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Abstract

It is shown how the cochain complex of the relative Hochschild A-valued cochains of a
depth two extension A |B under cup product is isomorphic as a differential graded algebra
with the Amitsur complex of the coring S = End BAB over the centralizer R = AB with
grouplike element 1S . This specializes to finite dimensional algebras, Hopf-Galois extensions
and H-separable extensions.
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1 Introduction

Relative Hochschild cohomology of a subring B ⊆ A or ring homomorphism B → A is set forth
in [4]. The coefficients of the general form of the cohomology theory are taken in a bimodule
M over A. If M = A∗ is the k-dual of the k-algebra A, this gives rise to a cyclic symmetry
exploited in cyclic cohomology. If M = A, this has been shown to be related to the simplicial
cohomology of a finitely triangulated space via barycentric subdivision, the poset algebra of
incidence relations and the separable subalgebra of simplices by Gerstenhaber and Schack in
a series of papers beginning with [3]. The A-valued relative cohomology groups of (A,B) are
also of interest in deformation theory. Thus we refer to the relative Hochchild cochains and
cohomology groups Hn(A, B; A) as simplicial Hochschild cohomology.

In this note we will extend the following algebraic result in [6]: given a depth two ring
extension A |B with centralizer R = AB and endomorphism ring S = End BAB, the simplicial
Hochschild cochains under cup product are isomorphic as a graded algebra to the tensor algebra
of the (R,R)-bimodule S. Since S is a left bialgebroid over R, it is in particular an R-coring
with grouplike element 1S = idA. The Amitsur complex of such a coring is a differential graded
algebra explained in [2, 29.2]. We note below that the algebra isomorphism in [6] extends to an
isomorphism of differential graded algebras. We remark on the consequences for cohomology of
various types of Galois extensions with bialgebroid action or coaction.

2 Preliminaries on depth two extensions

All rings and algebras have a unit and are associative; homomorphisms between them preserve
the unit and modules are unital. Let R be a ring, and MR, NR be two right R-modules. The
notation M/N denotes that M is R-module isomorphic to a direct summand of an n-fold direct
sum power of N : M ⊕ ∗ ∼= Nn. Recall that M and N are similar [1, p. 268] if M/N and N/M .
A ring homomorphism B → A is sometimes called a ring extension A |B (proper ring extension
if B ↪→ A).
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Definition 2.1. A ring homomorphism B → A is said to be a right depth two (rD2) extension
if the natural (A,B)-bimodules A⊗B A and A are similar.

Left D2 extension is defined similarly using the natural (B,A)-bimodule structures: a D2
extension is both rD2 and `D2. Note that in either case any ring extension satisfies A/A⊗B A.

Note some obvious cases of depth two: 1) A a finite dimensional algebra, B the ground field.
2) A a finite dimensional algebra, B a separable algebra, since the canonical epi A⊗A→ A⊗B A
splits. 3) A |B an H-separable extension. 4) A |B a finite Hopf-Galois extension, since the Galois
isomorphism A ⊗B A

∼=−→ A ⊗ H is an (A,B)-bimodule arrow (and its twist by the antipode
shows A |B to be `D2 as well).

Fix the notation S := End BAB and R = AB. Equip S with (R, R)-bimodule structure

r · α · s = rα(−)s = λr ◦ ρs ◦ α

where λ, ρ : R→ S denote left and right multiplication of r, s ∈ R on A.

Lemma 2.2 ([5]). If A |B is rD2, then the module SR is a projective generator and

f2 : S ⊗R S
∼=−→ Hom (BA⊗B AB, BAB)

via f2(α⊗R β)(x⊗B y) = α(x)β(y) for x, y ∈ A.

For example, if A is a finite dimensional algebra over ground field B, then S = EndA, the
linear endomorphism algebra. If A |B is H-separable, then S ∼= R⊗Z Rop, where Z is the center
of A [5, 4.8]. If A |B is an H∗-Hopf-Galois extension, then S ∼= R#H, the smash product where
H has dual action on A restricted to R [5, 4.9].

Recall that a left R-bialgebroid H is a type of bialgebra over a possibly noncommutative base
ring R. More specifically, H and R are rings with “target” and “source” ring anti-homomorphism
and homomorphism R → H, commuting at all values in H, which induce an (R, R)-bimodule
structure on H from the left. W.r.t. this structure, there is an R-coring structure (H,R,∆, ε)
such that 1H is a grouplike element (see the next section) and the left H-modules becomes a
tensor category w.r.t. this coring structure. One of the main theorems in depth two theory is

Theorem 2.3 ([5]). Suppose A |B is a left or right D2 ring extension. Then the endomorphism
ring S := End BAB is a left bialgebroid over the centralizer AB := R via the source map
λ : R ↪→ S, target map ρ : Rop ↪→ S, coproduct

f2(∆(α))(x⊗B y) =
∑

(α)

f2(α(1) ⊗R α(2))(x⊗B y) = α(xy) (2.1)

Also A under the natural action of S is a left S-module algebra with invariant subring AS ∼=
End EA, where E := EndAB

∼=←− A#S via a⊗R α 7→ λa ◦ α.

We note in passing the measuring axiom of module algebra action from Eq. (2.1): in Sweedler
notation,

∑
(α) α(1)(x)α(2)(y) = α(xy).

3 Amitsur complex of a coring with grouplike

An R-coring C has coassociative coproduct ∆ : C → C⊗RC and counit ε : C → R, both mappings
being (R,R)-bimodule homomorphisms. We assume that C also has a grouplike element g ∈ C,
which means that ∆(g) = g⊗Rg and ε(g) = 1. The Amitsur complex Ω(C) of (C, g) has n-cochain
modules Ωn(C) = C ⊗R · · · ⊗R C (n times C), the zero’th given by Ω0(C) = R. The Amitsur
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complex is the tensor algebra Ω(C) = ⊕∞n=0Ω
n(C) with a compatible differential d = {dn} where

dn : Ωn(C)→ Ωn+1(C). These are defined by d0 : R→ C, d0(r) = rg − gr, and

dn(c1 ⊗ · · · ⊗ cn) = g ⊗ c1 ⊗ · · · ⊗ cn + (−1)n+1c1 ⊗ · · · ⊗ cn ⊗ g

+
n∑

i=1

(−1)ic1 ⊗ · · · ⊗ ci−1 ⊗∆(ci)⊗ ci+1 ⊗ · · · ⊗ cn

Some computations show that Ω(C) is a differential graded algebra [2], with defining equations,
d ◦ d = 0 as well as the graded Leibniz equation on homogeneous elements,

d(ωω′) = (dω)ω′ + (−1)|ω|ωdω′

The name Amitsur complex comes from the case of a ring homomorphism B → A and A-
coring C := A⊗B A with coproduct ∆(x⊗B y) = x⊗B 1A⊗B y and counit ε(x⊗B y) = xy. The
element g = 1 ⊗B 1 is a grouplike element. We clearly obtain the classical Amitsur complex,
which is acyclic if A is faithfully flat over B. In general, the Amitsur complex of a Galois A-
coring (C, g) is acyclic if A is faithfully flat over the g-coinvariants B = {b ∈ A | bg = bg} [2,
29.5].

The Amitsur complex of interest to this note is the following derivable from the left bialgebroid
S = End BAB of a depth two ring extension A |B with centralizer AB = R. The underlying
R-coring S has grouplike element 1S = idA, with (R,R)-bimodule structure, coproduct and
counit defined in the previous section. In Sweedler notation, we may summarize this as follows:

Ω(S) = R⊕ S ⊕ S ⊗R S ⊕ S ⊗R S ⊗R S ⊕ . . .

d0(r) = λr − ρr, d1(α) = 1S ⊗R α− α(1) ⊗R α(2) + α⊗R 1S , . . .

4 Cup product in simplicial Hochschild cohomology

Let A |B be an extension of K-algebras. We briefly recall the B-relative Hochschild cohomology
of A with coefficients in A (for coefficients in a bimodule, see the source [4]). The zero’th cochain
group C0(A,B;A) = AB = R, while the n’th cochain group

Cn(A,B;A) = HomB−B(A⊗B · · · ⊗B A,A)

(n times A in the domain). In particular, C1(A,B;A) = S = End BAB. The coboundary
δn : Cn(A,B; A)→ Cn+1(A, B; A) is given by

(δnf)(a1 ⊗ · · · ⊗ an+1) = a1f(a2 ⊗ · · · ⊗ an+1) + (−1)n+1f(a1 ⊗ · · · ⊗ an)an+1

+
n∑

i=1

(−1)if(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1)

and δ0 : R→ S is given by δ0(r) = λr − ρr. The mappings satisfy δn+1 ◦ δn = 0 for each n ≥ 0.
Its cohomology is denoted by Hn(A,B; A) = ker δn/Im δn−1, and might be referred to as a
simplicial Hochschild cohomology, since this cohomology is isomorphic to simplicial cohomology
if A is the poset algebra of a finite simplicial complex and B is the separable subalgebra of
vertices [3].

The cup product ∪ : Cm(A,B;A) ⊗K Cn(A, B; A) → Cn+m(A,B; A) makes use of the mul-
tiplicative stucture on A and is given by

(f ∪ g)(a1 ⊗ · · · ⊗ an+m) = f(a1 ⊗ · · · ⊗ am)g(am+1 ⊗ · · · ⊗ an+m)
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which satisfies [3] the equation

δn+m(f ∪ g) = (δmf) ∪ g + (−1)mf ∪ δng

Cup product therefore passes to a product on the cohomology. We note that (C∗(A,B; A),∪, +, δ)
is a differential graded algebra we denote by C(A,B).

Theorem 4.1. Suppose A |B is a right or left D2 algebra extension. Then the relative Hochschild
A-valued cochains C(A,B) is isomorphic as a differential graded algebra to the Amitsur complex
Ω(S) of the R-coring S.

Proof. We define a mapping f by f0 = idR, f1 = idS , and for n > 1,

fn : S ⊗R · · · ⊗R S
∼=−→ HomB−B(A⊗B · · · ⊗B A, A)

by fn(α1⊗ · · · ⊗αn) = α1 ∪ · · · ∪αn. (Note that f2 is consistent with our notation in section 2.)
We proved by induction on n in [6] that f is an isomorphism of graded algebras. We complete
the proof by noting that f is a cochain morphism, i.e., commutes with differentials. For n = 0,
we note that δ0 ◦ f0 = f1 ◦ d0, since d0 = δ0. For n = 1,

δ1(f1(α))(a1 ⊗B a2) = a1α(a2)− α(a1a2) + α(a1)a2

= f2(1S ⊗R α− α(1) ⊗R α(2) + α⊗R 1S)(a1 ⊗B a2)

= f2(d1(α))(a1 ⊗B a2)

using Eq. (2.1). The induction step is carried out in a similar but tedious computation: this
completes the proof that C(A,B) ∼= Ω(S).

5 Applications of the theorem

We immediately note that the cohomology rings of the two differential graded algebras are
isomorphic.

Corollary 5.1. Relative A-valued Hochschild cohomology is isomorphic to the cohomology of
the AB-coring S = End BAB:

H∗(A,B; A) ∼= H∗(Ω(S), d)

if A |B is a left or right depth two extension.

For example, we recover by different means the known result,

Corollary 5.2. If the ring extension A |B is H-separable and one-sided faithfully flat, then the
relative Hochschild cohomology is given by

Hn(A,B; A) =
{

Z(AB) n = 0
0 n > 0

Proof. Note that the extension is necessarily proper by faithful flatness. Note that S ∼= R⊗Z R
is a Galois R-coring, since {r ∈ R | r · 1S = 1S · r} = Z, the center of A and the isomorphism
r ⊗ s 7→ λr ◦ ρs is clearly a coring homomorphism. Whence Ω(S) is acyclic by [2, 29.5].

Finally,

H0 = ker d0 = {x ∈ R | rx− xr = 0, ∀r ∈ AB}

which is the center of the centralizer.
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This will also follow from proving that an H-separable is a separable extension, a condition of
trivial cohomology groups.

Corollary 5.3. Suppose A |B is a finite Hopf-H∗-Galois extension. Then relative Hochschild
A-valued cohomology is isomorphic to the Cartier coalgebra cohomology of H with coefficients
in the bicomodule AB ⊗H:

H∗(A,B; A) ∼= H∗
Ca(H, R⊗H)
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