (Kumasi, Ghana), and the University of Utah (Salt Lake City, Utah, USA). Focus is placed on community development efforts using Community-Based Participatory Research methodologies and primarily involves medical, health, education and economic development in the context of the social environment and infrastructure. The Barekese sub-district has a population and an extremely/morbidly obese (>40 kg/m²).

Study design and recruitment of participants

This study employed a modified-questionnaire based on the World Health Organization (WHO) Study on Global Ageing and Adult Health (SAGE) [26] to document both modifiable and non-modifiable risk factors of hypertension for 438 adults aged ≥35 years sampled through a cross-sectional community-stratified survey. Written informed consent was sought from study participants. Interviewed participants subsequently had their BP, weight and height checked in a nonstretchable tailor’s measuring tape to mark off measurements against a straight wall while standing on a flat surface. The Body Mass Index (BMI) for each participant was calculated as the ratio of weight in kilogrammes to the square of height in metres (kg/m²). As with SBP and DBP, height and weight values were taken twice from each participant to reduce measurement error.

Data analysis

Data were coded and entered on a daily basis into Epi-Info (TM) 3.5.1 software (Centers for Disease Control and Prevention 1600 Clifton Rd. Atlanta, GA 30333, USA). The data were analysed using STATA/SE 11.1 (StataCorp 4905 Lakeway Drive College Station, Texas 77845, USA). Data from individuals who did not complete all sections of the interview were excluded from the analysis for that particular component. Basic summary statistics of participants’ socio-demographic characteristics, risk factors, SBP and DBP, weight and height as well as BMI were calculated. The mean SBP and DBP were calculated for age and gender, as well as the mean BMI by gender. Multiple regression analyses of independent variables associated with SBP and DBP were assessed according to gender. P-values less than or equal to 0.05 were considered statistically significant.

Ethical approval

The study protocol was approved by the Kwame Nkrumah University of Science and Technology-School of Medical Sciences and the Komfo Anokye Teaching Hospital (KNUST-SMS/KATH) Committee on Human Research, Publications and Ethics, Kumasi, Ghana.

Results

Baseline characteristics

The study interviewed 438 adults aged 35 years or above with a ratio of 1.9:1 females-to-males. At least 423 participants completed all sections of the interview, giving a complete response rate of 96.6%. The median age of the study participants was 53 years (excluding...
9 participants who could not confirm their ages). Most of the study participants were Christian (85.4%) and literate (75.3%), whereas more than half (50.7%) were married. Of the literate respondents, 47.3% had up to Junior High School education, and the median total number of years of schooling was 9 years. About one-quarter of respondents reported no schooling [Table 1].

Blood Pressure and BMI according to age categories

Although this study identified 50.9% of the study participants as hypertensive, only 21.2% had been previously diagnosed. This proportion of study participants identified as hypertensive included 30 participants with a previous diagnosis of hypertension and/or on drug treatment for hypertension but who had an average BP ≤ 140/90 mmHg at the time of the study. Nearly one-quarter (25.8%) of those diagnosed previously were not on treatment for hypertension. The SBP was either normal or pre-hypertensive in 61.42% of the cohort, and the mean SBP was 134.75 mmHg (SD: 24.68). Elevated SBP in Stage 1 and 2 ranges was 15.3% and 12.56% respectively [Table 2]. The ratio of participants with controlled-to-uncontrolled SBP was approximately 1.6:1. The proportion of participants who recorded DBP in the Stage I and 2 ranges was 15.3% and 12.56% respectively. The mean diastolic BP recorded was 83.01 mmHg (SD: 13.58) for both males and females [Table 3]. The mean SBP was 135.25 mmHg > 133.82 mmHg (for females > males) and the DBP 84.21 mmHg > 82.37 mmHg (for females > males) across all age-categories (55.99; SD 15.2 years) was higher than for females (54.37; SD 16.1 years) [Table 4]. About 14% of participants were in the overweight category (BMI 25-29.9) and 13% of the cohort was classified as obese (BMI ≥ 30) (Table 2 and 3). About one-quarter (25.8%) of those individuals have previously been diagnosed but were not on treatment for hypertension. The SBP was either normal or pre-hypertensive in 61.42% of the cohort, and the mean SBP was 134.75 mmHg (SD: 24.68) [Table 3].

Table 1: Socio-demographic characteristics of study sample.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (%)</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (n: 429)</td>
<td>53 years (41-66)</td>
<td></td>
</tr>
<tr>
<td>Sex (n: 438)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>152(34.70)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>286(65.30)</td>
<td></td>
</tr>
<tr>
<td>Marital Status (n:438)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>16(3.65)</td>
<td></td>
</tr>
<tr>
<td>Cohabiting</td>
<td>44(10.05)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>222(50.68)</td>
<td></td>
</tr>
<tr>
<td>Separated/Divorced</td>
<td>73(16.67)</td>
<td></td>
</tr>
<tr>
<td>Widowed</td>
<td>83(18.95)</td>
<td></td>
</tr>
<tr>
<td>Religion (n:438)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christian</td>
<td>374(85.39)</td>
<td></td>
</tr>
<tr>
<td>Moslem</td>
<td>39(8.90)</td>
<td></td>
</tr>
<tr>
<td>Traditional</td>
<td>1(0.23)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>24(5.48)</td>
<td></td>
</tr>
<tr>
<td>Ever been to school (n:438)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>330(75.34)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>108(24.66)</td>
<td></td>
</tr>
<tr>
<td>Highest level of education (n:330)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than Primary school</td>
<td>48(14.55)</td>
<td></td>
</tr>
<tr>
<td>Primary school</td>
<td>83(25.15)</td>
<td></td>
</tr>
<tr>
<td>Secondary school</td>
<td>156(47.27)</td>
<td></td>
</tr>
<tr>
<td>High School or equivalent</td>
<td>33(10.00)</td>
<td></td>
</tr>
<tr>
<td>College/University</td>
<td>9(2.73)</td>
<td></td>
</tr>
<tr>
<td>Postgraduate Degree</td>
<td>1(0.30)</td>
<td></td>
</tr>
<tr>
<td>Total years of schooling (n:330)</td>
<td>9 years (6 to 10)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²) categories</td>
<td>Standard</td>
</tr>
<tr>
<td>Underweight (<18.5 Kg/m²)</td>
<td>52(12.29)</td>
</tr>
<tr>
<td>Normal (18.5-24.9 Kg/m²)</td>
<td>221(52.25)</td>
</tr>
<tr>
<td>Overweight (25-29.9 Kg/m²)</td>
<td>90(21.28)</td>
</tr>
<tr>
<td>Obese (≥30 Kg/m²)</td>
<td>56(13.24)</td>
</tr>
<tr>
<td>Extremely obese (>40 Kg/m²)</td>
<td>4(0.95)</td>
</tr>
<tr>
<td>SBP measurement categories</td>
<td>Standard</td>
</tr>
<tr>
<td>Normal (<120mmHg)</td>
<td>127(29.00)</td>
</tr>
<tr>
<td>Pre-HTN (120-139 mmHg)</td>
<td>142(32.42)</td>
</tr>
<tr>
<td>Stage I HTN (140-159 mmHg)</td>
<td>103(23.52)</td>
</tr>
<tr>
<td>Stage II HTN (≥160 mmHg)</td>
<td>66(15.07)</td>
</tr>
<tr>
<td>Controlled (<140 mmHg)</td>
<td>269(61.42)</td>
</tr>
<tr>
<td>Uncontrolled (≥140 mmHg)</td>
<td>169(38.58)</td>
</tr>
<tr>
<td>DBP measurement categories</td>
<td>Standard</td>
</tr>
<tr>
<td>Normal (<80mmHg)</td>
<td>195(44.52)</td>
</tr>
<tr>
<td>Pre-HTN (80-89 mmHg)</td>
<td>121(27.63)</td>
</tr>
<tr>
<td>Stage I HTN (90-99 mmHg)</td>
<td>67(15.30)</td>
</tr>
<tr>
<td>Stage II HTN (≥100 mmHg)</td>
<td>55(12.56)</td>
</tr>
<tr>
<td>Controlled (<90 mmHg)</td>
<td>316(72.15)</td>
</tr>
<tr>
<td>Uncontrolled (≥90 mmHg)</td>
<td>122(27.85)</td>
</tr>
</tbody>
</table>

HTN: hypertension; %-: percent; BMI: Body Mass Index; SBP: systolic blood pressure; DBP: diastolic blood pressure.

Table 2: BMI, systolic BP (SBP) and diastolic BP (DBP) characteristics.

Table 3: Anthropometrics and mean BP by sex.

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Male (Mean) (SEM)</th>
<th>Female (Mean) (SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>35-44</td>
<td>124.94 (14.94)</td>
<td>125.98 (17.77)</td>
</tr>
<tr>
<td>45-54</td>
<td>132.68 (23.68)</td>
<td>132.73 (24.05)</td>
</tr>
<tr>
<td>55-64</td>
<td>135.25 (14.31)</td>
<td>138.62 (13.62)</td>
</tr>
<tr>
<td>≥65</td>
<td>143.93 (28.31)</td>
<td>144.47 (27.67)</td>
</tr>
</tbody>
</table>

Table 4: Age and sex-specific systolic and diastolic blood pressure.

Table 5: Multivariate associations with blood pressure.
saturated fat (DBP), alcohol consumption (SBP) and smoking (SBP) were associated with either DBP or SBP for males; whereas others, including a family history of diabetes (SBP), salt consumption (DBP) and smoking (DBP) were associated with DBP or SBP for females. These latter associations and, even an unexpected association of physical exercise with SBP in males, were not consistently found for both sexes across the BP categories.

Discussion

Using a structured questionnaire, we interviewed individuals aged ≥35 years in the Barekese sub-district of Ghana and measured their blood pressure and anthropometric indices. The median age of the sampled population was 53 years, which is marginally higher than the expected increase in median age from a prior cohort (50 years) [17]. We recognize age as an important criterion for our comparison with last year’s findings on account of the well-known association between age and elevated BP [28,29]. Secondly, it is noteworthy that the cohort for the present study is closer to age 55 than last year’s – an age at or above which the majority (96%) of deaths from stroke or Coronary Heart Disease events (such as myocardial infarction and sudden cardiac death) occur [30]. Thirdly, with the plateauing in the 5th and 6th decades of life, and subsequent decline in DBP, the incidence of ISH rises with increasing SBP and age. This trend is found in our study population as the age-specific all-mean SBP increases with age whereas the DBP falls after an initial rise. The proportion of ISH in this population was found to be 16.0%. ISH has been associated with an increased risk of stroke, CHD and, renal disease [31], as well as being difficult to control [30]. These data highlight the need to urgently evaluate and implement measures aimed at promoting healthy aging in this population.

This study found a high proportion (50.9%) of hypertensive adults aged at least 35 years in this rural community. This is even higher than recent estimates; in 2012, Cook-Huynh et al [16] reported a prevalence of hypertension of 35% in the rural Adankwame sub-district, a community that is also part of the BCCDP with very similar characteristics to the Barekese sub-district. In 2013, Williams et al [17] reported a proportion of hypertension of 44.7% among adults 35 years and above in this same Barekese sub-district. These findings suggest a rapidly increasing burden of hypertension in this rural community. Alongside other estimates [16-19], the findings of this study imply a significant problem of elevated BP in rural Ghana. This will lead to substantial health and economic costs that must be considered in healthcare policy. For instance, the global prevalence of elevated BP in adults aged 25 or above was 40% in 2008, but the highest (46%) was reported in the WHO African Region compared with 35% in the Americas [33]. This means that the prevalence of elevated BP in Africa already exceeds those of other WHO regions, and the further increases suggested by this and other studies represent a serious but overlooked public health emergency on the continent. It is important to acknowledge that more than 50% of the estimated costs of low economic output due to noncommunicable diseases (NCD) are secondary to CVD, exceeding that of diabetes, cancer and respiratory disease combined, and that the costs of NCD are projected to outpace public spending on health [34]. This obviously implies the profound economic implications of a high prevalence of hypertension. However, in spite of the economic cost of hypertension being greater than that of either diabetes or respiratory illnesses in low-, middle- and high-income countries alike, diabetes and respiratory illnesses have much more public visibility than hypertension [35].

The mean SBP (standard error of mean, SEM) of 134.75 mmHg (1.18) found in this study is higher than estimates from other recent studies including Kunutsor and Powles [36], 122.86 mmHg (0.87);
14.1% of obesity and a mean BMI of 24.4 kg/m², which were both
Ghanaian adults aged 25 and above identified a crude prevalence of
obese. A survey [39] to determine the prevalence of obesity in 4733
individuals was 13.24% of the population, with 6.7% being extremely
population. An individual diagnosis of high BP cannot be made based
mean ‘casual’ BPs are unbiased estimates of mean ‘usual’ BPs for the
two measurements was to help minimize this effect. We assumed the
‘usual’ BPs followed up over a period of time. The use of the average of
assessed participants’ ‘casual’ BPs which may be different from their
Limitations of the Study

Although the mean BMI was 23.9 kg/m², the proportion of obese
individuals was 13.24% of the population, with 6.7% being extremely
obese. A survey [39] to determine the prevalence of obesity in 4733
Ghanaian adults aged 25 and above identified a crude prevalence of
14.1% of obesity and a mean BMI of 24.4 kg/m², which were both
slightly higher compared with the findings from this study. A 5%
increase in obesity and weight gain is associated with 20% to 30%
increase in odds of developing hypertension [38], although it has also
been found that a higher baseline BMI increases future incident risk for
hypertension even when there has been no major weight increase [40].
Central obesity is a stronger cardiometabolic risk factor than lower-
body obesity [41] but these were not specifically assessed by this study.

Finally the study assessed the effects of various risk factors on SBP
and DBP in this population through a multiple regression analysis.
Increasing age and BMI were the most consistently positively correlated
with SBP and DBP in both males and females. However, other factors
such as saturated fat, alcohol and salt intake as well as smoking and a
family history of diabetes also correlated with BP in this study. All these
factors have been shown to influence blood pressure [38,42].

Limitations of the Study

Inherent in its design as a cross-sectional study, this survey
assessed participants’ ‘casual’ BPs which may be different from their
‘usual’ BPs followed up over a period of time. The use of the average of
two measurements was to help minimize this effect. We assumed the
mean ‘casual’ BPs are unbiased estimates of mean ‘usual’ BPs for the
population. An individual diagnosis of high BP cannot be made based
on casual BP alone without following up with repeated measurements.
Furthermore, women were represented disproportionately compared to
men.

Conclusion

The notion that hypertension is an insignificant problem in rural
Ghana is misleading and inaccurate. It is critical to address the health
care needs of developing countries, particularly, rural dwellers with the
perspective of a ‘double-burden’ of disease in order to achieve optimal
health targets in this population. Healthcare providers need to educate,
encourage, and model life-style modifications such as the Dietary
Approaches to Stop Hypertension (DASH) [43] diet and regular exercise.
The DASH diet recommendations should include reducing salt and saturated fat intake, increasing potassium and fruit and
vegetables intake, weight loss, and moderation of alcohol consumption.
As well as encouraging physical activity and the DASH diet, preventive
strategies should include tobacco control programmes and regular
periodic health assessments for adults. Although the evidence [38]
indicates that ‘normotensive’ or pre-hypertensive individuals are not
exempt from CE and mortality, there is as yet no available high-level
evidence to recommend routine screening with electrocardiography for
asymptomatic individuals [44,45]. Nonetheless, it is crucial that
healthcare providers and policy makers adopt educational measures
that will promote a culture of monitoring one’s cardiovascular health,
especially in the setting of prevailing risk factors, and complying with
recommendations and medications.

Healthcare policy should include more efforts to strengthen
primary level healthcare at the sub-district and district levels through
education and sensitization of the general population as well as
continuous professional development courses for healthcare providers.
These educational measures should address preventive and treatment
methods of hypertension and the cardiometabolic risk factors. The
provision of free antihypertensive medications through the National
Health Insurance Scheme [25] is an important strategy that ought
to be sustained and expanded to include more efficacious and safe
medications. Strengthening of the referral systems from the primary
level up to the tertiary centers will allow for the continued management
of cases that are difficult to manage at the rural centers. Appropriate
feedback and regular refresher courses or seminars organized by the
secondary centers on referred cases would serve to improve the subsequent
quality of management of cases at the referring centers.

Acknowledgement

The authors would like to acknowledge the staff of the Research and
Development Unit of Komfo Anokye Teaching Hospital and the trained
interviewers from Utah and Ghana who helped with data collection.

References

The Seventh Report of the Joint National Committee on Prevention, Detection,
evaluation, and Treatment of High Blood Pressure: the JNC 7 report. National
Heart, Lung, and Blood Institute Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure. National High
Blood Pressure Education Program Coordinating Committee. JAMA 289: 2560-
2572.

2. [No authors listed] (1994) National High Blood Pressure Education Program

3. Lawes CM, Vander Hoom S, Rodgers A; International Society of Hypertension
1513-1518.

relevance of usual blood pressure to vascular mortality: a meta-analysis of
individual data for 1 million adults in 61 prospective studies. Lancet 360: 1903-
1913.

