Simplicial Hochschild cochains as an Amitsur complex ${ }^{1}$

Lars KADISON ${ }^{2}$
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. E-mail: lkadison@math.upenn.edu

Abstract

It is shown how the cochain complex of the relative Hochschild A-valued cochains of a depth two extension $A \mid B$ under cup product is isomorphic as a differential graded algebra with the Amitsur complex of the coring $S=\operatorname{End}_{B} A_{B}$ over the centralizer $R=A^{B}$ with grouplike element 1_{S}. This specializes to finite dimensional algebras, Hopf-Galois extensions and H -separable extensions.

2000 MSC: 18G25.

1 Introduction

Relative Hochschild cohomology of a subring $B \subseteq A$ or ring homomorphism $B \rightarrow A$ is set forth in [4]. The coefficients of the general form of the cohomology theory are taken in a bimodule M over A. If $M=A^{*}$ is the k-dual of the k-algebra A, this gives rise to a cyclic symmetry exploited in cyclic cohomology. If $M=A$, this has been shown to be related to the simplicial cohomology of a finitely triangulated space via barycentric subdivision, the poset algebra of incidence relations and the separable subalgebra of simplices by Gerstenhaber and Schack in a series of papers beginning with [3]. The A-valued relative cohomology groups of (A, B) are also of interest in deformation theory. Thus we refer to the relative Hochchild cochains and cohomology groups $H^{n}(A, B ; A)$ as simplicial Hochschild cohomology.

In this note we will extend the following algebraic result in [6]: given a depth two ring extension $A \mid B$ with centralizer $R=A^{B}$ and endomorphism ring $S=\operatorname{End}_{B} A_{B}$, the simplicial Hochschild cochains under cup product are isomorphic as a graded algebra to the tensor algebra of the (R, R)-bimodule S. Since S is a left bialgebroid over R, it is in particular an R-coring with grouplike element $1_{S}=\mathrm{id}_{A}$. The Amitsur complex of such a coring is a differential graded algebra explained in [2, 29.2]. We note below that the algebra isomorphism in [6] extends to an isomorphism of differential graded algebras. We remark on the consequences for cohomology of various types of Galois extensions with bialgebroid action or coaction.

2 Preliminaries on depth two extensions

All rings and algebras have a unit and are associative; homomorphisms between them preserve the unit and modules are unital. Let R be a ring, and M_{R}, N_{R} be two right R-modules. The notation M / N denotes that M is R-module isomorphic to a direct summand of an n-fold direct sum power of $N: M \oplus * \cong N^{n}$. Recall that M and N are similar $[1, \mathrm{p} .268]$ if M / N and N / M. A ring homomorphism $B \rightarrow A$ is sometimes called a ring extension $A \mid B$ (proper ring extension if $B \hookrightarrow A$).

[^0]Definition 2.1. A ring homomorphism $B \rightarrow A$ is said to be a right depth two (rD2) extension if the natural (A, B)-bimodules $A \otimes_{B} A$ and A are similar.

Left D 2 extension is defined similarly using the natural (B, A)-bimodule structures: a D 2 extension is both rD2 and $\ell \mathrm{D} 2$. Note that in either case any ring extension satisfies $A / A \otimes_{B} A$.

Note some obvious cases of depth two: 1) A a finite dimensional algebra, B the ground field. 2) A a finite dimensional algebra, B a separable algebra, since the canonical epi $A \otimes A \rightarrow A \otimes_{B} A$ splits. 3) $A \mid B$ an H-separable extension. 4) $A \mid B$ a finite Hopf-Galois extension, since the Galois isomorphism $A \otimes_{B} A \xrightarrow{\cong} A \otimes H$ is an $(A, B$)-bimodule arrow (and its twist by the antipode shows $A \mid B$ to be $\ell \mathrm{D} 2$ as well).

Fix the notation $S:=\operatorname{End}_{B} A_{B}$ and $R=A^{B}$. Equip S with (R, R)-bimodule structure

$$
r \cdot \alpha \cdot s=r \alpha(-) s=\lambda_{r} \circ \rho_{s} \circ \alpha
$$

where $\lambda, \rho: R \rightarrow S$ denote left and right multiplication of $r, s \in R$ on A.
Lemma 2.2 ([5]). If $A \mid B$ is rD2, then the module S_{R} is a projective generator and

$$
f_{2}: S \otimes_{R} S \xrightarrow{\cong} \operatorname{Hom}\left({ }_{B} A \otimes_{B} A_{B},{ }_{B} A_{B}\right)
$$

via $f_{2}\left(\alpha \otimes_{R} \beta\right)\left(x \otimes_{B} y\right)=\alpha(x) \beta(y)$ for $x, y \in A$.
For example, if A is a finite dimensional algebra over ground field B, then $S=\operatorname{End} A$, the linear endomorphism algebra. If $A \mid B$ is H-separable, then $S \cong R \otimes_{Z} R^{\mathrm{op}}$, where Z is the center of $A[5,4.8]$. If $A \mid B$ is an H^{*}-Hopf-Galois extension, then $S \cong R \# H$, the smash product where H has dual action on A restricted to R [5, 4.9].

Recall that a left R-bialgebroid H is a type of bialgebra over a possibly noncommutative base ring R. More specifically, H and R are rings with "target" and "source" ring anti-homomorphism and homomorphism $R \rightarrow H$, commuting at all values in H, which induce an (R, R)-bimodule structure on H from the left. W.r.t. this structure, there is an R-coring structure $(H, R, \Delta, \varepsilon)$ such that 1_{H} is a grouplike element (see the next section) and the left H-modules becomes a tensor category w.r.t. this coring structure. One of the main theorems in depth two theory is

Theorem 2.3 ([5]). Suppose $A \mid B$ is a left or right D2 ring extension. Then the endomorphism ring $S:=\operatorname{End}_{B} A_{B}$ is a left bialgebroid over the centralizer $A^{B}:=R$ via the source map $\lambda: R \hookrightarrow S$, target map $\rho: R^{\mathrm{op}} \hookrightarrow S$, coproduct

$$
\begin{equation*}
f_{2}(\Delta(\alpha))\left(x \otimes_{B} y\right)=\sum_{(\alpha)} f_{2}\left(\alpha_{(1)} \otimes_{R} \alpha_{(2)}\right)\left(x \otimes_{B} y\right)=\alpha(x y) \tag{2.1}
\end{equation*}
$$

Also A under the natural action of S is a left S-module algebra with invariant subring $A^{S} \cong$ End ${ }_{E} A$, where $E:=$ End $A_{B} \cong A \# S$ via $a \otimes_{R} \alpha \mapsto \lambda_{a} \circ \alpha$.

We note in passing the measuring axiom of module algebra action from Eq. (2.1): in Sweedler notation, $\sum_{(\alpha)} \alpha_{(1)}(x) \alpha_{(2)}(y)=\alpha(x y)$.

3 Amitsur complex of a coring with grouplike

An R-coring \mathcal{C} has coassociative coproduct $\Delta: \mathcal{C} \rightarrow \mathcal{C} \otimes_{R} \mathcal{C}$ and counit $\varepsilon: \mathcal{C} \rightarrow R$, both mappings being (R, R)-bimodule homomorphisms. We assume that \mathcal{C} also has a grouplike element $g \in \mathcal{C}$, which means that $\Delta(g)=g \otimes_{R} g$ and $\varepsilon(g)=1$. The Amitsur complex $\Omega(\mathcal{C})$ of (\mathcal{C}, g) has n-cochain modules $\Omega^{n}(\mathcal{C})=\mathcal{C} \otimes_{R} \cdots \otimes_{R} \mathcal{C}(n$ times $\mathcal{C})$, the zero'th given by $\Omega^{0}(\mathcal{C})=R$. The Amitsur
complex is the tensor algebra $\Omega(\mathcal{C})=\oplus_{n=0}^{\infty} \Omega^{n}(\mathcal{C})$ with a compatible differential $d=\left\{d^{n}\right\}$ where $d^{n}: \Omega^{n}(\mathcal{C}) \rightarrow \Omega^{n+1}(\mathcal{C})$. These are defined by $d^{0}: R \rightarrow \mathcal{C}, d^{0}(r)=r g-g r$, and

$$
\begin{aligned}
d^{n}\left(c^{1} \otimes \cdots \otimes c^{n}\right)= & g \otimes c^{1} \otimes \cdots \otimes c^{n}+(-1)^{n+1} c^{1} \otimes \cdots \otimes c^{n} \otimes g \\
& +\sum_{i=1}^{n}(-1)^{i} c^{1} \otimes \cdots \otimes c^{i-1} \otimes \Delta\left(c^{i}\right) \otimes c^{i+1} \otimes \cdots \otimes c^{n}
\end{aligned}
$$

Some computations show that $\Omega(\mathcal{C})$ is a differential graded algebra [2], with defining equations, $d \circ d=0$ as well as the graded Leibniz equation on homogeneous elements,

$$
d\left(\omega \omega^{\prime}\right)=(d \omega) \omega^{\prime}+(-1)^{|\omega|} \omega d \omega^{\prime}
$$

The name Amitsur complex comes from the case of a ring homomorphism $B \rightarrow A$ and A coring $\mathcal{C}:=A \otimes_{B} A$ with coproduct $\Delta\left(x \otimes_{B} y\right)=x \otimes_{B} 1_{A} \otimes_{B} y$ and counit $\varepsilon\left(x \otimes_{B} y\right)=x y$. The element $g=1 \otimes_{B} 1$ is a grouplike element. We clearly obtain the classical Amitsur complex, which is acyclic if A is faithfully flat over B. In general, the Amitsur complex of a Galois A coring (\mathcal{C}, g) is acyclic if A is faithfully flat over the g-coinvariants $B=\{b \in A \mid b g=b g\}[2$, 29.5].

The Amitsur complex of interest to this note is the following derivable from the left bialgebroid $S=\operatorname{End}_{B} A_{B}$ of a depth two ring extension $A \mid B$ with centralizer $A^{B}=R$. The underlying R-coring S has grouplike element $1_{S}=\mathrm{id}_{A}$, with (R, R)-bimodule structure, coproduct and counit defined in the previous section. In Sweedler notation, we may summarize this as follows:

$$
\begin{aligned}
& \Omega(S)=R \oplus S \oplus S \otimes_{R} S \oplus S \otimes_{R} S \otimes_{R} S \oplus \ldots \\
& d^{0}(r)=\lambda_{r}-\rho_{r}, \quad d^{1}(\alpha)=1_{S} \otimes_{R} \alpha-\alpha_{(1)} \otimes_{R} \alpha_{(2)}+\alpha \otimes_{R} 1_{S}, \quad \ldots
\end{aligned}
$$

4 Cup product in simplicial Hochschild cohomology

Let $A \mid B$ be an extension of K-algebras. We briefly recall the B-relative Hochschild cohomology of A with coefficients in A (for coefficients in a bimodule, see the source [4]). The zero'th cochain group $C^{0}(A, B ; A)=A^{B}=R$, while the n 'th cochain group

$$
C^{n}(A, B ; A)=\operatorname{Hom}_{B-B}\left(A \otimes_{B} \cdots \otimes_{B} A, A\right)
$$

(n times A in the domain). In particular, $C^{1}(A, B ; A)=S=\operatorname{End}_{B} A_{B}$. The coboundary $\delta^{n}: C^{n}(A, B ; A) \rightarrow C^{n+1}(A, B ; A)$ is given by

$$
\begin{aligned}
\left(\delta^{n} f\right)\left(a_{1} \otimes \cdots \otimes a_{n+1}\right)= & a_{1} f\left(a_{2} \otimes \cdots \otimes a_{n+1}\right)+(-1)^{n+1} f\left(a_{1} \otimes \cdots \otimes a_{n}\right) a_{n+1} \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}\right)
\end{aligned}
$$

and $\delta^{0}: R \rightarrow S$ is given by $\delta^{0}(r)=\lambda_{r}-\rho_{r}$. The mappings satisfy $\delta^{n+1} \circ \delta^{n}=0$ for each $n \geq 0$. Its cohomology is denoted by $H^{n}(A, B ; A)=\operatorname{ker} \delta^{n} / \operatorname{Im} \delta^{n-1}$, and might be referred to as a simplicial Hochschild cohomology, since this cohomology is isomorphic to simplicial cohomology if A is the poset algebra of a finite simplicial complex and B is the separable subalgebra of vertices [3].

The cup product $\cup: C^{m}(A, B ; A) \otimes_{K} C^{n}(A, B ; A) \rightarrow C^{n+m}(A, B ; A)$ makes use of the multiplicative stucture on A and is given by

$$
(f \cup g)\left(a_{1} \otimes \cdots \otimes a_{n+m}\right)=f\left(a_{1} \otimes \cdots \otimes a_{m}\right) g\left(a_{m+1} \otimes \cdots \otimes a_{n+m}\right)
$$

which satisfies [3] the equation

$$
\delta^{n+m}(f \cup g)=\left(\delta^{m} f\right) \cup g+(-1)^{m} f \cup \delta^{n} g
$$

Cup product therefore passes to a product on the cohomology. We note that $\left(C^{*}(A, B ; A), \cup,+, \delta\right)$ is a differential graded algebra we denote by $C(A, B)$.

Theorem 4.1. Suppose $A \mid B$ is a right or left D2 algebra extension. Then the relative Hochschild A-valued cochains $C(A, B)$ is isomorphic as a differential graded algebra to the Amitsur complex $\Omega(S)$ of the R-coring S.

Proof. We define a mapping f by $f_{0}=\operatorname{id}_{R}, f_{1}=\operatorname{id}_{S}$, and for $n>1$,

$$
f_{n}: S \otimes_{R} \cdots \otimes_{R} S \xrightarrow{\cong} \operatorname{Hom}_{B-B}\left(A \otimes_{B} \cdots \otimes_{B} A, A\right)
$$

by $f_{n}\left(\alpha_{1} \otimes \cdots \otimes \alpha_{n}\right)=\alpha_{1} \cup \cdots \cup \alpha_{n}$. (Note that f_{2} is consistent with our notation in section 2.) We proved by induction on n in [6] that f is an isomorphism of graded algebras. We complete the proof by noting that f is a cochain morphism, i.e., commutes with differentials. For $n=0$, we note that $\delta^{0} \circ f_{0}=f_{1} \circ d^{0}$, since $d^{0}=\delta^{0}$. For $n=1$,

$$
\begin{aligned}
\delta^{1}\left(f_{1}(\alpha)\right)\left(a_{1} \otimes_{B} a_{2}\right) & =a_{1} \alpha\left(a_{2}\right)-\alpha\left(a_{1} a_{2}\right)+\alpha\left(a_{1}\right) a_{2} \\
& =f_{2}\left(1_{S} \otimes_{R} \alpha-\alpha_{(1)} \otimes_{R} \alpha_{(2)}+\alpha \otimes_{R} 1_{S}\right)\left(a_{1} \otimes_{B} a_{2}\right) \\
& =f_{2}\left(d^{1}(\alpha)\right)\left(a_{1} \otimes_{B} a_{2}\right)
\end{aligned}
$$

using Eq. (2.1). The induction step is carried out in a similar but tedious computation: this completes the proof that $C(A, B) \cong \Omega(S)$.

5 Applications of the theorem

We immediately note that the cohomology rings of the two differential graded algebras are isomorphic.

Corollary 5.1. Relative A-valued Hochschild cohomology is isomorphic to the cohomology of the A^{B}-coring $S=\operatorname{End}_{B} A_{B}$:

$$
H^{*}(A, B ; A) \cong H^{*}(\Omega(S), d)
$$

if $A \mid B$ is a left or right depth two extension.
For example, we recover by different means the known result,
Corollary 5.2. If the ring extension $A \mid B$ is H-separable and one-sided faithfully flat, then the relative Hochschild cohomology is given by

$$
H^{n}(A, B ; A)=\left\{\begin{array}{cc}
Z\left(A^{B}\right) & n=0 \\
0 & n>0
\end{array}\right.
$$

Proof. Note that the extension is necessarily proper by faithful flatness. Note that $S \cong R \otimes_{Z} R$ is a Galois R-coring, since $\left\{r \in R \mid r \cdot 1_{S}=1_{S} \cdot r\right\}=Z$, the center of A and the isomorphism $r \otimes s \mapsto \lambda_{r} \circ \rho_{s}$ is clearly a coring homomorphism. Whence $\Omega(S)$ is acyclic by [2, 29.5].

Finally,

$$
H^{0}=\operatorname{ker} d^{0}=\left\{x \in R \mid r x-x r=0, \forall r \in A^{B}\right\}
$$

which is the center of the centralizer.

This will also follow from proving that an H-separable is a separable extension, a condition of trivial cohomology groups.

Corollary 5.3. Suppose $A \mid B$ is a finite Hopf- H^{*}-Galois extension. Then relative Hochschild A-valued cohomology is isomorphic to the Cartier coalgebra cohomology of H with coefficients in the bicomodule $A^{B} \otimes H$:

$$
H^{*}(A, B ; A) \cong H_{\mathrm{Ca}}^{*}(H, R \otimes H)
$$

Acknowledgement

The author is thankful to the organizers and participants of A.G.M.F. in Gothenburg and the Norwegian algebra meeting in Oslo, 2007, for the stimulating focus on cohomology.

References

[1] F. W. Anderson and K. R. Fuller. Rings and Categories of Modules. Springer-Verlag, 2nd Edition, 1992.
[2] T. Brzeziński and R. Wisbauer. Corings and Comodules. Cambridge Univ. Press, 2003.
[3] M. Gerstenhaber and S. D. Schack. Simplicial cohomology is Hochschild cohomology. J. Pure Appl. Alg. 30, (1983), 143-156.
[4] G. Hochschild. Relative homological algebra. Trans. Amer. Math. Soc. 82 (1956), 246-269.
[5] L. Kadison and K. Szlachányi. Bialgebroid actions on depth two extensions and duality. Adv. Math. 179 (2003), 75-121.
[6] L. Kadison. Codepth two and related topics. Appl. Categ. Struct. 14 (2006), 605-625.

[^0]: ${ }^{1}$ Presented at the $3{ }^{\text {rd }}$ Baltic-Nordic Workshop "Algebra, Geometry, and Mathematical Physics", Göteborg, Sweden, October 11-13, 2007.
 ${ }^{2}$ Current address: Department of Mathematics, Louisiana State University, Baton Rouge, LA 70808, U.S.A. E-mail: lkadison@math.lsu.edu

